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Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

Transformers

Ability of software to learn and 
to behave according to what it 
has learned

ML = data-driven AI: 
Algorithms able to learn from 
data, without being explicitly 
programmed

A subset of machine learning 
that uses deep neural 
networks to build models

Specific deep learning 
architecture behind NLP and 
large language models
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What about GenAI?

› Discriminative AI makes a “prediction”:


assigns a label, infers a value, tags a 
sequence…  

› GenAI generates new data:


text, audio, image, or anything else  

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

Transformers

Generative AIPredictive 
(Discriminative) AI 4



Process data at scale and in depth.

Extract knowledge, make decisions.


Anticipate and recognise novel events.
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Learning algorithms

Why AI?



For a set of (𝑥, 𝑦) pairs, learn 𝒇 such that:

𝒇(𝑥) = 𝑦
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Machine learning: data-driven AI



➡ Is there text on the image?

➡ Are there numbers (prices 

and discount)?

➡ Bright colours

➡ Brand names

➡ Keywords: “click”, “win”… 

     𝑥	 	 	       	 	 	 𝑦

Spam

Legit
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AI pipeline

rules



Spam

Legit

𝒇’(𝑥)

Deep Learning

     𝑥	 	 	             	 	 𝑦
ML algorithmFeature Extractor
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AI pipeline



Modern AI models
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Convolutional Neural NetworksDeep Neural Networks Transformers
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Modern AI emulates a fundamental cognitive ability: 

Implicit Pattern Recognition

(1) no explicit guidance (2) no explicit awareness

of the underlying rules and structures
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20% of cycling experts 
(N=68) 

made at least 1 severe error

>40% of people (N=125) 
made at least 1 severe errorDouble-edged sword
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Implicit Pattern Recognition



High Performance  Semantic Understanding≠
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What is the downside?
Implicit Pattern Recognition



My goal for today

➡ The current state of mitigations 
How to protect AI systems? What are the open problems? 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➡ Manage the expectations of applied AI 
What are the intrinsic pitfalls of AI in real world?  

➡ Review the adversarial landscape of AI 
Why is AI vulnerable? What are the main threats?

In the age of uncontrolled data collection and inference, can we do better?



When AI Hits the Real World
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DALLE3



But what if the future is vastly different from the past?

But what if it is impossible to collect representative and complete data?

ML assumes that training data is representative and complete.

But what if the user abuses access to the model and adapts their behaviour?

ML assumes that the data generation process is independent from the model.

ML learns from past examples of data to accurately predict or generate.
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Reinforced biases

and ethical concerns

Security and privacy risks

Utility and safety risks

Failures at deployment

Real world breaks ML assumptions
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Unpredictable behavior in 
unintended conditions



- Does high performance imply causal understanding? - Never.*

ML suffers from semantic gaps.

How to maintain models? How to spot errors? What do they cost?

ML induces operational constraints.

How to enable interpretability of ML-based processes?

Advanced ML does not inherently provide transparency.

Operational impact of ML
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Do the benefits justify the 
added complexity?

DALLE3



AI in deployment can be…

‣ a tool 

        a functioning part of the system


‣ a target of attacks 

        a vulnerable part of the system 


‣ a “fool” 

        unintentionally harms the system
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AI — a “fool” that harms the system

AI does not need an attacker to fail you!  Misplaced reliance is enough.

• Bias in training data


• Unexpected shifts in data distribution


• Unintentional data leakage and privacy violations


• Semantic gaps


• Generation of faulty or insecure content


• Fairness, ethics, societal and legal issues…
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Non-adversarial failures 
are the concern #1 !



  Model deployment

Victim Attacker

Example I of non-adversarial failures

ML for Intrusion 
Detection 

  ML model design

Victim Attacker

DDoS Benign

Shifts in Data Distribution
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Dos and Don'ts of Machine Learning in Computer Security (USENIX, 2022)

Example II of non-adversarial failures

ML can learn shortcuts (spurious correlations) and show top performance!

ML for Vulnerability 
Detection 
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Reindeer



Dos and Don'ts of Machine Learning in Computer Security (USENIX, 2022)

Example II of non-adversarial failures

ML can learn shortcuts (spurious correlations) and show top performance!

ML for Vulnerability 
Detection 
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Shortcut Learning

2525

semantic gap

Geirhos et al., “Shortcut learning in deep neural networks”, In: Nature Machine Intelligence 2.11, 2020. 25

When learned features seem to work well but are not the intended features

Accounts for variations in 
data that follow the same 

distribution as training data

Unforeseen variations in 
data distribution! 

Unplanned conditions.



Why does shortcut learning happen?
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Poor quality of data 
+  

“Naive” approach to testing 
+ 

Intrinsic simplicity bias of 
modern AI



Training data Validation data Real-world data

cow

Concept drift

not cow not cownot cow

Covariate shift

not cow not cow
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Summary of real-world failures at inference



“Foolproofing” AI systems

• The key: awareness of unintended behaviors that can cause operational failures!


• Covariate shifts and concept drift need to be both anticipated and actively 
detected. 

• Shortcut learning needs to be anticipated and checked for at the design stage 
through out-of-distribution testing and the use of explainability tools. 

• Good news: noticeable at deployment as a drop in performance. 
Bad news: shortcuts and distributional shifts can be exploited by attackers.
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What can be done against non-adversarial failures?



AI under Attack
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DALLE3

DALLE3



› What if an attacker knows that the target system is based on AI?


› Security risks: models can be poisoned, backdoored, evaded and otherwise 
tricked into misbehaving


› Privacy risks: data can be leaked, models and system configurations can be stolen

AI — a target of attacks
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“Involving AI means increasing the threat landscape” (B. Biggio)



Example I: Model evasion / Adversarial examples
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Carefully 
optimized 

noise
stop sign speed 100

Robust Physical-World Attacks on Deep Learning Visual Classification (CVPR, 2018)

ML is robust to random changes, but vulnerable to strategic perturbations



Summary of real-world failures at inference
Training data Validation data Real-world data

cow

Concept drift

not cow not cownot cow

Covariate shift

not cow not cow

+

Adversarial input

not cow
32



Robust ML

Non-intended 
inputs
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Robustifying AI
What can be done against adversarial inputs?

➡ Adversarial training (or model hardening): train on adversarial examples

➡ Detect attack attempts at runtime: analyze inputs and internal model parameters

➡ Defensive distillation: “smoothen” the model for better generalization to unseen 

samples to reduce sensitivity to perturbations

ML is robust only if it can maintain its objectives at 
deployment, in the face of unexpected changes in data/

environment and adversarial influences.



Example II: Training Data Reconstruction
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When blindly optimizing for performance, data memorization happens!

Reconstructing training data with informed adversaries (S&P, 2022)
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Privacy-preserving AI
What can be done to prevent data leakage?

➡ Differential privacy: addition of carefully calibrated random noise to obscure 
the contribution of individual data points. 
Main advantage: strong theoretical guarantees.  
Main problems: hard to implement correctly; detrimental impact on utility; 
connecting to privacy regulations is difficult; data-dependent and threat-
dependent. 

➡ Empirical protection: increase the costs for the attacks, lower the confidence 

➡ Restrict attacker’s knowledge and capabilities. 

➡ Data minimization!

Privacy

Utility



Adversarial landscape of AI
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Po

Adversarial Examples

Model Extraction 
Attack

Poisoning Attack

Model 
Inversion 

Attack

Threat modelling is 
essential



Adversarial landscape of AI
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Leak private or proprietary 
information by interacting with the 
model (direct interfacing or indirect 

manipulation through inputs)

Manipulate the model’s response 
to individual inference requests, 
causing unintended outputs and 

behaviors

Modify the model itself (its internal 
parameters) during training, fine-

tuning or inference, to satisfy 
malicious intent

Output 
manipulation

Model 
manipulation

Information 
leakage

1. For systems with AI at their core 

2. For systems interacting with or depending on AI-based services.




Adversarial landscape of AI
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Vulnerability Description Vulnerability Description

Membership Inference

The ability to infer whether 
specific data records, or 
groups of records, were 
part of the model’s training 
data.

Model Stealing
The ability to infer/extract the 
architecture or weights of the 
trained model.

Attribute Inference
The ability to infer sensitive 
attributes of one or more 
records that were part of 
the training data.

Input Extraction The ability to extract or 
reconstruct other users’ inputs to 
the model.

Training Data 
Reconstruction

The ability to reconstruct 
individual data records from 
the training dataset.

Model Poisoning or 
Data Poisoning

The ability to poison the model 
by tampering with the model 
architecture, training code, 
hyperparameters, or training 
data.

Property Inference
The ability to infer sensitive 
properties about the 
training dataset.

Model Evasion / Input 
Perturbation

The ability to perturb valid inputs 
such that the model produces 
incorrect outputs. Also known as 
adversarial examples.

from Microsoft Vulnerability Severity Classification for AI Systems 



A well-defined threat model
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• What is their goal? 
E.g., evade? Install a backdoor? Data exfiltration? Harm the application?


• What is the prior knowledge? 
What does the privacy attacker already know about the sensitive data without 
the model? What does the security attacker know about the model?


• What can the attacker access?  
E.g., predictions, confidence scores, generated output, explanations, 
hyperparameters, similar data distribution, computational resources…


• Requered query budget and other costs 
E.g., how many queries are needed? Is a surrogate model needed?
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AI algorithms, 
AI-enabled systems, 

MLaaS…

LLMs and LLM applications inherit all the risks… and add some more

Well, surely modern LLMs are more secure?



The LLMs craze

› Unprecedented scale: larger models, bigger datasets.


› A database of knowledge and assistance models firmly 
integrated into applications and workflows.


› We can assess the output of autoregression… but cannot 
understand the internals of the process (yet?)


› Reasoning about the (obscure, untraceable, complex) process 
is beyond our reach. 

› But… Adoption is not optional anymore.
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“A large language model is an empirical artefact” (A. Karpathy)
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OWASP Top 10 for LLM applications
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Prompt injection
Insecure output 

handling
Training data 

poisoning

Sensitive info 
disclosure

Insecure plugin 
design

Excessive 
agency

Model denial

of service

Supply chain 
vulnerabilities

Overreliance Model theft

https://llmtop10.com 

➡ Bridges the divide between general AppSec principles and specific challenges of LLMs

1 2 3

8

4 5

6 7 9 10

https://llmtop10.com


• LLMs are integrated in applications and 
automated workflows (can invoke function calls, 
search the web, execute code…)


• Don’t have well-defined inputs and outputs. LLMs 
work on unstructured and dynamically composed 
inputs: prompts, context, external sources…


• GPT Transformer works on concatenated inputs on 
one channel! No separation between instructions 
and data, user and system! Conflicts possible. 
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Data Plane

C
on

tr
ol

 P
la

ne

Data Plane
Control Plane

Specific complexities of LLMs



Example I: Indirect prompt injection

• Manipulate LLM through ingesting untrusted external content by the LLM app by 
browsing or using external tools (emails, databases, file readers …)

45
• Implications: SQL, XSS, data exfiltration, remote code execution, privilege escalation, etc.

Attacker-controlled input (prompt or given context) is interpreted as an instruction



Mitigations

46OpenAI: The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions (2024)

Probabilistic inference of privilege!

What can be done against (indirect) prompt injection?



Mitigations
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What can be done against (indirect) prompt injection?

➡ Prevent 
Model retraining or fine-tuning (costly or impossible…)


➡ Detect  
Human-in-the-loop 
Input/output classifiers 
Model inspection at runtime 
LLM guardrails 


➡ Block impact  
Guardrails: Input/output sanitization 
Diminish agency/integration

Lightweight, deployable, 
determenistic defenses may be 

the most practical
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Example II: Training Data Reconstruction

Extracting training data from large language models (USENIX, 2021)

LLM may overfit to training data 
leading to memorization of exact 
samples


Adversarially crafted queries can 
extract sensitive training data

Fine-tuning of leaky pre-trained 
models is leaky too!



Mitigations
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What can be done against training data leakage?

➡ Differential privacy: case-specific, often impractical/infeasible 


➡ Prevent overfitting (data memorization) through regularization 
or decreasing learning capacity 


➡ Data minimization 
Can avoid collecting/using confidential data for your task? Do 
so! Can place sensitive data in external sources (not embed 
into the LLM)? Do so!

Privacy

Utility
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What happens when security in AI is an afterthought?

Idea

Mathematical security analysis

Publication

Public scrutiny

HW/SW implementation

Standardization

Industrial products $$$

Take out of service

RIP OK

Life Cycle of a Cryptographic Algorithm

Performance optimization

Implementations

Industrial products $$$

Mitigations

Life Cycle of a ML/LLM Application?

Continuous deployment

Idea

Damage -$$$$

Publication

(Bart Preneel)

RIP

Incidents 
Public scrutiny



➡ Proper threat modeling  

➡ Bias mitigation 

➡ Compliance with legal regulations and ethical guidelines


➡ Extensive out-of-distribution testing, including red teaming and privacy audit


➡ State-of-practice and state-of-the-art mitigations


➡ Explainability tools to increase transparency


…

Trustworthy AI: Being proactive
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Fig. inspired by G. Cherubin

DALLE3



Trustworthy AI: Being proactive
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… don’t use AI?

Fig. inspired by G. Cherubin

AI with top 
performance Trustworthy AI

DALLE3



Takeaways
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➡ Increasing autonomy, complexity and integration of AI amplify all risks.


➡ AI (LLMs in particular) is a vulnerable intermediate layer between users and system/

information; the users may manipulate it or over-rely on it.


➡ Every AI security/privacy(fairness/alignment…) challenge poses an open research 

problem. For critical applications and sensitive data, the use of AI has to be justified.


➡ Securing AI demands a holistic approach: 
- Don’t look at the model in isolation. See how it interacts with the system. 
- Protection against one threat does not transfer to protection against other threats. 

As a community — academics and practitioners — we need to collaborate on AI 
threat modelling, and security and privacy testing of AI in deployment. 



PhD Summer Schools Training & Outreach Advanced Master’s

2025

@DistriNet (KU Leuven, Belgium)
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https://blue41.cs.kuleuven.be
https://distrinet.cs.kuleuven.be/

➡ Tomorrow at SecAppDev, Workshop: 

LLM Security Bootcamp: Foundations, Threats, and Defensive Techniques

https://blue41.cs.kuleuven.be/blog/real-world-attacks-on-llm-applications/
https://distrinet.cs.kuleuven.be/

