
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

OPENAPI AS A SECURITY TOOL,
NOT JUST DOCUMENTATION

pdr.online

pdr.online

pdr.online

OPENAPI SPECS SUPPORT DOCUMENTATION

Various tools make it trivial to generate OpenAPI
definitions from your code, which in turn can be

transformed into interactive developer
documentation pages.

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

An OpenAPI definition for a GET endpoint

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

/api/restaurants/{id}/reviews:
 get:
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 format: int32
 responses:
 "200":
 description: OK
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: "#/components/schemas/ResponseReview"

The Java Spring API endpoint

1
2
3
4
5
6
7
8
9
10
11
12
13
14

@RequestMapping(
 path = "/api/restaurants/{id}/reviews",
 method = RequestMethod.GET,
 produces = "application/json")
public ResponseEntity<List<ResponseReview>> getReviewsForRestaurant(
 HttpServletRequest request,
 @PathVariable int id
) throws Exception {
 List<Review> reviews = DB.getReviewsForRestaurant(id);
 return new ResponseEntity<>(
 reviews.stream().map(ResponseReview::new).collect(Collectors.toList()),
 HttpStatus.OK
);
}

The endpoint definitions in code
carry plenty of metadata that can
be used to generate an OpenAPI

specification

pdr.online

Augmenting your OpenAPI specifications

pdr.online

ENRICH YOUR OPENAPI SPECIFICATIONS

By adding relevant data, you can enrich the
OpenAPI specifications and transform them into

valuable developer documents.

pdr.online

The spec defines
which HTTP methods

are supported

The spec defines
where parameters go

and how they are
formatted

The spec defines
expected response
codes and details

pdr.online https://tools.openapis.org/categories/security.html

pdr.online

Fuzzers will try
undocumented HTTP
methods and ensure

they are not accepted

Fuzzers will throw
invalid data to the API
to see what happens

Fuzzers will look at
responses and report

unexpected or
undocumented
response codes

pdr.online

Running fuzzing and scanning tools

pdr.online

USE OPENAPI SPECS AS INPUT FOR SCANNERS/FUZZERS

Giving scanners and fuzzers an OpenAPI spec helps them to
increase specificity of tests as well as the coverage of the API.

These tools are highly useful to identify undocumented or
unexpected features.

!
pdr.online

Fuzzers and scanners are vague and noisy,
making them somewhat challenging to use

pdr.online

Auditing OpenAPI specs for security

The 42Crunch API security platform is just an
example. I am not affiliated with 42Crunch, nor
do I benefit from showing this tool in any way.

The OAS is audited for
security and data

validation properties

Schemas are severely
underspecified in our

OpenAPI spec

The audit also
complains about
missing response

codes
(e.g., 406, 429, ...)

pdr.online

A GET endpoint with data validation annotations (Java)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

@RequestMapping(
 path = "/api/restaurants/{id}/reviews",
 method = RequestMethod.GET,
 produces = "application/json"
)
public ResponseEntity<List<ResponseReview>> getReviewsForRestaurant(
 HttpServletRequest request,
 @PathVariable
 @Parameter(
 description = "The ID of the restaurant for which the reviews are retrieved",
 example = "1"
)
 @Min(1)
 @Max(Integer.MAX_VALUE)
 int id
) throws Exception {
 ...

Framework-specific validation tools can
be applied on request data, making
these constraints also visible in the

OpenAPI specification

The OpenAPI format
supports detailed data

validation properties for
simple values and complex

data types.

?
pdr.online

Java is cool and all,
but what about other languages?

pdr.online

A GET endpoint with data validation annotations (.NET)

1
2
3
4
5
6
7
8
9
10
11
12

[HttpGet("{id}/reviews")]
[Produces("application/json")]
public ActionResult<List<ResponseReview>> GetReviewsForRestaurant(
 [FromRoute]
 [Range(1, int.MaxValue)]
 [SwaggerParameter(
 Description = "The ID of the restaurant for which the reviews are retrieved",
 Example = "1"
)]
 int id)
{
 ...

pdr.online

A GET endpoint with data validation annotations (Python Flask with Marshmallow)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

class PathParamSchema(Schema):
 id = fields.Int(
 required=True,
 validate=validate.Range(min=1, max=2147483647),
 metadata={
 "description": "The ID of the restaurant for which the reviews are retrieved",
 "example": 1
 }
)

@blp.route('/<int:id>/reviews')
@blp.arguments(PathParamSchema, location="path")
def get_reviews_for_restaurant(args):
 ...

!
pdr.online

OpenAPI supports more than just data
types. You can also specify error responses
and authentication properties

pdr.online

A global error handler for generating and documenting 404 responses (Java)

1
2
3
4
5
6
7
8
9
10
11
12

@ExceptionHandler(ResourceNotFoundError.class)
@ApiResponse(
 responseCode = "404",
 content = @Content(
 mediaType = MediaType.APPLICATION_JSON_VALUE,
 schema = @Schema(implementation = PublicApiError.class)
)
)
public ResponseEntity<PublicApiError> handleNotFound(ResourceNotFoundError error) {
 return ResponseEntity.status(HttpStatus.NOT_FOUND)
 .body(new PublicApiError(error));
}

Being specific about which responses
can be returned is a best practice.

OAS generation will pick up these
annotations and document this

behavior in the spec.

pdr.online

A global error handler for generating and documenting 404 responses (Java)

1
2
3
4
5
6
7
8
9
10
11
12

@ExceptionHandler(ResourceNotFoundError.class)
@ApiResponse(
 responseCode = "404",
 content = @Content(
 mediaType = MediaType.APPLICATION_JSON_VALUE,
 schema = @Schema(implementation = PublicApiError.class)
)
)
public ResponseEntity<PublicApiError> handleNotFound(ResourceNotFoundError error) {
 return ResponseEntity.status(HttpStatus.NOT_FOUND)
 .body(new PublicApiError(error));
}

Being specific about which responses
can be returned is a best practice.

OAS generation will pick up these
annotations and document this

behavior in the spec.

The OpenAPI spec
documents each response

code, along with the
schema of its contents

pdr.online https://swagger.io/docs/specification/v3_0/authentication/

OAS supports the definition of bearer tokens
in the Authorization header, but also other

mechanisms, such as session cookies

The definition of some of these mechanisms
is a bit clunky and unelegant, but they add

useful metadata to the OAS.

This data is used by developers and by
automated security tools to understand how

to authenticate requests.

pdr.online

Defining authentication rules in OpenAPI

pdr.online

AUDITING OAS IMPROVES YOUR SECURITY POSTURE

Auditing tools can use OpenAPI specs to identify lax or missing
security rules, as well as missing features (e.g., 415 or 429

responses).

Advanced audits also look at security rules (e.g., authorization)
defined in the OpenAPI contract.

Extensions are prefixed with x- and are
supported on various levels: the generic

info section, for security schemes, for
paths and responses, and for specific

operation parameters.

Extensions can be used to describe
specific mechanisms in more detail,

beyond what the spec supports out of
the box

https://swagger.io/docs/specification/v3_0/openapi-extensions/

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-swagger-extensions-authorizer.html

pdr.online

YOU CAN CUSTOMIZE YOUR OAS FOR YOUR SITUATION

Extending OpenAPI specifications can be useful when you have
company-specific requirements.

The information defined in the extension is very useful to clarify
certain details, such as detailed information about authorization

tokens or credentials.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

“
“

The server leaks the
‘accessToken’, and
the ‘refreshToken’.
As a result, we can
impersonate the

account.

https://fortbridge.co.uk/research/mass-account-takeover-yunmai/

pdr.online https://github.com/yogeshojha/rengine/security/advisories/GHSA-r3fp-xr9f-wv38

pdr.online

Excessive data exposure in action

pdr.online

An OpenAPI definition for listing restaurants

1
2
3
4
5
6
7
8
9
10
11

/api/restaurants:
 get:
 responses:
 "200":
 description: OK
 content:
 application/json:
 schema:
 type: array
 items:
 $ref: "#/components/schemas/Restaurant" The contents are defined in the

Restaurant schema

An OpenAPI definition for the Restaurant schema

1
2
3
4
5
6
7
8
9
10
11
12

Restaurant:
 type: object
 properties:
 id:
 type: integer
 format: int32
 owner:
 $ref: "#/components/schemas/User"
 name:
 type: string
 description:
 type: string

An OpenAPI definition for the User schema

1
2
3
4
5
6
7
8
9
10
11
12

User:
 type: object
 properties:
 id:
 type: integer
 format: int32
 username:
 type: string
 password:
 type: string
 role:
 type: string

This OAS suffers from excessive
data exposure by leaking
internal user fields in the

restaurant's owner property

!
pdr.online

Excessive data exposure can be solved by
using response-specific DTOs or schemas

pdr.online

OAS HELPS TO IDENTIFY POTENTIAL VULNERABILITIES

Having a clearly-defined contract of what data the API returns
helps in identifying potential data exposure vulnerabilities.

Note that identifying vulnerabilities still requires manual review
of the generated OpenAPI spec.

Broken function level authorization5

Unrestricted resource consumption4

Broken object property-level authorization3

Broken authentication2

Broken object level authorization1

Unsafe consumption of APIs10

Improper inventory management9

Security misconfiguration8

Server-side request forgery7

Unrestricted access to sensitive business flows6

API Security

!
pdr.online

In a mass assignment vulnerability, a user
can write/update properties they should
not be accessing

pdr.online

Mass assignment in action

pdr.online

The UI for updating user profiles supports
the changing of the username, but the

underlying API accepts full user objects as
input

An OpenAPI definition for updating the user profile

1
2
3
4
5
6
7

patch:
 requestBody:
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/User"

An OpenAPI definition for updating the user profile

1
2
3
4
5
6
7

patch:
 requestBody:
 required: true
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/User"An OpenAPI definition for the User schema

1
2
3
4
5
6
7
8
9
10
11
12

User:
 type: object
 properties:
 id:
 type: integer
 format: int32
 username:
 type: string
 password:
 type: string
 role:
 type: string

This OAS suffers from mass
assignment, as it allows a user

to overwrite internal fields,
leading to an escalation of

privilege

!
pdr.online

Mass assignment can be solved by using
request-specific DTOs or schemas

pdr.online

OAS HELPS TO IDENTIFY POTENTIAL VULNERABILITIES

Having a clearly-defined contract of what data the API accepts helps in
identifying potential mass assignment vulnerabilities. Mass assignment is

harder to identify than data exposure vulnerabilities.

Note that identifying vulnerabilities still requires manual review of the
generated OpenAPI spec.

?
pdr.online

What if ...

?
pdr.online

What if ... we flip the script?

pdr.online

Write code Generate OAS Scan / audit /
review OAS

The code-first approach to using OpenAPI specifications

The API-first approach to using OpenAPI specifications

Write OAS Scan / audit /
review OAS

pdr.online

Writing the OAS for
the Update Profile endpoint

pdr.online

Write code Generate OAS Scan / audit /
review OAS

The code-first approach to using OpenAPI specifications

The API-first approach to using OpenAPI specifications

Write OAS Scan / audit /
review OAS

Generate frontend
/ backend API code

Additional
development

pdr.online

The OAS is a great tool to drive both frontend and
API development (code generation, testing, ...)

Having a strict and well-defined OAS combined with
code generation is beneficial for the security of the API

pdr.online

API-FIRST APPROACHES INSPIRE GREATER CARE

Writing out an OpenAPI spec by hand requires careful attention to the
design of the API and the data handled in requests and responses.

 Introducing broken object-level property authorization vulnerabilities
becomes a lot harder.

The OAS can be defined, reviewed, improved, and then used to generate
large chunks of code for both the API and the frontend.

?
pdr.online

But what if the code diverges from the
spec?

pdr.online

Write OAS Scan / audit /
review OAS

Generate frontend
/ backend API code

Additional
development

We can use the OAS with the
expected behavior to verify the

actual behavior of our
implementation

The 42Crunch API security platform is just an
example. I am not affiliated with 42Crunch, nor
do I benefit from showing this tool in any way.

Running automated conformance
scans in the CI/CD pipeline will help

you detect when the
implementation deviates from the

specification

Automated conformance scans can
also be extended with other

techniques, such as fuzzing etc.

pdr.online

Write OAS Scan / audit /
review OAS

Generate frontend
/ backend API code

Additional
development

We can use the OAS with the expected
behavior to configure an API firewall to block
request and responses that do not adhere to

the spec

Runtime protection
with an API firewall

pdr.online
https://azure.microsoft.com/en-us/products/api-management

https://developers.cloudflare.com/api-shield/security/schema-validation/

These tools offer request
validation against OpenAPI specs
to avoid unwanted or malformed

requests.

This effectively protects against
mass assignment attacks.

pdr.online https://42crunch.com/api-security-platform/

This tool offers request and
response validation, effectively

enforcing compliance of the
impleemntation to the OAS.

This effectively protects against
mass assignment and data

exposure attacks.

!
pdr.online

This space is the cutting edge of security,
so you will find plenty of alternative tools
as well!

pdr.online

API-FIRST APPROACHES RESULT IN BETTER SECURITY

API-first approaches help ensure that the
implementation adheres to the specification.

Additionally, the OAS can be used to enable runtime protection tools to
stop attacks that aim to abuse data exposure or mass assignment

vulnerabilities.

pdr.online

At some point,
someone has to think!

Automated tools are awesome, but they always
require someone to carefully write or vet a contract.

Tools cannot (yet) fully automatically identify data
exposure or mass assignment problems.

!
pdr.online

OpenAPI specifications are the future of
API development and API security

pdr.online https://openapi.tools/

!
pdr.online

Do not expose your OpenAPI specs for your
APIs (unless they serve as documentation)

pdr.online

Start using OpenAPI specifications to familiarize yourself1

Adopt security tooling based on OpenAPI specs and improve2

Adopt an API-first approach, which yields the best security results3

KEY TAKEAWAYS

Thank you!

https://pdr.online

Connect with me to stay in touch
about security

