
1

Reviewing 3rd Party
Libraries security
using scorecards

Niels Tanis
Sr. Principal Security Researcher

2

@nielstanis@infosec.exchange@niels.fennec.dev

• Niels Tanis
• Sr. Principal Security Researcher
• Background .NET Development,

Pentesting/ethical hacking,
and software security consultancy

• Research on static analysis for .NET apps
• Enjoying Rust!

• Microsoft MVP – Developer Technologies

Who am I?

https://xkcd.com/2347/

3

@nielstanis@infosec.exchange@niels.fennec.dev

Modern Application Architecture
XKCD 2347

4

@nielstanis@infosec.exchange@niels.fennec.dev

• Risks in 3rd party NuGet Packages
• OpenSFF Scorecard
• Measure, New & Improved
• Conclusion - Q&A

Agenda

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

5

@nielstanis@infosec.exchange@niels.fennec.dev

Average codebase composition

6

@nielstanis@infosec.exchange@niels.fennec.dev

State of Software Security v11

”Despite this dynamic landscape,
79 percent of the time, developers
never update third-party libraries after
including them in a codebase.”

https://www.veracode.com/blog/research/state-log4j-vulnerabilities-how-much-did-
log4shell-change

7

@nielstanis@infosec.exchange@niels.fennec.dev

State of Log4j – 2 years later

•Analysed our data August-November 2023
•Total set of almost 39K unique applications scanned

•2.8% run version vulnerable to Log4Shell
•3.8% run version patched but vulnerable to other CVE
•32% rely on a version that’s end-of-life and have no
support for any patches.

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

8

@nielstanis@infosec.exchange@niels.fennec.dev

Average codebase composition

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

9

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious Assembly

https://www.infosecurity-magazine.com/news/malware-pypi-threat-open-source/

10

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious Package

https://www.reversinglabs.com/blog/malicious-nuget-campaign-uses-homoglyphs-
and-il-weaving-to-fool-devs

11

@nielstanis@infosec.exchange@niels.fennec.dev

Malicious Package

https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-
minnesota-banned-open-source

12

@nielstanis@infosec.exchange@niels.fennec.dev

Hypocrite Commits

https://arstechnica.com/security/2024/03/backdoor-found-in-widely-used-linux-utility-
breaks-encrypted-ssh-connections/

13

@nielstanis@infosec.exchange@niels.fennec.dev

XZ Backdoor

https://www.openwall.com/lists/oss-security/2024/03/29/4

14

@nielstanis@infosec.exchange@niels.fennec.dev

XZ Backdoor

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

15

@nielstanis@infosec.exchange@niels.fennec.dev

Vulnerable Assembly

https://github.com/dotnet/announcements/issues/356

16

@nielstanis@infosec.exchange@niels.fennec.dev

Vulnerabilities in Libraries

19

@nielstanis@infosec.exchange@niels.fennec.dev

DotNet CLI

https://docs.npmjs.com/auditing-package-dependencies-for-security-vulnerabilities

20

@nielstanis@infosec.exchange@niels.fennec.dev

NPM Audit

https://www.reversinglabs.com/blog/third-party-code-comes-with-some-baggage

21

@nielstanis@infosec.exchange@niels.fennec.dev

Do you know what’s inside?

https://securityscorecards.dev/

22

@nielstanis@infosec.exchange@niels.fennec.dev

Nutrion Label for Software?

https://securityscorecards.dev/

23

@nielstanis@infosec.exchange@niels.fennec.dev

OpenSSF (OSSF) Scorecard

https://securityscorecards.dev/

24

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Scorecard

https://securityscorecards.dev/

25

@nielstanis@infosec.exchange@niels.fennec.dev

OSSF Scorecard Scoring

•Total = Σ(CheckScore × RiskWeight) / Σ(RiskWeight)
•Severity Level à RiskWeight

https://osv.dev/list?ecosystem=NuGet

26

@nielstanis@infosec.exchange@niels.fennec.dev

Code Vulnerabilities (High)

https://osv.dev/list?ecosystem=NuGet

27

@nielstanis@infosec.exchange@niels.fennec.dev

Code Vulnerabilities (High)

•Score = max(0, 10 - number of vulnerabilities)
•Maximum Score (10): No vulnerabilities found
•Penalty: -1 point per vulnerability detected
•Minimum Score (0): 10 or more vulnerabilities
found

28

@nielstanis@infosec.exchange@niels.fennec.dev

•It recognises the following tools base configuration:
•Dependabot (+ recognise commiter)
•RennovateBot
•PyUp

•Score is all-or-nothing 0 or 10
•Out-of-date dependencies make a project vulnerable
to known flaws and prone to attacks.

Maintenance
Dependency-Update-Tool (High)

29

@nielstanis@infosec.exchange@niels.fennec.dev

•Immediate Failures (Score = 0)
•Archived Repository: Project is marked as archived
•Recently Created: Project created within last 90 days

•Score = min(10, (Total_Activities × 10) / Expected_Activities)
•Total_Activities = Commits + Issue_Activities
•Expected_Activities = (90 days ÷ 7 days/week)
× 1 activity/week = ~13

Maintenance
How well maintained? (High)

Policy Present: Required (0 points, but necessary for other scoring)
Contains Links/Emails: 6 points (email addresses or URLs for reporting)
Contains Text: 3 points (substantial content beyond links)
Contains Vulnerability Language: 1 point (disclosure terminology)

30

@nielstanis@infosec.exchange@niels.fennec.dev

•Does project have published security policy?
•E.g. a file named SECURITY.md (case-insensitive) in a
few well-known directories.

•A security policy can give users information about
what constitutes a vulnerability and how to report one
securely so that information about a bug is not publicly
visible.

Maintenance
Security Policy (Medium)

31

@nielstanis@infosec.exchange@niels.fennec.dev

•Does project have license published?
•Possible scores 0 or 9-10
•A license can give users information about how the
source code may or may not be used.

•The lack of a license will impede any kind of security
review or audit and creates a legal risk for potential
users.

Maintenance
License (Low)

https://www.bestpractices.dev/en/criteria/0

32

@nielstanis@infosec.exchange@niels.fennec.dev

•OpenSSF Best Practices Badge Program
•Way for Open Source Software projects
to show that they follow best practices.

•Projects can voluntarily self-certify,
at no cost, by using this web application
to explain how they follow each best
practice.

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

33

@nielstanis@infosec.exchange@niels.fennec.dev

•Basics
•Project Documentation: Clear description of software purpose,
contribution guidelines, and basic documentation
•FLOSS License: Must be released under a Free/Libre Open Source
license, preferably OSI-approved, with license posted in standard
location
•HTTPS Support: All project sites must support HTTPS/TLS
•Community Engagement: Searchable discussion mechanisms and
maintenance evidence

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

34

@nielstanis@infosec.exchange@niels.fennec.dev

•Change Control
•Version Control: Public, trackable source repository with interim
versions
•Release Management: Unique version identifiers, semantic
versioning, and comprehensive release notes
•Vulnerability Disclosure: Release notes must identify fixed CVEs

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

35

@nielstanis@infosec.exchange@niels.fennec.dev

•Reporting
•Bug Tracking: Process for submitting and responding to bug
reports with public archives
•Vulnerability Reporting: Published vulnerability reporting process
with timely responses (≤14 days)

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

36

@nielstanis@infosec.exchange@niels.fennec.dev

•Quality
•Build System: Automated, reproducible builds using
common/FLOSS tools
•Testing: Automated test suites with clear execution instructions
and continuous integration
•Code Quality: Compiler warnings enabled and addressed, linter
tools usage

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

37

@nielstanis@infosec.exchange@niels.fennec.dev

•Security
•Secure Development: Indicating there is SDLC
•Cryptography: Use of published algorithms, appropriate key
lengths, secure random generation
•Secure Delivery: MITM-resistant delivery mechanisms, no leaked
credentials
•Vulnerability Management: Timely patching of known
vulnerabilities (≤60 days for medium+ severity)

Maintenance
CII Best Practices (Low)

https://www.bestpractices.dev/en/criteria/0

38

@nielstanis@infosec.exchange@niels.fennec.dev

•Analysis
•Static Analysis: Required static code analysis tools for major
releases
•Dynamic Analysis: Recommended dynamic analysis including
memory safety tools for unsafe languages
•Timely Fixes: All discovered medium+ severity vulnerabilities
must be fixed promptly

Maintenance
CII Best Practices (Low)

39

@nielstanis@infosec.exchange@niels.fennec.dev

•Does the project run tests before pull requests are
merged?

•The check works by looking for a set of CI-system
names in GitHub CheckRuns and Statuses among the
recent commits (~30).
•2 out of 5 PR’s à Score 4
•5 out of 5 PR’s à Score 10

Continuous testing
CI Tests (Low)

40

@nielstanis@infosec.exchange@niels.fennec.dev

•OSS-Fuzz
•ClusterFuzzLite

•Go - Native Go fuzz function
•Haskell - QuickCheck, Hedgehog, SmallCheck, and validity libraries
•Javascript & Typescript - fast-check property-based testing library
•Erlang - proper and eqc (QuickCheck) libraries
•Python: Atheris fuzzing (import atheris)

Continuous testing
Fuzzing (Medium)

41

@nielstanis@infosec.exchange@niels.fennec.dev

•C/C++: LibFuzzer (LLVMFuzzerTestOneInput)
•Rust: Cargo-fuzz (libfuzzer_sys)
•Swift: LibFuzzer (LLVMFuzzerTestOneInput)
•Java: Jazzer fuzzer

(com.code_intelligence.jazzer.api.FuzzedDataProvider)
•Does it make sense to do fuzzing managed languages like

Java and/or .NET?
•If any present score will be 10, hard check to distinct properly!

Continuous testing
Fuzzing (Medium)

42

@nielstanis@infosec.exchange@niels.fennec.dev

•CodeQL: Searches for github/codeql-action/analyze in GitHub
workflows

•SonarCloud/SonarQube: Looks for sonar.host.url configuration
in pom.xml files

•Snyk: Detects snyk/actions/* in workflows
•Pysa: Searches for facebook/pysa-action
•Qodana: Looks for JetBrains/qodana-action

•If identified à Score 10 except for CodeQL that will also look at PR’s

Continuous testing
Static Code Analysis (Medium)

43

@nielstanis@infosec.exchange@niels.fennec.dev

•Dual Detection: Uses both file extensions and magic number
analysis

•Content Analysis: Distinguishes between text and binary content
for ambiguous extensions

•Exception Handling: Special treatment for validated Gradle
wrappers

•Simple Penalty: Each binary file reduces the score by 1 point
•Zero Tolerance: Aims for completely binary-free repositories

Source Risk Assesement
Binary Artifacts (High)

44

@nielstanis@infosec.exchange@niels.fennec.dev

•Tier 1 (3 Points)
• Prevent force pushes
•Prevent branch deletion

•Tier 2 (6 Points)
•RequiredApprovingReviewCount ≥ 1
•Require PRs prior to code changes (Required = true)
•Require branch to be up to date before merging
•Require approval of most recent reviewable push

Source Risk Assesement
Branch Protection (High)

45

@nielstanis@infosec.exchange@niels.fennec.dev

•Tier 3 (8 points)
• Require branch to pass at least 1 status check before merging

•Tier 4 (9 points)
•Require at least 2 reviewers
•Require review from code owners

•Tier 5 (10 points)
•Dismiss stale reviews when new commits are pushed
• Include administrators in review requirements

Source Risk Assesement
Branch Protection (High)

46

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project's GitHub
Action workflows has dangerous code patterns.
•Untrusted Code Checkout with certain triggers
•Script Injection with Untrusted Context Variables

•https://securitylab.github.com/research/github-
actions-preventing-pwn-requests/

Source Risk Assesement
Dangerous Workflow (Critical)

https://securitylab.github.com/research/github-actions-preventing-pwn-requests/
https://securitylab.github.com/research/github-actions-preventing-pwn-requests/

47

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project requires
human code review before pull requests are merged.

•The check determines whether the most recent
changes (over the last ~30 commits) have an approval
on GitHub and merger!=committer (implicit review)

Source Risk Assesement
Code Review (Low)

48

@nielstanis@infosec.exchange@niels.fennec.dev

•Minimum threshold: 3 companies/organizations
(numberCompaniesForTopScore = 3)

•Proportional scoring: Score = (number of entities / 3) × 10
•Maximum score: 10 points when ≥ 3

different organizations/companies are found
•Relying on single contributor is a risk for sure!
•What about a large list of contributors?

Source Risk Assesement
Contributors (Low)

49

@nielstanis@infosec.exchange@niels.fennec.dev

Source Risk Assesement
Contributors (Low)

50

@nielstanis@infosec.exchange@niels.fennec.dev

•Does the project pin dependencies used during its
build and release process.

•For .NET RestorePackagesWithLockFile in MSBuild
results in packages.lock.json file containing versioned
dependency tree with hashes

•If Workflow is present what about the Actions used?
•Docker Image uses SHA256 digest

Build Risk Assesement
Pinned Dependencies (High)

https://securitylab.github.com/research/github-actions-preventing-pwn-requests/

51

@nielstanis@infosec.exchange@niels.fennec.dev

•This check determines whether the project's
automated workflows tokens follow the principle of
least privilege.

•This is important because attackers may use a
compromised token with write access to, for example,
push malicious code into the project.

Build Risk Assesement
Token Permission (High)

52

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project is
published as a package.

•Packages give users of a project an easy way to
download, install, update, and uninstall the software by
a package manager.

•Any packager workflow detected will give score 10.

Build Risk Assesement
Packaging (Medium)

53

@nielstanis@infosec.exchange@niels.fennec.dev

•This check tries to determine if the project
cryptographically signs release artifacts.
•Signed release packages
•Signed build provenance

Build Risk Assessment
Signed Releases (High)

54

@nielstanis@infosec.exchange@niels.fennec.dev

•Checks not Supported:
•Branch-Protection - High
•Contributors - Low
•Dangerous-Workflow - Critical
•Dependency-Update-Tool - High
•SAST – Medium
•Token-Permissions - High

What about GitLab?

55

@nielstanis@infosec.exchange@niels.fennec.dev

Demo OpenSSF Scorecard
Fennec CLI

https://www.bestpractices.dev/en/criteria/0

56

@nielstanis@infosec.exchange@niels.fennec.dev

Measure?

https://openssf.org/download-the-2023-openssf-annual-report/

57

@nielstanis@infosec.exchange@niels.fennec.dev

OpenSSF Annual Report 2023

58

@nielstanis@infosec.exchange@niels.fennec.dev

SOSS & OpenSSF Scorecard

https://www.rsaconference.com/Library/presentation/usa/2024/quantifying%20the%2
0probability%20of%20flaws%20in%20open%20source

59

@nielstanis@infosec.exchange@niels.fennec.dev

SOSS & OpenSSF Scorecard

60

@nielstanis@infosec.exchange@niels.fennec.dev

Correlation between SOSS

61

@nielstanis@infosec.exchange@niels.fennec.dev

Github commits vs OpenSSF

62

@nielstanis@infosec.exchange@niels.fennec.dev

What really contributes to OSS
Security?

https://www.bestpractices.dev/en/criteria/0

63

@nielstanis@infosec.exchange@niels.fennec.dev

What can we improve?

https://www.bestpractices.dev/en/criteria/0

64

@nielstanis@infosec.exchange@niels.fennec.dev

•Fuzzing, or fuzz testing
•Automated software testing method that uses a wide

range of invalid and unexpected data as input to find
flaws

•Definitely good for finding C/C++ memory issues
•Can it be of any value with managed languages like
.NET and/or Java?

Fuzzing Managed Languages?

https://mijailovic.net/2023/07/23/sharpfuzz-anniversary/

65

@nielstanis@infosec.exchange@niels.fennec.dev

Fuzzing .NET & SharpFuzz

https://mijailovic.net/2023/07/23/sharpfuzz-anniversary/

66

@nielstanis@infosec.exchange@niels.fennec.dev

Fuzzing .NET & SharpFuzz

https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md

67

@nielstanis@infosec.exchange@niels.fennec.dev

Fuzzing .NET – Jil JSON Serializer

public static void Main(string[] args)
{
 SharpFuzz.Fuzzer.OutOfProcess.Run(stream => {
 try
 {
 using (var reader = new System.IO.StreamReader(stream))
 JSON.DeserializeDynamic(reader);
 }
 catch (DeserializationException) { }
 });
}

https://research.kudelskisecurity.com/2023/12/07/introducing-fuzzomatic-using-ai-to-
automatically-fuzz-rust-projects-from-scratch/

68

@nielstanis@infosec.exchange@niels.fennec.dev

Fuzzomatic: Using AI to Fuzz Rust

https://www.bestpractices.dev/en/criteria/0

69

@nielstanis@infosec.exchange@niels.fennec.dev

Static Code Analysis (SAST)

public byte[] CreateHash(string password)
{
var b = Encoding.UTF8.GetBytes(password);
return SHA1.HashData(b);

}

https://www.bestpractices.dev/en/criteria/0

70

@nielstanis@infosec.exchange@niels.fennec.dev

Static Code Analysis (SAST)
public class CustomerController : Controller
{

public IActionResult GenerateCustomerReport(string customerID)
{

var data = Reporting.GenerateCustomerReportOverview(customerID)

return View(data);
}

} public static class Reporting
{

public static byte[] GenerateCustomerReportOverview(string ID)
{

return System.IO.File.ReadAllBytes($"./data/{ID}.pdf");

}
}

https://reproducible-builds.org/

71

@nielstanis@infosec.exchange@niels.fennec.dev

Reproducible Builds

https://maven.apache.org/guides/mini/guide-reproducible-builds.html

72

@nielstanis@infosec.exchange@niels.fennec.dev

Maven Reproducible Builds

73

@nielstanis@infosec.exchange@niels.fennec.dev

•Reproducible builds à independently-verifiable path
from source to binary code.

•.NET Roslyn Deterministic Inputs
•How reproducible is a simple console app?
•Fennec Diff

.NET Reproducibility

https://github.com/microsoft/ApplicationInspector

74

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

https://github.com/microsoft/ApplicationInspector

75

@nielstanis@infosec.exchange@niels.fennec.dev

Application Inspector

https://mozilla.github.io/cargo-vet/

76

@nielstanis@infosec.exchange@niels.fennec.dev

Community Review

https://devblogs.microsoft.com/nuget/openssf-scorecard-for-net-nuget/

77

@nielstanis@infosec.exchange@niels.fennec.dev

NuGet Blog

https://github.com/ossf/s2c2f/blob/main/specification/framework.md#about-the-
secure-supply-chain-consumption-framework

78

@nielstanis@infosec.exchange@niels.fennec.dev

Secure Supply Chain Consumption
Framework (S2C2F) Project

•The Secure Supply Chain Consumption Framework (S2C2F)
is a security assurance and risk reduction process that is
focused on securing how developers consume open source
software.

https://github.com/ossf/s2c2f/blob/main/specification/framework.md#about-the-
secure-supply-chain-consumption-framework

79

@nielstanis@infosec.exchange@niels.fennec.dev

Secure Supply Chain Consumption
Framework (S2C2F) Project

https://github.com/ossf/s2c2f/blob/main/specification/framework.md#about-the-
secure-supply-chain-consumption-framework

80

@nielstanis@infosec.exchange@niels.fennec.dev

Secure Supply Chain Consumption
Framework (S2C2F) Project

81

@nielstanis@infosec.exchange@niels.fennec.dev

•Scorecard helps security reviewing a
3rd Party Package

•Better understand what's inside, how it’s
build/maintained and what are the risks

•Scorecard should not be a goal on its own!
•Look into frameworks like S2C2F to help out

Conclusion

82

@nielstanis@infosec.exchange@niels.fennec.dev

•NuGet Package Scoring (NET Score)
•Room for .NET specific improvements with
Fennec CLI
•Tools (diff, insights)
•Trust Graph
•Contribute back to OpenSSF Scorecard

dotnet tool install -g fennec

Conclusion

83

@nielstanis@infosec.exchange@niels.fennec.dev

•https://github.com/nielstanis/secappdev25scorecard/
•ntanis at Veracode.com
•@nielstanis@infosec.exchange
•https://www.fennec.dev

https://blog.fennec.dev

Merci! Bedankt! Thanks!

https://github.com/nielstanis/secappdev25scorecard/
https://www.fennec.dev/
https://blog.fennec.dev/

