E

OPENAPI AS A SECURITY TOOL,
NOT JUST DOCUMENTATION

https://Pragmatic Web Security.com

o’

Y

@ pdr.online

OPENAPI

[api/restaurants/{id}/reviews

Path Parameters

id integer - int32

Signed 32-bit integers (commonly used integer type).

Responses

200 oK

/api/restaurants/{id}/reviews Shell Curl

curl 'https://restograde.com/api/restaurants/{id}/reviews'

®» Test Request

200 Show Schema
[
{
"id": 1,
"restauvrantId": 1,
"title": "..",
"content": "..",
"authorId":
}
]
OK

@ pdr.online

Various tools make it trivial to generate OpenAPI
definitions from your code, which in turn can be
transformed into interactive developer
documentation pages.

@ pdr.online

| am Dr. Philippe De Ryck

©

)4 E)?lpDelr’Es Google Developer Expert

Pragmatic Web Security

Founder of Pragmatic Web Security

<& SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

RESTAURANT

/api/restaurants/{id}/reviews:

get:
parameters:
— name: id
in: path
required: true
schema:

type: integer
format: int32
responses:

200" :
description: OK
content:
application/json:
schema:
type: array
items:

/api/restaurants/{id}/reviews

Path Parameters

id integer - int32

Signed 32-bit integers (commonly used integer type).

Responses

200 oK

/api/restaurants/{id}/reviews

curl 'https://restograde.com/api/restaurants/{id}/reviews’'

200
[
{
"id":
"restaurantId":
"title": "..
"content": ".."
"authorId":
+
]
OK

Shell Curl

Show Schema

$ref: "#/components/schemas/ResponseReview"

The endpoint definitions in code
carry plenty of metadata that can
be used to generate an OpenAPI
specification

@RequestMapping
path = "/api/restaurants/{id}/reviews",
method = RequestMethod.GET,
produces = "application/json")

/api/restaurants/{id}/reviews:
get:
parameters:
— name: id
in: path
required: true
schema:
type: integer
format: int32
responses:
"200":
description: OK
content:
application/json:
schema:
type: array
items:
$ref: "#/components/schemas/ResponseReview"

public ResponseEntity<List<ResponseReview>> getReviewsForRestaurant(

HttpServletRequest request,
@PathVariable int id
) throws Exception {

List<Review> reviews = DB.getReviewsForRestaurant(id);

return new ResponseEntity<>(

reviews.stream().map(ResponseReview: :new).collect(Collectors.toList()),

HttpStatus.OK
);

D Augmenting your OpenAPI specifications

By adding relevant data, you can enrich the
OpenAPI specifications and transform them into
valuable developer documents.

@ pdr.online

An OpenAPI definition for a GET endpoint

The spec defines
which HTTP methods

are supported

The spec defines
where parameters go
and how they are
formatted

¢ pdr.online

1 /api/restaurants/{id}/reviews:
e get:

3 parameters:

4 — name: id

5 in: path

6 required: true

7 schema:

8 type: integer

9 format: int32

10 responses:

11 200" : ®

12 description: OK

13 content:

14 application/json:

15 schema:

16 type: array

17 items:

18 $ref: "#/components/schemas/ResponseReview"

The spec defines
expected response
codes and details

® O ® % Security x + -

< c 23 tools.openapis.org/categories/security.html|
fuzz| 7
N/
474 OPENAPI —
4N NITIATIVE
Security
Name Description Home Repo 3.1? 3.0? 2.0? Stars Properties
Rate My OpenAPI Find API quality and security issues via your OpenAPI spec Link Link Yes Yes No 237 DETAILS

StackHawk is an application vulnerability scanner purpose built for developers to
StackHawk HawkScan use in the DevOps pipeline. It leverages a provided OpenAPI v2 or v3 spec file for Link Link No Yes Yes N/A
route discovery and enhanced scanning.

FireTail provides discovery, logging, posture management and in-line enforcement
FireTail of APIs using OpenAPI. APl governance is backed by cloud provider integrations Link Link No Yes Yes N/A
and a suite of open-source application libraries.

A unique set of integrated API security tools that allow discovery, remediation of

42 h Link N N Y Ye N/A
crunc OpenAPI vulnerabilities and runtime protection against API attacks. n ° ° es es /
openapi-fifer zt:;k—box fuzzer that fuzzes APIs based on OpenAPI specification. Find bugs for Link Link No Yes No 557 DETAILS
CATS is a REST API Fuzzer and negative testing tool for OpenAPI endpoints. CATS DETAILS
cats automatically generates, runs and reports tests with minimum configuration and Link Link Yes Yes Yes 1260
no coding effort. Tests are self-healing and do not require maintenance.
RestCase executes hundrends of security and quality checks against the API
AP| Insights definition, the API insights report provides detailed security scoring for Link No N Yes Yes N/A
'd prioritization, and remediation advice to help developers define the best API : °
definition possible.
OWASP ZAP The ZAP by Checkmarx Core project Link Link No Yes Yes 13595 DETAILS
OpenAPI3 Fuzzer Simple fuzzer for OpenAPI 3 specification based APIs Link Link No Yes No 22 DETAILS
Mayhem for API @ Run a Mayhem for API scan in GitHub Actions Link Link Yes Yes Yes 23 DETAILS
Treblle is a lightweight SDK that helps Engineering and Product teams build, ship, .
Treblle and maintain REST based APIs faster. Link No ves ves No N/A
RESTIer is the first stateful REST API fuzzing tool for automatically testing cloud DETAILS
RESTler services through their REST APIs and finding security and reliability bugs in these No Link No Yes Yes 2722

services.

@? pdr.online https.//tools.openapis.org/categories/security.html

An OpenAPI definition for a GET endpoint

Fuzzers will try
undocumented HTTP
methods and ensure
they are not accepted

Fuzzers will throw
invalid data to the API
to see what happens

¢ pdr.online

1 /api/restaurants/{id}/reviews:
e JET

3 parameters:

4 — name: id

5 in: path

6 required: true

L e Schema:

8 type: integer

9 format: int32

10 responses:

11 "200": ®

12 description: OK

13 content:

14 application/json:

15 schema:

16 type: array

17 items:

18 $ref: "#/components/schemas/ResponseReview"

Fuzzers will look at
responses and report
unexpected or
undocumented
response codes

D Running fuzzing and scanning tools

@ pdr.online

Use OPENAPI SPECS AS INPUT FOR SCANNERS/FUZZERS

Giving scanners and fuzzers an OpenAPI spec helps them to
increase specificity of tests as well as the coverage of the API.

These tools are highly useful to identify undocumented or
unexpected features.

¢ pdr.online

Fuzzers and scanners are vague and noisy,

making them somewhat challenging to use

@ pdr.online

D Auditing OpenAPI specs for security

The audit also
complains about
missing response

codes
(e.g., 406, 429, ...)

API Security Audit

Most common issues

Vv 'Security' field of the operation is not defined
@ Critical [Score impact: 30 @ 7 result(s) (@ Issue ID

Vv String schema in a request has no pattern defined
® Medium [Score impact: 14 @ 4 result(s) (@ Issue ID

Vv String schema in a request has no maximum length defined
® Medium [Score impact: 6 @ 2result(s) (3 Issue ID

v Numeric schema in a request has no maximum defined

® Medium 9 Score impact: 3 @ 1result(s) (P Issue ID

Opportunities

Vv 'Security' field of the operation is not defined
® Count7 [Scoreimpact: 30 @ 7 result(s)

Vv String schema in a request has no pattern defined
® Count4 [Scoreimpact: 14 @ 4 result(s)

Schemas are severely
underspecified in our
OpenAPI spec

Vv String schema in a request has no maximum length defined
ﬂ ® Count2 I Scoreimpact: 6 @ 2 result(s)

Vv Numeric schema in a request has no maximum defined

® Count1 [Scoreimpact: 3 @ 1 result(s)

Global score Security score Data validation score
6/100 0/30 6/70
@ Security quality gates failed () Show only SQG to-do list v
Priority Issues

The OAS is audited for
security and data
validation properties

@RequestMapping

path = "/api/restaurants/{id}/reviews",
method = RequestMethod.GET,
produces = "application/json"

)
public ResponseEntity<List<ResponseReview>> getReviewsForRestaurant(
HttpServletRequest request,

@PathVariable

@Parameter (
description = "The ID of the restaurant for which the reviews are retrieved",
example = "1"

) Framework-specific validation tools can

@in(1) . be applied on request data, making

@Max(Integer.MAX_VALUE) these constraints also visible in the

int id OpenAPI specification

) throws Exception {

@ pdr.online

A GET endpoint with data validation annotations

@RequestMapping (

path = "/api/restaurants/{id}/reviews",
method = RequestMethod.GET,

produces = "application/json"

public ResponseEntity<List<Resp0nchpuinm>> natReviawceFarReactalirant(
HttpServletRequest request, An OpenAPI definition for a GET endpoint

1
2
3
4
5)
6
7
8
9

@PathVariable
@Parameter(1 /api/restaurants/{id}/reviews:
10 description = "The ID of tI 2 get:
11 example = "1" 3 parameters:
g éMin(l) 4 — name: id
14 @ax(Integer.MAX_VALUE) > 1n: path
15 int id 6 required: true
16) throws Exception { 7 description: The ID of the restaurant ...
17 8 example: 1
E———————— schema:
The OpenAPI format 10 type: integer
supports detailed data 11 format: int3?2
validation properties for 12 minimum: 1
simple values and complex 13 ® maximum: 2147483647
data types.

Java is cool and all,

but what about other languages?

@ pdr.online

[HttpGet("{id}/reviews")]
[Produces("application/json")]
public ActionResult<List<ResponseReview>> GetReviewsForRestaurant(

[FromRoute]

[Range(1, int.MaxValue)]

[SwaggerParameter (
Description = "The ID of the restaurant for which the reviews are retrieved",
Example = "1"

)]

int id)

@ pdr.online

class PathParamSchema(Schema):
id = fields.Int(
required=True,
validate=validate.Range(min=1, max=2147483647),
metadata={
"description": "The ID of the restaurant for which the reviews are retrieved",
"example": 1

}

@blp.route('/<int:id>/reviews"')
@blp.arguments(PathParamSchema, location="path")
def get_reviews_for_restaurant(args):

@ pdr.online

OpenAPI supports more than just data

types. You can also specify error responses
and authentication properties

@ pdr.online

@ExceptionHandler(ResourceNotFoundError.class)
@ApiResponse(

responseCode = "404",

content = @Content(

mediaType = MediaType.APPLICATION_JSON_VALUE,

Being specific about which responses
can be returned is a best practice.

OAS generation will pick up these
annotations and document this
behavior in the spec.

schema = @Schema(implementation = PublicApiError.class)

)
)

public ResponseEntity<PublicApiError> handleNotFound(ResourceNotFoundError error) {

return ResponseEntity.status(HttpStatus.NOT_FOUND)
.body(new PublicApiError(error));

@ pdr.online

Being specific about which responses
@ExceptionHandler(ResourceNotFoundError.class) can be returned is a best practice.
@ApiResponse(o
responseCode = "404", OAS generation will pick up these
content = @Content(annotations and document this
mediaType = MediaType.APPLICATION_JSON_VALUE, behavior in the spec.
schema = @Schema(implementation = PublicApiError.class)
)
)

/api/restaurants/{id}/reviews:

public ResponseEntity<PublicApiError> hec

get:
return ResponseEntity.status(HttpStatu
.body(new PublicApiError(errc reﬁ;’;;ﬁ‘?s'
} description: OK
i1 7 content:
application/json:
schema:
1 type: array
The OpenAPI spec 11 items:
documents each response 12 o “i0an $ref: "#/components/schemas/ResponseReview"
COde' along with the 14 description: Not Found
schema of its contents 15 content:
application/json:
schema:

$ref: "#/components/schemas/PublicApiError"

@ pdr.online

Authentication

(Note
OAS 3 This guide is for OpenAPI 3.0. If you use OpenAPI 2.0, see our OpenAP| 2.0 guide.

OpenAPI uses the term security scheme for authentication and authorization schemes.

OpenAPI 3.0 lets you describe APIs protected using the following security schemes:

e HTTP authentication schemes (they use the Authorization header):

© Basic OAS supports the definition of bearer tokens
o Bearer @ in the Authorization header, but also other
o other HTTP schemes as defined by RFC 7235 and HTTP Authentication Scheme mechanisms, such as session cookies
Registry, f
e APl keys in headers, query string or cookies The definition of some of these mechanisms
o Cookie authentication is a bit clunky and unelegant, but they add
e OAuth?2 useful metadata to the OAS.

e OpenlD Connect Discovery

This data is used by developers and by
automated security tools to understand how
to authenticate requests.

Follow the links above for the guides on specific security types, or continue reading to learn how

to describe security in general.

@? pdr.online https://swagger.io/docs/specification/v3_0/authentication/

D Defining authentication rules in OpenAPI

@ pdr.online

Auditing tools can use OpenAPI specs to identify lax or missing
security rules, as well as missing features (e.g., 415 or 429
responses).

Advanced audits also look at security rules (e.g., authorization)
defined in the OpenAPI contract.

@ pdr.online

O pe nAP I EXte nsS i ONS o Extensions are prefixed with x- and are

supported on various levels: the generic
info section, for security schemes, for
paths and responses, and for specific
@ Note operation parameters.

OAS 3 This guide is for OpenAPI 3.0. If you use OpenAPI 2.0, see our OpenAP|
2.0 guide.

Extensions can be used to describe

specific mechanisms in more detail,
custom properties that start with x-, such as x-logo . These are used to add extra beyond what the spec supports out of

Extensions (also referred to as specification extensions or vendor extensions) are

information or functionality that the OpenAPI standard doesn't include by default. the box

For example, many tools including Amazon API Gateway, ReDoc, APIMatic, and Fern

use extensions to include details specific to their products.

https://swagger.io/docs/specification/v3_0/openapi-extensions/

Example

An API that uses Amazon APl Gateway custom aut

to this:

11
12
13

components:
securitySchemes:
APIGatewayAuthorizer:

type: apiKey

name: Authorization

in: header

Xx—amazon—-apigateway—authtype:

X—amazon—-apigateway—authorizer
type: token
authorizerUri: arn:aws:apiga
03-31/functions/arn:aws: lamb
id:function:function—-name/in
authorizerCredentials: arn:a
identityValidationExpression

authorizerResultTtlInSeconds

X-amazon-apigateway-authorizer object

C ¥ PDF) C ¥ RSS) O Focus mode

Defines a Lambda authorizer, Amazon Cognito user pool, or JWT authorizer to be applied for authorization of method invocations in
API Gateway. This extension applies to the security definition in OpenAPI 2[2 and OpenAPI 3[2.

Property name

type

authorizerUri

authorizerCredentials

authorizerPayloadFormatVersion

enableSimpleResponses

identitySource
jwtConfiguration
identityValidationExpression

authorizerResultTt1lInSeconds

Type

string

string

string

string

Boolean

string
Object
string

string

Description

The type of the authorizer. This is a required property.

For REST APIs, specify token for an authorizer with the caller identity
parameters. Specify cognito_user_pools for an authorizer that use
For HTTP APIs, specify request for a Lambda authorizer with the call

The Uniform Resource Identifier (URI) of the authorizer Lambda functic

"arn:aws:apigateway:us-east-1:1lambda:path/2015-03-31

The credentials required for invoking the authorizer, if any, in the form

For HTTP APIs, specifies the format of the data that APl Gateway sends
version.

For HTTP APIs, specifies whether a request authorizer returns a Bool
enabled, the Lambda authorizer function returns a Boolean value. To le

A comma-separated list of mapping expressions of the request parame
Specifies the issuer and audiences for a JWT authorizer. To learn more,
A regular expression for validating the token as the incoming identity. |

The number of seconds during which authorizer result is cached.

https://docs.aws.amazon.com/apigateway/latest/developerqguide/api-gateway-swagger-extensions-authorizer.htm/

Extending OpenAPI specifications can be useful when you have
company-specific requirements.

The information defined in the extension is very useful to clarify

certain details, such as detailed information about authorization
tokens or credentials.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @OUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

MASS ACCOUNT TAKEOVER IN THE YUNMAI SMART SCALE API

10 minutes 3go

1330,

N A

W2p6 (Wig4 >

Disclosure of Sensitive User Information via API

(High) yogeshojha published GHSA-r3fp-xr9f-wv38 on Feb 1

Package Affected versions Patched versions Severity
No package listed <=2.20 2.2.0 (High)

CVEID
Description

CVE-2025-24899

Summary Weaknesses

» CWE-200

A vulnerability was discovered in reNgine, where an insider attacker with any role (such as Auditor, Penetration Tester, or Sys
Admin) can extract sensitive information from other reNgine users. After running a scan and obtaining vuln i
target, the attacker can obtain details such as username , password , email, role, first name, last name]
activity information by making a GET request to /api/listVulnerability/ .

Request Response

Pretty

Details

After running a vulnerability scan on a random target and generating any result in the Vulnerabilities tab, an a
with any role, regardless of whether it is Sys Admin, Penetration Tester or Auditor, can exploit this vulnerabilit:

Create a query for the Endpoint /api/listVulnerability/ using the GET method:

GET /api/listVulnerability/ HTTP/2
Host: myrengine
Cookie: sessionid=YOUR_SESSIONID

URL: https://RENGINE-IP/api/listVulnerability/

Note that the API response is leaking sensitive information from users who have already run a scan before. If 3
scan, information will only be leaked from the single user who performed the scan, but if more than one user g
more than one user will have their information leaked in the response.

"employ

1

@@ €l =2 earch

@) pdr.online https://qgithub.com/yogeshojha/rengine/security/advisories/GHSA-r3fp-xr9f-wv38

D Excessive data exposure in action

@ pdr.online

An OpenAPI definition for listing restaurants

1 /api/restaurants:

2 get:

3 responses:

4 "200":

5 description: OK

6 content:

7 application/json:
8 schema:

9 type: array

10 items:

11 $ref: "#/components/schemas/Restaurant" @

The contents are defined in the
Restaurant schema

(¥ pdr.online

Restaurant:
type: object
properties:
id:
type: integer
format: int32
owner:

/api/restaurants:
get:
responses:
200" :
description: OK
content:
application/json:
schema:
type: array
items:

$ref: "#/components/schemas/Restaurant"

This OAS suffers from excessive
data exposure by leaking
internal user fields in the

restaurant's owner property

$ref: "#/components/schemas/User"

name:
type: string
description:

type: string

User:
type: object
properties:
id:
type: integer
format: int32
username:
type: string
password:
type: string
role:
type: string

Excessive data exposure can be solved by

using response-specific DTOs or schemas

@ pdr.online

Having a clearly-defined contract of what data the API returns
helps in identifying potential data exposure vulnerabilities.

Note that identifying vulnerabilities still requires manual review
of the generated OpenAPI spec.

@ pdr.online

1 Broken object level authorization

2 Broken authentication

3 Broken object property-level authorization
4 Unrestricted resource consumption
5 Broken function level authorization

6 Unrestricted access to sensitive business flows

7 Server-side request forgery @DUJHSD
8 Security misconfiguration API Security

9 Improper inventory management T O P 1 o
10 Unsafe consumption of APIs J—

In @ mass assignment vulnerability, a user

can write/update properties they should
not be accessing

@ pdr.online

|:| Mass assighment in action

@ pdr.online

An OpenAPI definition for updating the user profile

User Profile 1 patch:
Username 2 requestBody:
philippe 3 required: true
4 content:
5 application/json:
§) schema:
7 $ref: "#/components/schemas/User"

The Ul for updating user profiles supports
the changing of the username, but the
underlying API accepts full user objects as
input

¢ pdr.online

An OpenAPI definition for updating the user profile

User Profile ! patch:
Ysermname 2 requestBody:
prllippe 3 required: true
4 content:
5 application/json:
§) schema:
An OpenAPI definition for the User schema 7 $ref: "#/components/schemas/User"
1 User:
2 type: object
3 properties:
4 id:
5 type: integer This OAS suffers from mass
6 format: int32 assignment, as it allows a user
7 username: to overwrite internal fields,
8 type: string leading to an escalation of
9 password: privilege
10 type: string
11 role:

12 type: string

Mass assighment can be solved by using

request-specific DTOs or schemas

@ pdr.online

Having a clearly-defined contract of what data the API accepts helps in
identifying potential mass assignment vulnerabilities. Mass assignment is
harder to identify than data exposure vulnerabilities.

Note that identifying vulnerabilities still requires manual review of the
generated OpenAPI spec.

@ pdr.online

What if ... we flip the script?

The code-first approach to using OpenAPI specifications

Scan / audit /
review OAS

Write code Generate OAS

The API-first approach to using OpenAPI specifications

Scan / audit /
review OAS

@ pdr.online

Cl Writing the OAS for

s the Update Profile endpoint

The code-first approach to using OpenAPI specifications

Scan / audit /
review OAS

Write code Generate OAS

The API-first approach to using OpenAPI specifications

Generate frontend
/ backend API code

Scan / audit /

Write OAS review OAS

Additional
development

@ pdr.online

The OAS is a great tool to drive both frontend and
APl development (code generation, testing, ...)

Having a strict and well-defined OAS combined with
code generation is beneficial for the security of the API

¢ pdr.online

Writing out an OpenAPI spec by hand requires careful attention to the
design of the API and the data handled in requests and responses.

Introducing broken object-level property authorization vulnerabilities
becomes a lot harder.

The OAS can be defined, reviewed, improved, and then used to generate
large chunks of code for both the API and the frontend.

@ pdr.online

But what if the code diverges from the

spec?

@ pdr.online

Generate frontend
/ backend API code

Scan / audit /

Write OAS review OAS

Additional
development

We can use the OAS with the
expected behavior to verify the
actual behavior of our
implementation

¢ pdr.online

Conformance Scan

Running automated conformance

Summary Trends
scans in the CI/CD pipeline will help

® you detect when the
O 1issues implementation deviates from the
Last run: 11 December 2024, 07:39 specification
i) Security quality gates failed ‘

Automated conformance scans can
also be extended with other

techniques, such as fuzzing etc.

Q

Read report View other scan reports

The 42Crunch API security platform is just an
example. | am not affiliated with 42Crunch, nor
do | benefit from showing this tool in any way.

¢ pdr.online

Scan / audit /

Write OAS review OAS

[

We can use the OAS with the expected
behavior to configure an API firewall to block
request and responses that do not adhere to

the spec

Generate frontend
/ backend API code

Additional
development

Runtime protection

with an API firewall

These tools offer request
validation against OpenAPI specs

Azu re API M a nagement to avoid unwanted or malformed

requests.

Unify, govern, and secure your APIs across cloud and on-premises environments with an

This effectively protects against

Azure-native API management solution. .
mass assignment attacks.

() APishield

Schema Validation

An APl schema defines which API requests are valid based on several request properties like target endpoint and HTTP method.

Overview

v Security
Schema Validation allows you to check if incoming traffic complies with a previously supplied APl schema. When you provide an API

schema, API Shield creates rules for incoming traffic from the schema definitions. These rules define which traffic is allowed and
Volumetric Abuse Detection which traffic gets logged or blocked.

API Discovery

Sequential Abuse Detection

(Beta) For help configuring Schema Validation for one or more hosts using the dashboard, refer to Configure Schema Validation .
eta

> Mutual TLS (mTLS)
This feature is only available for customers on an Enterprise plan. Contact your Cloudflare Customer Success Manager to get access.
v Schema Validation

Configure

https://azure.microsoft.com/en-us/products/api-management
https://developers.cloudflare.com/api-shield/security/schema-validation/

@ pdr.online

This tool offers request and
response validation, effectively
enforcing compliance of the
impleemntation to the OAS.

@CfUﬂCh Why 42Crunch Platform v Solutions ¥ Resources ¥ Company Vv

Protection is e ttectivel

. . This effectively protects against
automatlcally. appl led at mass assignment and data
deployment time pyyr exposure attacks.

Finally, the API contract is used to protect APIs using our

micro API firewall. The runtime is fully optimized to be A
deployed and run on any container orchestrator such as
Docker, Kubernetes or Amazon ECS. It can protect North- g
South and East-West microservices traffic. With minimal

latency and footprint, it can be deployed against hundreds

of APl endpoints with minimal impact.

API Firewall is configured in one-click from API
contract

Contract becomes the allowlist for security
No need to guess via Al which traffic is valid
No policies to write

@.7 pdr.online https.//42crunch.com/api-security-platform/

This space is the cutting edge of security,

so you will find plenty of alternative tools
as well!

@ pdr.online

API-first approaches help ensure that the
implementation adheres to the specification.

Additionally, the OAS can be used to enable runtime protection tools to
stop attacks that aim to abuse data exposure or mass assignment
vulnerabilities.

@ pdr.online

At some point,

someone has to think!
I

Automated tools are awesome, but they always
require someone to carefully write or vet a contract.

Tools cannot (yet) fully automatically identify data
exposure or mass assignment problems.

@ pdr.online

OpenAPI specifications are the future of

APl development and API security

Tool Types

We've organised everything into categories so you can jump to the section you're interested in.

@ pdr.online

Auto Generators: Tools that will take your code and turn it into an OpenAPI Specification document

Converters: Various tools to convert to and from OpenAPI and other API description formats.

Data Validators: Check to see if APl requests and responses are lining up with the API description.

Description Validators: Check your API description to see if it is valid OpenAPI.

Documentation: Render API Description as HTML (or maybe a PDF) so slightly less technical people can figure out how to work with the API.
DSL: Writing YAML by hand is no fun, and maybe you don't want a GUI, so use a Domain Specific Language to write OpenAPI in your language of
choice.

Gateways: APl Gateways and related tools that have integrated support for OpenAPI.

GUI Editors: Visual editors help you design APIs without needing to memorize the entire OpenAPI specification.

Learning: Whether you're trying to get documentation for a third party API based on traffic, or are trying to switch to design-first at an organization
with no OpenAPI at all, learning can help you move your API spec forward and keep it up to date.

Miscellaneous: Anything else that does stuff with OpenAPI but hasn't quite got enough to warrant its own category.

Mock Servers: Fake servers that take description document as input, then route incoming HTTP requests to example responses or dynamically
generates examples.

Monitoring: Monitoring tools let you know what is going on in your API.

Parsers: Loads and read OpenAPI descriptions, so you can work with them programmatically.

SDK Generators: Generate code to give to consumers, to help them avoid interacting at a HTTP level.

Security: By poking around your OpenAPI description, some tools can look out for attack vectors you might not have noticed.

Server Implementations: Easily create and implement resources and routes for your APlIs.

Testing: Quickly execute API requests and validate responses on the fly through command line or GUI interfaces.

Text Editors: Text editors give you visual feedback whilst you write OpenAPI, so you can see what docs might look like.

https://openapi.tools/

Do not expose your OpenAPI specs for your

APIs (unless they serve as documentation)

@ pdr.online

KEY TAKEAWAYS

1 Start using OpenAPI specifications to familiarize yourself

2 Adopt security tooling based on OpenAPI specs and improve

3 Adopt an API-first approach, which yields the best security results

@ pdr.online

Connect with me to stay in touch
about security

https://pdr.online

