
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

BREAKING AND SECURING 
OAUTH 2.0 IN FRONTENDS



Authenticate the user for me?

Can I access an API please?

Request with an access token

Help me out here, 
is this access token valid?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0



1 I want you to access an API on my behalf

2 Sure, let's go ask the AS for a token

3 Allow application X access on my behalf

4 Who are you? Please authenticate to me! 

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X 
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The access token representing
the authority to access the API

10 Access API with
access token

THE CONCEPT OF THE OAUTH 2.0 AUTHORIZATION CODE FLOW



OAuth 2.0 client

Token management

Calling APIs with tokens

The frontend has a client ID 
and runs the Authorization 

Code flow with the 
authorization server

The frontend is responsible 
for storing tokens and 

refreshing tokens
The frontend uses Fetch to 
call the APIs and attaches 

the access token in the 
Authorization header



! This pattern is a highly common practice 
for implementing OAuth 2.0 in frontends



I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Expert security advisory services





JavaScript



JavaScript
Malicious



https://www.hackerone.com/top-ten-vulnerabilities



! XSS has been a problem for a long time





Requests and responses

Traditional web applications 
relied on server-side sessions to 

keep track of user authentication 
state



Requests and responses

XSS typically resulted in session 
hijacking attacks, which is why 

session cookies should be marked 
as HttpOnly, so they are hidden 

from JavaScript.



Requests and responses

Hiding the session cookie does 
not solve the XSS problem. An 
attacker running code in the 

browser can still impersonate the 
user and manipulate the 

frontend.



pdr.online

XSS HAS ALWAYS BEEN A PROBLEM

Traditional web applications already suffered from XSS, with session 
hijacking as a common consequence.

Even then there was a misbelief that HttpOnly cookies addressed the 
problem. However, once the malicious code runs, the attacker controls 

the client and can deceive or impersonate the user ...



? What does that mean for 
your OAuth 2.0 tokens?



OAuth 2.0 client

Token management

Calling APIs with tokens

The attacker can exfiltrate tokens, 
allowing them to abuse the application's 

access token and refresh token



https://app.restograde.com/
1 Request all data from storage or memory

2 Send data to a server controlled by the attacker

3 Abuse the stolen data (access token, refresh token)

Short-lived access tokens 
reduce the impact of 
stolen access tokens

Refresh token rotation 
prevents re-use of stolen 

refresh tokens

1

2

3



REFRESH TOKEN ROTATION

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4



App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 Authorization server notices reuse of RT2

No tokens are issued
RT3 is revoked



! This is the common way of thinking, but this 
attacker representation severely 
underestimates the capabilities of the attacker



? What happens with Refresh Token Rotation 
if a stolen refresh token is never used 
twice?



https://app.restograde.com/

4 Abuse the latest refresh token

Token exfiltration attacks severely 
underrepresent the capabilities of 

malicious JavaScript

4

3

3 Wait until the application goes offline

1 Request all data from storage or memory

2 Send data to a server controlled by the attacker

1

2



Sidestepping refresh token rotation



OAuth 2.0 client

Token management

Calling APIs with tokens

The attacker can exfiltrate tokens, 
allowing them to abuse the application's 

access token and refresh token

The attacker can impersonate the 
frontend to the authorization server to 

request a new independent set of tokens



https://app.restograde.com/

1 Setup a handler to receive a code from an iframe

2 Start a new silent flow in an iframe

4 Send the authorization code to the attacker server

1

2

5

3

3 Obtain the authorization code from the iframe

4

5 Exchange the code for a new set of tokens

This new set of tokens is independent 
from the application's tokens, so refresh 

token rotation does not help



Requesting a fresh set of tokens



! Additional security measures, such as 
DPoP do not work either, since the attacker 
can provide their own DPoP proofs



pdr.online

YOU CANNOT SECURE BROWSER-ONLY FLOWS

The security of OAuth 2.0 flows in the browser relies on the integrity 
of the frontend application and its origin (redirect URI).

When the attacker controls that origin, it's game over. Even proof-of-
possession mechanisms cannot save you.



https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps.html



Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as the user is 
online or the application is open
Refresh tokens: limited to token 
lifetime after the user goes offline

THREATS TO FRONTEND OAUTH 2.0 CLIENTS

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours 
or longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as the user is online or 
application is open





Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as user is online 
or application is open
Refresh tokens: limited to token 
lifetime after user goes offline

THREATS TO SERVER-SIDE OAUTH 2.0 CLIENTS

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours or 
longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as user is online or 
application is open

Server-side applications keep access tokens and refresh tokens in 
server-side storage (e.g., a database). An attacker executing 
malicious JS in the browser cannot access server-side token 

storage.

Server-side OAuth 2.0 clients need to authenticate their 
interactions with the authorization server, making it impossible 

for the attacker to exchange a stolen authorization code.

The attacker controlling pages in the browser can still send 
requests to the backend, which may result in data exfiltration or 

the execution of operations. 



pdr.online

OAUTH IN FRONTENDS INCREASES THE ATTACK SURFACE

By using OAuth 2.0 in frontend applications, the attack surface of 
the application increases. 

Attackers can impersonate the frontend application,
 allowing them to independently act in the name of the user 

for the lifetime of the refresh token.



?
pdr.online

Can we have the security of backend 
OAuth clients in our frontend applications?



1
Run the Authorization Code flow

without client authentication

2 Issue access token and refresh token

3 Make API requests with access token



THE CONCEPT OF A BACKEND-FOR-FRONTEND

Traditional session

The backend acts as the 
OAuth 2.0 client 

application

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

The client can benefit from the security 
properties of server-side OAuth clients



4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange 

authorization code 
with client authentication

9 Identity token, access token, & refresh token 

6 Redirect to BFF with code

14 Request with
access token

15 Response

THE DETAILS OF A BACKEND-FOR-FRONTEND

10 Use information from identity 
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session



THE BACKEND-FOR-FRONTEND PATTERN

• The frontend uses a dedicated backend-for-frontend (BFF) for API access
• The BFF mainly forwards calls to the actual APIs
• The BFF attaches access tokens to outgoing requests to authorize the API calls

• BFFs are already used to aggregate different backend systems in a single API
• Common pattern to join various microservices into a single frontend-specific API
• Useful to chain different operations together without pushing that to the client
• From a security perspective, BFFs make a lot of sense

• The BFF becomes the OAuth 2.0 / OIDC client application
• The BFF runs on a server, so it acts as a confidential client
• The BFF can apply all security best practices for backend client applications



Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

Remove all OAuth 2.0 
functionality from the 
frontend application

No changes, the API still 
accepts access tokens

No changes, except marking the 
client as a confidential client

The BFF runs an OAuth 
2.0/OIDC flow as a 

backend web application

The BFF proxies API calls and 
replaces cookies with tokens. It 

does not contain any business logic.



Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

The BFF and frontend typically 
run in the same origin (e.g., on / 

and /bff)

For security considerations, a 
same-origin BFF should reject 

every cross-origin request



A BFF in action



OAuth 2.0 client

Token management

Proxying API calls translating 
cookies for tokens

Session management

OAuth 2.0 client

Token management

Calling APIs with tokens

Calling the BFF 
(with cookies)



Keep track of tokens 
with cookies

1
Run the Authorization Code flow

with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token 
retrieved from session

A compromised frontend 
application can still send 
requests through the BFF

Only endpoints exposed by the BFF 
can be abused. The attacker never 
has unfettered access to the APIs

The BFF observes all the API requests from a 
client, and can perform rate-limiting, anomaly 

detection, preventing data extraction, …



Single-execution
token theft

Persistent 
token theft

Acquisition and extraction 
of new tokens

Proxying requests 
via the user's browser

Attack scenario Example

One-time payload stealing an 
access token or refresh token from 
the running application

Continuously stealing access 
tokens or refresh tokens from the 
running application

Duration of attack

Access tokens: limited to token lifetime
Refresh tokens: limited to detection 
with rotation

Access tokens: as long as user is online 
or application is open
Refresh tokens: limited to token 
lifetime after user goes offline

THREATS TO FRONTENDS WITH A BFF

Running a silent Authorization 
Code flow to obtain a fresh access 
token and refresh token

The lifetime of the new refresh 
token (typically multiple hours or 
longer)

Triggering API calls from within the 
frontend, authenticated by the 
application's access token

As long as user is online or 
application is open

Only the BFF has access to the application's tokens, preventing 
an attacker executing malicious JS in the browser cannot access 

server-side token storage.

The BFF is a server-side OAuth 2.0 client using authentication on 
its interactions with the authorization server, making it 

impossible for the attacker to impersonate the BFF.

The attacker controlling the frontend can still impersonate the 
legitimate frontend and send requests to the BFF, which will be 

forward these requests to the APIs. 



pdr.online

A BFF INCREASES THE SECURITY OF OAUTH 2.0

The application still consists of a frontend application interacting 
with APIs. The use of a BFF shifts the OAuth responsibilities from the 

browser to a server-side component.

A BFF-based architecture offers significant security improvements, 
while having a limited impact on the application.



4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange 

authorization code 
with client authentication

9 Identity token, access token, & refresh token 

6 Redirect to BFF with code

14 Request with
access token

15 Response

SESSIONS BETWEEN THE FRONTEND AND THE BFF

10 Use information from identity 
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session



IS A BFF STATEFUL OR STATELESS?

• BFF sessions can be implemented with or without server-side state
• Server-side state keeps tokens on the server and issues a session ID in a cookie
• Client-side state puts tokens into a session object and stores the object in a cookie

• Client-side sessions are often not recommended, due to lack of control
• The session cookie has bearer token properties, so theft leads to abuse
• Revoking existing state becomes difficult without server-side control over the session
• In a BFF scenario, revocation is available through the OAuth 2.0 refresh tokens

• Client-side sessions in a BFF have strict security requirements
• Confidentiality and integrity of this data is crucial to mitigate client-side attacks
• Many server-side cookie frameworks support this out of the box



COOKIE SECURITY SETTINGS

• The BFF uses cookies to manage the session with the frontend
• Browsers handle cookies automatically, so no need to write code in the frontend

• Modern best practices for cookies require the following settings
• Enable the Secure flag to restrict the cookie for HTTPS use only
• Enable the HttpOnly flag to prevent JS-based access and memory-level attacks
• Enable the SameSite=strict flag to prevent CSRF attacks

• Only applies when the BFF is running on the same registered domain as the frontend
• For cross-site frontend/BFF scenarios, remove this flag and configure CORS instead

• Add the __Host- attribute to the name of the cookie to prevent subdomain-based attacks

Security best practices for setting a cookie

1 Set-Cookie: __Host-session=…; Secure; HttpOnly; SameSite=strict



2 Check session

4 User info

7 Request with
access token

8 Response

RESUMING A SESSION WITH THE BFF

1 Open the frontend

9 API data

5 API request

3Lookup tokens with session

6Lookup tokens with session

As long as the cookie-based 
session is active, the frontend 
can resume its authenticated 

state with a single request



Implementing sessions in a BFF



4Use refresh token
with client authentication

5 Fresh access token

6 Request with
access token

7 Response

USING REFRESH TOKENS WITH THE BFF

1 Perform an action

8 API data and updated session (new tokens)

2 API request

3Lookup tokens with session, 
notice that the AT is expired

The refresh token allows the 
BFF to renew the access token 

until the RT or the session 
expires



Using refresh tokens with a BFF



? Should the client-side cookie state 
be encrypted?



ENCRYPTING CLIENT-SIDE COOKIE STATE 

• The client-side cookie state is created and read by the BFF
• The BFF can choose to encrypt this state before sending it to the client
• Encrypting the cookie state ensures full confidentiality on the client-side

• Encrypting session state is not mandatory to guarantee the security of the BFF
• Cookies are configured to be inaccessible to the frontend application
• An attacker executing code in the browser cannot get hold of the cookie state

• Advanced attack scenarios rely on external vectors to access browser state
• E.g., Malware looking for Chrome profiles to steal cookies or access tokens
• Encrypted cookie state can be used to counter such external attack vectors



4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange 

authorization code 
with client authentication

9 Identity token, access token, & refresh token 

6 Redirect to BFF with code

14 Request with
access token

15 Response

PROXYING API REQUESTS

10 Use information from identity 
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session



The BFF as a proxy



The BFF becomes the OAuth 2.0 client application, 
in the name of the frontend

Each frontend that would have its own OAuth 2.0 
client ID gets its own dedicated BFF



pdr.online

A BFF CONSISTS OF THREE CORE BUILDING BLOCKS

A BFF consists of three core building blocks, configured 
for a specific frontend/API interaction scenario.

A BFF consists of generic session management, OAuth 2.0 
client responsibilities, and a proxy component.



! Cookie-based applications need to 
mitigate CSRF attacks



CORS AS A CSRF DEFENSE

• The BFF can rely on CORS as a CSRF defense 
• It is crucial that every cross-origin request to the BFF API requires a CORS preflight
• The BFF's policy does not approve this preflight, so the browser blocks the malicious call

• The simplest configuration for the BFF is to require a custom request header
• When the attacker adds this header to a CSRF request, the browser enforces a preflight
• A static header check is easy to implement and has no overhead

• CORS only applies on cross-origin requests
• Legitimate same-origin interactions between frontend and BFF do not need preflights
• Illegitimate cross-origin requests require a preflight and will be blocked by the browser



Adding CSRF defenses with CORS 
to the BFF



pdr.online

A BFF CAN HANDLE CSRF OUT OF THE BOX

A BFF can reject all cross-origin requests using custom 
middleware that validates the Origin header.

Alternatively, the BFF can require a custom request header on 
every request, allowing it to leverage a strict CORS policy as a 

CSRF defense.



https://github.com/manfredsteyer/yarp-auth-proxy



https://curity.io/resources/learn/token-handler-overview/



https://docs.duendesoftware.com/bff/



pdr.online

SENSITIVE APPLICATIONS SHOULD USE A BFF

For sensitive applications, a BFF should be considered as the only 
secure option.

Scenarios that rely on a browser-based OAuth 2.0 client effectively 
adopt a "fingers crossed" security policy, hoping that the application 

never suffers from an attack able to run malicious JS code.



pdr.online

Using OAuth 2.0 directly in the browser increases the attack surface1

Use a BFF to simplify and optimize the security of your frontends2

Follow secure coding guidelines to fix XSS in your applications3

KEY TAKEAWAYS



Thank you!

https://pragmaticwebsecurity.com

Need training or security guidance?
Reach out to discuss how I can help


