
1

Using WebAssembly
to run, extend and
secure your app

Niels Tanis
Sr. Principal Security Researcher

2

@nielstanis@infosec.exchange@niels.fennec.dev

• Niels Tanis
• Sr. Principal Security Researcher
• Background .NET Development,

Pentesting/ethical hacking,
and software security consultancy

• Research on static analysis for .NET apps
• Enjoying Rust!

• Microsoft MVP – Developer Technologies

Who am I?

3

@nielstanis@infosec.exchange@niels.fennec.dev

•Introduction
•WebAssembly 101
•Running on WebAssembly
•Extending with WebAssembly
•Securing with WebAssembly
•Conclusion
•Q&A

Agenda

h"ps://webassembly.org/

4

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly

5

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly - AutoCAD

6

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly - Photoshop

h"ps://medium.com/disney-streaming/introducing-the-disney-applica9on-
development-kit-adk-ad85ca139073
h"ps://www.amazon.science/blog/how-prime-video-updates-its-app-for-more-than-8-
000-device-types

7

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly – SDK’s

https://www.infoq.com/presentations/prime-video-rust/

8

@nielstanis@infosec.exchange@niels.fennec.dev

Prime Video UI - Rust & WASM

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://webassembly.org/

9

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly – Do you use it?

•Does your organization use WASM?
•Which main tech stacks used?
•WASM for what kind of apps?
•Mobile
•Cloud Native
•Other…

10

@nielstanis@infosec.exchange@niels.fennec.dev

•Be fast, efficient, and portable
• Executed in near-native speed across different platforms

•Be readable and debuggable
• In low-level bytecode but also human readable

•Keep secure
• Run on sandboxed execution environment

•Don't break the web
• Ensure backwards compatibility

WebAssembly Design

https://hacks.mozilla.org/2017/02/creating-and-working-with-webassembly-modules/
https://webassembly.org/

11

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly

•Binary instruction format for stack-based
virtual machine similar to .NET CLR running MSIL
or JVM running bytecode

•Designed as a portable compilation target
•The security model of WebAssembly:
•Protect users from buggy or malicious modules
•Provide developers with useful primitives and
mitigations for developing safe applications

12

@nielstanis@infosec.exchange@niels.fennec.dev

•WebAssembly's type only supports:
•i32 (32-bit integer)
•i64 (64-bit integer)
•f32 (32-bit float)
•f64 (64-bit float)

•No strings, no objects, no complex data types.
•Basic operations on numerical values.

WebAssembly Type System

13

@nielstanis@infosec.exchange@niels.fennec.dev

•In a stack-based VM, operations primarily
manipulate a last-in-first-out (LIFO)
stack of values, rather than working
with named registers as in register-based
architectures.

WebAssembly Stack Based VM

14

@nielstanis@infosec.exchange@niels.fennec.dev

•WebAssembly maintains an operand stack during
execution:
•Values are pushed onto the stack by instructions
•Operations pop their operands from the stack
•Results are pushed back onto the stack
•The stack is separate from linear memory
and is not directly accessible

WebAssembly Stack Based VM

15

@nielstanis@infosec.exchange@niels.fennec.dev

Let’s create some WAT!
http://github.com/nielstanis/secappdev25wasm

Code some WebAssembly

http://github.com/nielstanis/secappdev25wasm

16

@nielstanis@infosec.exchange@niels.fennec.dev

•Isolated per WASM module
•A contiguous, mutable array of uninterpreted bytes

WebAssembly Memory

17

@nielstanis@infosec.exchange@niels.fennec.dev

Let’s work with some Memory!

Code some WebAssembly

18

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Control-Flow Integrity

•Control-Flow Integrity (CFI) ensures that program
execution follows only valid paths as defined by the
program's source code.

•In traditional native code, attackers can exploit memory
vulnerabilities to hijack execution flow:
•Redirecting it to malicious code
•Chaining together existing code fragments in unintended
ways (like Return-Oriented Programming attacks).

19

@nielstanis@infosec.exchange@niels.fennec.dev

CFI Example
int number = Convert.ToInt32(Console.ReadLine());
Console.WriteLine($"Number {number}");
if (number>5)
{
 Console.WriteLine("Number is larger than 5");
}
else
{
 Console.WriteLine("Number is smaller than 5");
}
Console.WriteLine("Done!");

20

@nielstanis@infosec.exchange@niels.fennec.dev

CFI Example

int number = Convert.ToInt32(Console.ReadLine());
Console.WriteLine($"Number {number}");
if (number>5)

Console.WriteLine("Number is larger than 5");

Console.WriteLine("Number is smaller than 5");

Console.WriteLine("Done!");

21

@nielstanis@infosec.exchange@niels.fennec.dev

CFI: Structured Control-Flow Only

•No arbitrary jump instructions (no goto, jmp or
equivalent)

•All branches have explicit, validated targets within
the same function

•No ability to jump to arbitrary memory addresses
•All control flow is validated before execution

22

@nielstanis@infosec.exchange@niels.fennec.dev

CFI: Protected Function Calls

23

@nielstanis@infosec.exchange@niels.fennec.dev

CFI: Indirect Calls

•Function table entries are validated at module
instantiation

•Runtime checks ensure the target index is within table
bounds

•Runtime type checking ensures the called function
matches the expected signature

•The table is protected from direct memory manipulation

24

@nielstanis@infosec.exchange@niels.fennec.dev

Indirect calling!

Code some WebAssembly

25

@nielstanis@infosec.exchange@niels.fennec.dev

CFI: Indirect Calls

26

@nielstanis@infosec.exchange@niels.fennec.dev

CFI: Separation of Code and Data

•Code sections cannot be modified at runtime
•Linear memory (accessible data) cannot contain
executable code

•No instruction exists to convert data to code No self-
modifying code capabilities

h"ps://rlbox.dev/
h"ps://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/

27

@nielstanis@infosec.exchange@niels.fennec.dev

RLBox

28

@nielstanis@infosec.exchange@niels.fennec.dev

RLBox in Firefox

•RLBox uses WebAssembly as an intermediate
compilation target for creating sandboxed versions
of third-party C/C++ libraries.

•Rather than running WebAssembly code directly,
RLBox employs a unique "WebAssembly and Back
Again" approach.

29

@nielstanis@infosec.exchange@niels.fennec.dev

RLBox in Firefox

•RLBox considers all values that originate in the sandbox as
untrusted and "taints" them.

•Tainted values are essentially opaque values that cannot
be used directly by the application code.

•RLBox's type system marks all data coming out of the
sandbox as "tainted" and ensures, through compiler errors,
that developers sanitize potentially unsafe data before
using it.

30

@nielstanis@infosec.exchange@niels.fennec.dev

RLBox in Firefox

31

@nielstanis@infosec.exchange@niels.fennec.dev

RLBox in Firefox

•RLBox is currently deployed in Firefox to isolate five
different modules:
•Graphite – Font rendering engine - Firefox 95
•Hunspell – Spell checker – Firefox 95
•Ogg - Multimedia container format – Firefox95
•Expat - XML parser – Firefox 96
•Woff2 – Web font compression format - Firefox 96

Diagram:
https://github.com/itowlson/wasmday22/blob/main/slides/Wasm%20Interfaces%20a
nd%20.NET.pptx

32

@nielstanis@infosec.exchange@niels.fennec.dev

Running .NET on WebAssembly

Execution engine (VES)

Standard library (BCL)

User code
(IL)

User code
(IL) User code

(IL)

Host (OS)

Diagram:
https://github.com/itowlson/wasmday22/blob/main/slides/Wasm%20Interfaces%20a
nd%20.NET.pptx

33

@nielstanis@infosec.exchange@niels.fennec.dev

Running .NET on WebAssembly

Execution engine (VES)

Standard library (BCL)

User code
(IL)

User code
(IL) User code

(IL)

Host (Browser)

34

@nielstanis@infosec.exchange@niels.fennec.dev

Blazor WebAssembly

https://cheerpj.com/docs/explanation/architecture
https://cheerpjdemos.leaningtech.com/PHETDemos.html#demo

35

@nielstanis@infosec.exchange@niels.fennec.dev

The magic behind
CheerpJ is Cheerp,
which was used for
compiling full Java SE
8 and Java SE 11
runtimes based on
OpenJDK.

JVM on WASM with CheerpJ

Diagram:
h"ps://github.com/itowlson/wasmday22/blob/main/slides/Wasm%20Interfaces%20a
nd%20.NET.pptx

36

@nielstanis@infosec.exchange@niels.fennec.dev

Running .NET on WebAssembly

Execution engine (VES)

Standard library (BCL)

User code
(IL)

User code
(IL) User code

(IL)

Host (Browser)

37

@nielstanis@infosec.exchange@niels.fennec.dev

•Introduced in March 2019 by Bytecode Alliance
•WasmTime implementation as reference
•POSIX inspired, engine-independent, non-Web
system-oriented API for WebAssembly

WebAssembly System Interface WASI

38

@nielstanis@infosec.exchange@niels.fennec.dev

•Strong sandbox with Capability Based Security
•Right now, supports e.g. FileSystem actions,
Sockets, CLI and HTTP at version 0.2

•Future support for promise/async and streams
•Anyone recall .NET Standard? J

WebAssembly System Interface WASI

39

@nielstanis@infosec.exchange@niels.fennec.dev

Docker vs WASM & WASI

40

@nielstanis@infosec.exchange@niels.fennec.dev

Docker vs WASM & WASI

41

@nielstanis@infosec.exchange@niels.fennec.dev

Docker & WASM

42

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly System Interface WASI

Execution engine (VES)

Standard library (BCL)

User code
(IL)

User code
(IL) User code

(IL)

Host (WASI e.g. Wasmtime)

User code
(IL)

https://github.com/SteveSandersonMS/dotnet-wasi-sdk

43

@nielstanis@infosec.exchange@niels.fennec.dev

Experimental WASI SDK for .NET

https://github.com/SteveSandersonMS/dotnet-wasi-sdk

h"ps://github.com/dotnet/run9me/issues/65895
h"ps://github.com/SteveSandersonMS/dotnet-wasi-sdk

h"ps://devblogs.microsoX.com/dotnet/extending-web-assembly-to-the-cloud/

44

@nielstanis@infosec.exchange@niels.fennec.dev

.NET 8 WASI-Experimental

https://github.com/SteveSandersonMS/dotnet-wasi-sdk
https://github.com/SteveSandersonMS/dotnet-wasi-sdk

45

@nielstanis@infosec.exchange@niels.fennec.dev

•WasmTime.NET NuGet package
•Can run WASM inside of any .NET application
•Extend with Rust based WASM module
•Limit capabilities
•Demo time!

Extending .NET with WASM

https://xkcd.com/2166/

46

@nielstanis@infosec.exchange@niels.fennec.dev

Trusted Computing – XKCD 2166

h"ps://enarx.dev/

47

@nielstanis@infosec.exchange@niels.fennec.dev

Enarx

48

@nielstanis@infosec.exchange@niels.fennec.dev

•Don’t trust the host
•Don’t trust the host owner
•Don’t trust the host operator
•Hardware cryptographically verified
•Software audited and
cryptographically verified

Enarx Threat Model

49

@nielstanis@infosec.exchange@niels.fennec.dev

•Leverages Trusted Execution Environment (TEE) direct on processor
• AMD's SEV, Intel's SGX and IBM's PEF

•Attestation of hardware and Enarx runtime

Enarx

50

@nielstanis@infosec.exchange@niels.fennec.dev

•Each execution:
• Attestation: Enarx checks that the host to which you’re planning to deploy
is a genuine TEE instance.
• Packaging: Once the attestation is complete and the TEE instance verified,
the Enarx management component encrypts the application, along with any
required data.
• Provisioning: Enarx then sends the application and data along to the host for
execution in the Enarx Keep.

•TEE provides: Data Confidentiality, Data Integrity, Code Integrity

Enarx

51

@nielstanis@infosec.exchange@niels.fennec.dev

Project Hyperlight

52

@nielstanis@infosec.exchange@niels.fennec.dev

DotNetIsolator & Project Hyperlight

h"ps://opensource.microsoX.com/blog/2025/03/26/hyperlight-wasm-fast-secure-
and-os-free/

53

@nielstanis@infosec.exchange@niels.fennec.dev

Hyperlight CNCF Sandbox

54

@nielstanis@infosec.exchange@niels.fennec.dev

WASM – What’s next?

55

@nielstanis@infosec.exchange@niels.fennec.dev

Dependencies

56

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious module

57

@nielstanis@infosec.exchange@niels.fennec.dev

Vulnerable module

58

@nielstanis@infosec.exchange@niels.fennec.dev

Process Isolation

59

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

60

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

61

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

62

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

63

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

64

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Nano-Process

https://www.youtube.com/watch?v=tAACYA1Mwv4

65

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Component Model

https://www.youtube.com/watch?v=mkkYNw8gTQg&t=1121s

66

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Component Model

https://www.youtube.com/watch?v=mkkYNw8gTQg&t=1121s

67

@nielstanis@infosec.exchange@niels.fennec.dev

WASI 0.3

Modularity without Microservice

module A

module B

module C

microservice A

microservice B

HTTP

microservice C

HTTP

official

gl
ob

al
 st

at
e

unofficial

🏎
🏎

choose
you own

adventure

microservice

component A

component B

microservice

component C

HTTP

WIT💪

💪

🏎💪

💪

component A

component B

component C

WIT

WIT

💪

💪

?

Architecture:

“The modular
monolith”

“The
microservice
architecture”

“The strongly
modular

monolith”

68

@nielstanis@infosec.exchange@niels.fennec.dev

WASI Preview 2 (0.2)

h"ps://www.youtube.com/watch?v=mkkYNw8gTQg&t=1121s

69

@nielstanis@infosec.exchange@niels.fennec.dev

WASI 0.3

h"ps://github.com/SteveSandersonMS/wasm-component-sdk/

70

@nielstanis@infosec.exchange@niels.fennec.dev

WasmComponent.SDK

h"ps://github.com/bytecodealliance/componen9ze-dotnet/

71

@nielstanis@infosec.exchange@niels.fennec.dev

componentize-dotnet

h"ps://www.youtube.com/watch?v=tAACYA1Mwv4

72

@nielstanis@infosec.exchange@niels.fennec.dev

WASI Virt

h"ps://bytecodealliance.org/ar9cles/security-and-correctness-in-wasm9me

74

@nielstanis@infosec.exchange@niels.fennec.dev

•Most security research published focusses on correctness of WASM
runtimes/VM’s

•Bytecode Alliance Blogpost:
•“Security and Correctness in Wasmtime”
•Written in Rust à Using all it’s LangSec features
•Continues Fuzzing & formal verification
•Security process & vulnerability disclosure

Runtimes and Security

h"ps://www.youtube.com/watch?v=FFPoOR_5urw

75

@nielstanis@infosec.exchange@niels.fennec.dev

Runtimes and Security

https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

76

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Lineair Memory

h"ps://arxiv.org/pdf/2410.17925v1

77

@nielstanis@infosec.exchange@niels.fennec.dev

WebAssembly Lineair Memory

78

@nielstanis@infosec.exchange@niels.fennec.dev

•WebAssembly has a lot of potential to be used to run,
extend, and secure your applications!

•Its as secure as the WebAssembly runtime
implementation!

•WASI 0.2 big milestone; tooling in progress!
•WASI 0.3 due in August 2025
•Cloud Native WebAssembly

Conclusion

79

@nielstanis@infosec.exchange@niels.fennec.dev

•https://github.com/nielstanis/secappdev25wasm
•ntanis at Veracode.com
•@nielstanis@infosec.exchange
•https://blog.fennec.dev

Merci! Bedankt! Thanks!

https://github.com/nielstanis/swetugg2024
https://blog.fennec.dev/

