
Verifiable Credentials:

Concepts to Practice
Kristina Yasuda

Agenda

● Context

● Technical Stack Overview

● Demo

● Credential Formats (SD-JWT VC and mdocs)

● Protocol: OpenID for Verifiable Credentials
○ Presentation: DCQL, transaction data, the Digital Credentials API

○ Issuance: Batch Issuance, key attestations

○ Interoperability Profile

● Q&A

1

Context

2

Identity Federation

Identity Provider

Relying Party

End-User

Wallet Model
S

e
t
o

f
C

la
im

s

Only claims relevant to

given request: Already

selectively disclosed!

Reusable, contains all claims

known to the Issuer

Subset from the Issuer-

signed credential relevant to

given request.

A New Model: Credential Issuance & Presentation Decoupled

Issuer

Verifier

End-User
(Holder)

fu
ll

c
re

d
e

n
ti
a

l
s
u

b
s
e

t
o
f

c
la

im
s

3

Verifiable Credentials: Benefits

● Enhanced privacy and portability for end-users over their identity

information.

● Faster, cheaper, and more secure verification: Digitally issued

credentials reduce costs and delays associated with physical documents,

while improving resistance to fraud.

● Universal approach to handle identification, authentication, and

authorization in digital and physical space, hopefully across platforms,

sectors, and borders.

5

[1] cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-ident ity/
[2] nccoe.nist.gov/projects/digital-ident it ies-mdl

[3] kantei.go.jp/jp/singi/digitalmarket/ trusted_web/2023seika/ files/004_report_oidf_conformance_test.pdf

The European Digital

Identity Wallet[1], ARF v.1.4

mandates the usage of

OpenID4VC protocols

NIST National Cybersecurity

Center of Excellence[2]

is running a project implementing

and testing implementations for

OID4VP to present mdocs/mDL

Japanese Government's

Trusted Web Project [3]

has implemented OID4VC

protocols various use-cases

Global Adoption (selected use-cases)

6

https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-presentation-profile/#workplace-credential
https://www.kantei.go.jp/jp/singi/digitalmarket/trusted_web/2023seika/files/004_report_oidf_conformance_test.pdf
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-issuance-profile/

Renting a car easily with the EUDI Wallet

Mary spontaneously
needs to rent a car

EUDI-Wallet on your smartphone
Includes ID card, driver's license, debit card Identification via wallet

She securely identifies herself
with her digital ID

Digital signature
She digitally and legally

signs the rental agreement in
the wallet

Digital car key
transferred to wallet

Chooses a car to rent
and starts the booking process

Authorizes payment
She easily pays rental charges

via the wallet

Attestation via wallet
She proves her driving

privileges with her driver’s
license

7

On arrival: Directly
pick up the car
and drive off

mdocs (ISO/IEC 18013-5)IETF SD-JWT, SD-JWT VC

W3C Digital Credentials API, FIDO CTAP Hybrid

ISO/IEC 18013-5, 18013-7,
23220-3, 23220-4

X.509 (with & without PKI)

5)
Trust
Frame
works

2) Credential
Format

IETF JWT/CWT Status List
2a) Status
management

IETF OAuth 2.0 Attestation-Based Client
Authentication

1b) Wallet
Attestation

1a) Verifier
Authentication

1) Protocol OIDF OpenID4VP, OpenID4VCI, HAIP

Tech Stack Layers Technical Standards

Main* Standards for Data Formats and Protocols

8

mdocs (ISO/IEC 18013-5)IETF SD-JWT, SD-JWT VC

W3C Digital Credentials API, FIDO CTAP Hybrid

ISO/IEC 18013-5, 18013-7,
23220-3, 23220-4

X.509 (with & without PKI)

5)
Trust
Frame
works

2) Credential
Format

IETF JWT/CWT Status List
2a) Status
management

IETF OAuth 2.0 Attestation-Based Client
Authentication

1b) Wallet
Attestation

1a) Verifier
Authentication

1) Protocol OIDF OpenID4VP, OpenID4VCI, HAIP

Tech Stack Layers Technical Standards

Main* Standards for Data Formats and Protocols

9

Standards Bodies 101

★ IETF — Internet Engineering Task Force

★ W3C — World Wide Web Consortium

★ OIDF — OpenID Foundation

★ ISO — International Organization for Standardization

★ ETSI — European Telecommunications Standards Institute

★ FIDO — Fast Identity Online

10

Credential Formats

In the IETF OAuth Working Group:

➔ SD-JWT (Selective Disclosure JSON Web Token) — basic data format,

encoding

essential building block, very close to final

➔ SD-JWT VC — how to create credentials based on SD-JWT

essential building block, work in progress

11

Protocols

OpenID Foundation (Digital Credentials Protocols WG):

➔ OpenID for Verifiable Presentations — based on OAuth 2.0
essential building block, moving to first final version (1.0)

➔ OpenID for Verifiable Credential Issuance — based on OAuth 2.0
essential building block, moving to first final version (1.0)

➔ Self-Issued OpenID Provider v2 (SIOP v2)

➔ OpenID4VC High Assurance Interoperability Profile (HAIP)

W3C (Web Incubation Community Group)

➔ Digital Credential API
can become an essential building block for ensuring security and good UX

12

Other Mechanisms

IETF OAuth Working Group:

➔ Status List

essential building block for status management

➔ Attestation-Based Client Authentication

essential building block for trusting the Wallet

13

Security

IETF OAuth Working Group:

➔ RFC 9449: DPoP (Sender-constrained Access Token)

essential building block, final, deployed & tested

➔ OAuth Security BCP

How not to use OAuth.

➔ Cross-Device Flows: Security Best Current Practice

Can inform decisions on cross-device flows

OpenID Foundation:

➔ Security and Trust in OpenID for Verifiable Credentials

14

Demo
(Presentation of a German PID using German Government’s official

EUDI Wallet)

Credential Formats

SD-JWT & SD-JWT VC 101

17

IETF SD-JWT & SD-JWT VC standards

● Formats for
○ enabling selective disclosure and key binding for JWS/JWT (SD-JWT)

○ credentials based on that format (SD-JWT VC)

● Attributes are structured as JSON

18

SD-JWT

Selective Disclosure for JWTs
using a simple, salted-hash based format

— for verifiable credentials and more.

IETF Draft: https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/

Daniel Fett

Kristina Yasuda
Brian Campbell

19

Selective Disclosure

Issuer issued a whole set of claims:

{

"iss": "https://server.example.com",

"sub": "some-user-identifier",

"aud": "s6BhdRkqt3",

"given_name": "John",

"family_name": "Doe",

"email": "johndoe@example.com",

"phone_number": "+1-202-555-0101",

"address": {

"street_address": "123 Main St",

"locality": "Anytown",

"region": "Anystate",

"country": "US"

},

"birthdate": "1940-01-01"

}

But Verifier only needs a subset in a given
request:

{

"iss": "https://server.example.com",

"sub": "some-user-identifier",

"aud": "s6BhdRkqt3",

"given_name": "John",

"family_name": "Doe",

"email": "johndoe@example.com",

"phone_number": "+1-202-555-0101",

"address": {

"street_address": "123 Main St",

"locality": "Anytown",

"region": "Anystate",

"country": "US"

},

"birthdate": "1940-01-01"

}
✓ signed

by Issuer

✓ signed

by Issuer

20

SD-JWT in 5 Simple Steps

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"given_name": "Max",

"family_name": "Mustermann",

"email": "mustermann@example.com",

"address": {

"street_address": "Musterstr. 23",

"locality": "Berlin",

"country": "DE"

}

}

Step 1: Prepare User Data

21

··· ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

··· ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

··· ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

··· ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

··· ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

··· ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"given_name": "Max",

"family_name": "Mustermann",

"email": "mustermann@example.com",

"address": {

"street_address": "Musterstr. 23",

"locality": "Berlin",

"country": "DE"

}

}

Step 2: Create Disclosures

salt claim name claim value

SD-JWT in 5 Simple Steps

22

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"address": {

}

}

"_sd": ["EW1o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITHt41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eBEMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"], ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

"_sd": ["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

Step 3: Hash Disclosures & Replace Original Claims

SD-JWT in 5 Simple Steps

23

_sd["EW1o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITHt41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eBEMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"] ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

_sd["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"address": {

},

}

}

Step 4: Sign SD-JWT & Encode for Transport

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc

3N1ZXIiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibiI6ICIwdng3YWdvZ

WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJlIjogIkFRQUIif

X0sICJ0eXBlIjogIklkZW50aXR5Q3JlZGVudGlhbCIsICJjcmVkZW50aWFsU3ViamVjd
CI6IHsiX3NkIjogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJjRWpZRVV3UmtYbHUyd

kM1bDIwIiwgIkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ

GsiLCAiUXhKVi0yVjFIOG1jbHRSNnZWQzRtM3JlVTVhTkg5d2RKejJVZG1Sb0kxRSIsI

CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGlKclg0ODV3TTh2NjdFIiwgImZUT

XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z
m4yZUJFTUlFa0U1Q2tibTIzUXV3REpsVFlvS1JpcDA4ZFlJYyIsICJ0cFV0bDcwaHBVX

3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUlZMEF4N0tjIl0sICJhZGRyZXNzIjogeyJfc

2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL

CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O

EludnhzUFhkS29vd3VWcHlCTWdsMWI5X1IyYjZYcGEzT1lPSWpnUXJvIl19fSwgImlhd
CI6IDE1MTYyMzkwMjIsICJleHAiOiAxNTE2MjQ3MDIyLCAic2RfZGlnZXN0X2Rlcml2Y

XRpb25fYWxnIjogInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3gg-3C-ZidWzsB9Un-VxmM

VdQtTbLLhwDTB6HJtt15p43yCXTzdpiZxtDI6fr07Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu

ASU8cFlGPi6xgH9D3w1G2hqepBS8DyQ5bA_p5kN_tKJVoP1xWhcQujRJ8kkEKQsRia4F

hrBldl8f41wgu_ipPqh1Ix4BVI7GJClZNx94nWPT7JUFkI6Y6JkahLf3S6gB0MxtmLAe
Y0qkuz8VeOZNfl_CDog55kVTkArorfoL6D6TEjI__-w6YyU0PnIRJXJ0wrYfoyhNl8LK

AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

SD-JWT in 5 Simple Steps

24

_sd["EW1 o0egqa5mGcbytT5S-kAubcEjYEUwRkXlu2vC5l20", ← ["GO0r26nO-iW50ZcAoOilFw", "given_name", "Max"]

"FEx-ITH t41I8_cn0SS-hvoLneX_RGlJo_8o2xRNhfdk", ← ["cSlbR135i0NjhsouMxrjjg", "family_name", "Mustermann"]

"igg7H5fn2eB EMIEkE5Ckbm23QuwDJlTYoKRip08dYIc"] ← ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

_sd["gqB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo38O0c", ← ["rGc0KtY6WmflywTTKEWIEQ", "street_address", "Musterstr. 23"]

"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3OYOIjgQro", ← ["pGQMQx-2tH2XwC_eQCFn4g", "locality", "Berlin"]

"vOnlYtcjr872fP3Wa75Ozl7c-6_MOVdIUNtwLKKxZw0"] ← ["TI15M8G5UIxPiWNZ-VLYBA", "country", "DE"]

{

"iss": "https://example.com",

"type": "IdentityCredential",

"cnf": {"jwk": {"kty": "RSA","n": "0vx....Kgw","e": "AQAB" } },

"credentialSubject": {

"address": {

},

}

}

Step 5: Base64url-encode Disclosures for Transport

eyJhbGciOiAiUlMyNTYiLCAia2lkIjogImNBRUlVcUowY21MekQxa3pHemhlaUJhZzBZ

UkF6VmRsZnhOMjgwTmdIYUEifQ.eyJpc3MiOiAiaHR0cHM6Ly9leGFtcGxlLmNvbS9pc

3N1ZXIiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJSU0EiLCAibiI6ICIwdng3YWdvZ

WJHY1FTdS4uLi4tY3NGQ3VyLWtFZ1U4YXdhcEp6S25xREtndyIsICJlIjogIkFRQUIif

X0sICJ0eXBlIjogIklkZW50aXR5Q3JlZGVudGlhbCIsICJjcmVkZW50aWFsU3ViamVjd
CI6IHsiX3NkIjogWyJFVzFvMGVncWE1bUdjYnl0VDVTLWtBdWJjRWpZRVV3UmtYbHUyd

kM1bDIwIiwgIkZFeC1JVEh0NDFJOF9jbjBTUy1odm9MbmVYX1JHbEpvXzhvMnhSTmhmZ

GsiLCAiUXhKVi0yVjFIOG1jbHRSNnZWQzRtM3JlVTVhTkg5d2RKejJVZG1Sb0kxRSIsI

CJhdFVuMVRZd1JBbDRHUTdQZUV0WGFNdzJmNHVJVGlKclg0ODV3TTh2NjdFIiwgImZUT

XczdmtrRUx3TDFYTnVZSzhIN3pCS0NIdV91aWY2MFNsRzFweVhJVVEiLCAiaWdnN0g1Z
m4yZUJFTUlFa0U1Q2tibTIzUXV3REpsVFlvS1JpcDA4ZFlJYyIsICJ0cFV0bDcwaHBVX

3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUlZMEF4N0tjIl0sICJhZGRyZXNzIjogeyJfc

2QiOiBbImdxQjVrbUF3eXJ5ODhhSGphQWVPLVVTWDZKT01hb2p1a0tzaGVvMzhPMGMiL

CAidk9ubFl0Y2pyODcyZlAzV2E3NU96bDdjLTZfTU9WZElVTnR3TEtLeFp3MCIsICJ3O

EludnhzUFhkS29vd3VWcHlCTWdsMWI5X1IyYjZYcGEzT1lPSWpnUXJvIl19fSwgImlhd
CI6IDE1MTYyMzkwMjIsICJleHAiOiAxNTE2MjQ3MDIyLCAic2RfZGlnZXN0X2Rlcml2Y

XRpb25fYWxnIjogInNoYS0yNTYifQ.1UHEPtLLUXOT51jH3gg-3C-ZidWzsB9Un-VxmM

VdQtTbLLhwDTB6HJtt15p43yCXTzdpiZxtDI6fr07Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu

ASU8cFlGPi6xgH9D3w1G2hqepBS8DyQ5bA_p5kN_tKJVoP1xWhcQujRJ8kkEKQsRia4F

hrBldl8f41wgu_ipPqh1Ix4BVI7GJClZNx94nWPT7JUFkI6Y6JkahLf3S6gB0MxtmLAe
Y0qkuz8VeOZNfl_CDog55kVTkArorfoL6D6TEjI__-w6YyU0PnIRJXJ0wrYfoyhNl8LK

AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

~WyJHTzByMjZuTy1pVzUwWmNBb09pbEZ3IiwgImdpdmVuX25hbWUiLCAiTWF4Il0

~WyJjU2xiUjEzNWkwTmpoc291TXhyampnIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hbm4iX

Q

~WyJvSER0NDNWd3VocG84bXphcHJnQ2N3IiwgImVtYWlsIiwgIm11c3Rlcm1hbm5AZXhhbXB

sZS5jb20iXQ
~WyJyR2MwS3RZNldtZmx5d1RUS0VXSUVRIiwgInN0cmVldF9hZGRyZXNzIiwgIk11c3RlcnN0c

i4gMjMiXQ

~WyJwR1FNUXgtMnRIMlh3Q19lUUNGbjRnIiwgImxvY2FsaXR5IiwgIkJlcmxpbiJd

~WyJUSTE1TThHNVVJeFBpV05aLVZMWUJBIiwgImNvdW50cnkiLCAiREUiXQ

→ Done!

SD-JWT in 5 Simple Steps

25

Design Principles

SD-JWT

Complexity Selective disclosure, as simple as possible

Algorithms Standard cryptography: JWS Signature + Hash function

Format JWT & JSON

Security Security-by-design

Easy to understand & verify
Hardware binding possible
Cryptographic agility

Availability Widely-available JWT libraries can be leveraged

Already five independent implementations

Use Cases Universal (beyond identity use cases)
26

JWT

plain-text claims

+ hashed Disclosures

Issuer

Verifier

End-User
(Holder)

Is
s

u
a
n

c
e

P
re

s
e
n

ta
ti
o

n

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

27

Issuer

Verifier

End-User
(Holder)

Is
s
u

a
n

c
e

P
re

s
e

n
ta

ti
o

n

JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Selected Disclosures

salt + claim name + claim value

28

Issuer

Verifier

End-User
(Holder)

SD-JWT

SD-JWT+KB

JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Disclosures

salt + claim name + claim value

JWT

plain-text claims

+ hashed Disclosures

✓ signed

by Issuer

Selected Disclosures

salt + claim name + claim value

Key-

Binding JWT

nonce

audience

sd_hash

etc.
✓ signed

by Holderholder’s public key

Is
s
u

a
n

c
e

P
re

s
e
n

ta
ti
o

n

29

Any Element may be Selectively Disclosable

{

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

"address": {

"_sd": [

"6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",

"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",

"KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88"

],

"country": "DE"

},

"_sd_alg": "sha-256"

}

{

"iss": "https://issuer.example.com",

"iat": 1683000000,

"exp": 1883000000,

"sub": "user_42",

"nationalities": [

{

"...": "pFndjkZ_VCzmyTa6UjlZo3dh-ko8aIKQc9DlGzhaVYo"

},

{

"...": "7Cf6JkPudry3lcbwHgeZ8khAv1U1OSlerP0VkBJrWZ0"

}

],

"_sd_alg": "sha-256",

"cnf": {...}

}

array elements

in sub-structures

35

Recursive Selective Disclosure for Fine-Grained Release

{

"_sd": [
"HvrKX6fPV0v9K_yCVFBiLFHsMaxcD_114Em6VT8x1lg"

],
"iss": "https://issuer.example.com",
"iat": 1683000000,

"exp": 1883000000,
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",

"_sd_alg": "sha-256",
"cnf": {
"jwk": {

"kty": "EC",
"crv": "P-256",

"x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
"y": "Zxj iWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

}

}
}

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImFkZHJlc3MiLCB7Il9zZCI6

IFsiNnZoOWJxLXpTNEdLTV83R3BnZ1ZiWXp6dTZvT0dYcm1OVkdQSFA3NVVk

MCIsICI5Z2pWdVh0ZEZST0NnUnJ0TmNHVVhtRjY1cmRlemlfNkVyX2o3Nmtt

WXlNIiwgIktVUkRQaDRaQzE5LTN0aXotRGYzOVY4ZWlkeTFvVjNhM0gxRGEy

TjBnODgiLCAiV045cjlkQ0JKOEhUQ3NTMmpLQVN4VGpFeVc1bTV4NjVfWl8y

cm8yamZYTSJdfV0

[

"Qg_O64zqAxe412a108iroA",

"address",

{

"_sd": [

"6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",

"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",

"KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88",

"WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM"

]

}

]

decode

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkiLCAiREUiX

decode

[

"eI8ZWm9QnKPpNPeNenHdhQ",

"country",

"DE"

]

36

Security Considerations (I)

Signature verification: Verifiers could verify the signature inadequately/partially and accept
tampered credentials

Mitigating measures:

● Simple processing model, specified in detail in the standard

● Established algorithms enable the use of existing implementations

Manipulation of disclosures: If the hashes of the disclosures are not checked by the verifier,
manipulated plaintext values could be accepted.

Mitigating measures:

● Design: Generally no assignment to the document possible without hash calculation

● Processing model specified in detail

37

Security Considerations (II)

Missing check of key binding: Verifiers could accept credentials without key

binding

Mitigating measures:

● Different formats with/without key binding

● Differentiation in terminology

● Detailed discussion in the standard

38

Privacy Considerations

RP-RP unlinkability: Several presentations of the same credential can be

traced back to the same person (due to the same hash values).

Mitigating measures:

● Single use: Credentials are always issued in groups - same data, different salt

values. Each individual credential is then only used once.

● Solution in the making: ZKP (zero-knowledge proofs)

39

SD-JWT VC

40

SD-JWT VC

Credentials based on SD-JWT VC
using an extensible data model

IETF Draft: https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/

Daniel Fett

Oliver Terbu
Brian Campbell

41

● iss — The Issuer of the Verifiable Credential. The value of iss MUST be a URI.

● nbf — The time before which the Verifiable Credential MUST NOT be accepted before validating.

● exp — The expiry time of the Verifiable Credential after which the Verifiable Credential is no longer valid.

● cnf — Contains the confirmation method identifying the proof of possession key. For proof of cryptographic Key Binding,

the Key Binding JWT in the presentation of the SD-JWT MUST be signed by the key identified in this claim.

● vct — The type of the Verifiable Credential, e.g., https://credentials.example.com/identity_credential.

● status — The information on how to read the status of the Verifiable Credential.

● sub — The identifier of the Subject of the Verifiable Credential. The Issuer MAY use it to provide the Subject identifier

known by the Issuer. There is no requirement for a binding to exist between sub and cnf claims.

● iat — The time of issuance of the Verifiable Credential. See [RFC7519] for more information.

Defined Claims

44

mdoc 101

50

mdoc/MSO basics

● Defined in the ISO/IEC 18013-5 (https://www.iso.org/standard/69084.html)
○ focuses on mobile driving licence scenarios but could be used in other use-cases,

○ - Includes a selective disclosure mechanism based on the salted hash values

● Expressed in CBOR
○ because NFC/BLE

○ Not originally defined as a “credential format”

51

MSO (issuer-signed object) structure

MobileSecurityObject = {
"digestAlgorithm" : tstr, ; Message digest algorithm used

"valueDigests" : ValueDigests, ; Array of digests of all data elements

"deviceKey" : DeviceKey, ; Device key in COSE_Key as defined in RFC 8152

"docType" : tstr, ; DocType as used in Documents

"validityInfo" : validity of the MSO and its signature

}

Blinds claim name by using “digestID”

52

mdoc response (presentation) structure

IssuerSignedItem = {
"digestID" : uint, ; Digest ID for issuer data authentication

"random" : bstr, ; Random value for issuer data authentication

"elementIdentifier" : DataElementIdentifier, ; Data element identifier

"elementValue" : DataElementValue ; Data element value

}

How to send this mapping of direstID, random (salt), element name and claim

value during issuance is not defined.

53

mdocs: other facts

● predicates: `age_over_NN` claim

● unlinkability: issue the same copy of the credential with different User public

key that can be used per verifier (to prevent RP-RP’ unlinkability)

● refresh: can be only the issuer’s signature over hashes, or the entire “mdoc”

54

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Credential

Issuance

Credential

Presentation

There was a need for the interoperable protocol layer that can support all of the credential

formats, key resolution mechanisms and trust frameworks.

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

User Interactions (authorization, consent, etc.)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)

Issuer
(Website)Wallet VerifierIssuer

Protocol Layer Interoperability is Crucial

55

Problems we identified and how we solved them

Problem Solution

A lot of entirely new Protocols. (Hard to get

security right, steep learning curve) ⇒

Building upon currently widely used protocols:

OAuth 2.0 and OpenID Connect. (Secure, already
understood)

No clear winner among Credential Formats ⇒ Designing a protocol agnostic to the Credential

Formats.

No one way to do key management. ⇒ Designing a protocol agnostic to the key

management mechanism.

Participating entities cannot typically

establish trust upfront, using traditional
mechanisms.

⇒ Flexibility in Trust Management. Third Party Trust.

56

OID4VC: OpenID for Verifiable Credentials set of

protocols

OID4VC set of protocols also includes Self-Issued OpenID Provider v2 (SIOPv2) and OpenID4VP

over BLE.

Issuer/

Provider

Verifier/

RP
Wallet

User Interactions

OpenID for Verifiable

Presentations

OpenID4VC High Assurance Interoperability (HAIP)

OpenID for Verifiable

Credential Issuance

57

Walt.id

Kotlin:
github.com/walt-id/waltid-ssikit

Kotlin:

github.com/walt-

id/waltid-ssikit

Sphereon

Animo Trustbloc

Microsoft

Italian

Government

AltMe

Spruce EBSI

MOSIP

Impierce

Technologies

EUDI

Reference

Kotlin Multiplatform:
shorturl.at/XtEXw

Kotlin Multiplatform:

shorturl.at/XtEXw

Transcript:
tinyurl.com/2de634na

Transcript:

tinyurl.com/2de634n

a

shorturl.at/yUnkA
shorturl.at/yUnkA

shorturl.at/MHW1z
shorturl.at/MHW1z

Kotlin:
tinyurl.com/4bd5p3bx

Kotlin:

tinyurl.com/4bd5p3b

x

Swift: tinyurl.com/2jejntsp
Swift:

tinyurl.com/2jejntsp

Rust:
github.com/spruceid/oidc4vci-rs

Rust:

github.com/spruceid/

oidc4vci-rs

Rust: tinyurl.com/rp35fsc8
Rust:

tinyurl.com/rp35fsc8

Javascript:
tinyurl.com/y945s5xu

Javascript:

tinyurl.com/y945s5x

u

Rust:
github.com/impierce/openid4vc

Rust:

github.com/impierce/

openid4vc

Typescript:
github.com/animo/paradym-wallet

Typescript:

github.com/animo/p

aradym-wallet

Go: github.com/trustbloc/vcs
Go:

github.com/trustbloc/

vcs

github.com/trustbloc/wallet-sdk
github.com/trustbloc/

wallet-sdk

Python: shorturl.at/Gxd2D
Python:

shorturl.at/Gxd2D

Python:
tinyurl.com/56ft5m34

Python:

tinyurl.com/56ft5m34

Dart:
github.com/TalaoDAO/AltMe

Dart:

github.com/TalaoDA

O/AltMe

Kotlin/ Swift/ ReactNative:
github.com/mosip/tuvali

Kotlin/ Swift/

ReactNative:

github.com/mosip/tu

vali

Wallet Implementation:
shorturl.at/rD7tf

Wallet

Implementation:

shorturl.at/rD7tf

Open Source libraries

58

https://github.com/walt-id/waltid-ssikit
https://github.com/walt-id/waltid-openid4vc
https://github.com/Sphereon-Opensource/SIOP-OpenID4VP
https://github.com/Sphereon-Opensource/OpenID4VCI-client
https://github.com/Sphereon-Opensource/ssi-sdk
https://github.com/microsoft/VerifiableCredential-SDK-Android
https://github.com/microsoft/VerifiableCredential-SDK-iOS
https://github.com/spruceid/oidc4vci-rs
https://github.com/spruceid/oidc4vci-issuer
https://api-pilot.ebsi.eu/docs/libraries
https://github.com/impierce/openid4vc
https://github.com/animo/paradym-wallet
https://github.com/trustbloc/vcs
https://github.com/trustbloc/wallet-sdk
https://github.com/italia/eudi-wallet-it-python
https://github.com/italia/eudi-wallet-it-pid-provider/tree/v.1.1.1
https://github.com/TalaoDAO/AltMe
https://github.com/mosip/tuvali
https://github.com/eu-digital-identity-wallet/.github/blob/main/profile/reference-implementation.md

OpenID4VC Security Analysis

„Security and Trust in OpenID for Verifiable
Credentials“ document describes the trust

architecture in OpenID for Verifiable

Credentials specifications, outlines security

considerations and requirements for the

components in an ecosystem

Master Thesis „OpenID for Verifiable
Credentials: formal security analysis using

the Web Infrastructure Model“ published:

59

LSP POTENTIAL

NIST National Cybersecurity

Center of Excellence[2]

- 18013-7 Annex B with vanilla

OpenID4VP with mdocs

- HAIP OpenID4VP over the DC

API with mdocs

ISO/IEC SC17 WG10

Interoperability events (mDL)

- 18013-7 Annex B with vanilla

OpenID4VP with mdocs

- HAIP OpenID4VP over the DC

API with mdocs

Interoperability Events (selected)

60

https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl

Follow QR-Code for the

“OpenID for Verifiable

Credentials” whitepaper

Next: OpenID4VP and OpenID4VCI

61

https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf

OpenID for Verifiable

Presentations

62

OpenID for Verifiable Presentations: Highlights

Voting for Final 1.0 starting in few weeks

Designed for highest degree of privacy (e.g. wallet does not need a backend to store and
transmit Credentials)

Presentation of multiple Credentials in one response supported

Easy of use for developers

Various Security levels can be supported

Various Wallet deployment models supported

Various trust frameworks and credential formats can be supported

63

Same-device flow

66

Cross-device flow

67

Presentation

Request

68

DCQL

Query

69

Presentation Response

70

Digital Credentials API

● Background

● Demo

● Components

● The Digital Credentials API

● Cross-Device Presentation

● Issuance

● Q&A

74

Background

75

The problem

digital credential presentation on the web

currently relies on primitives such as custom

schemes and QR codes which have

poor security properties and an even

worse user experience

76

What is a custom URI scheme?

CUSTOM SCHEMES IN THE WILD

mdoc://

openid4vp://

eudi-wallet://

eudi-openid4vp://

mdoc-openid4vp://

openid-credential-offer://

tcslides.link/dc-customschemes

A custom identifier that an app can

register with an operating system

with the goal of being invoked from

other contexts, such as other apps or

from the web.

In many cases, these identifiers are

not globally unique, and may be

shared.

77

https://tcslides.link/osw-3pc

Issues w/ custom schemes

● invocation from insecure contexts

● on-device phishing via app selection

● no requestor origin / identity

● not standardized & not guaranteed

● context switch during app launch

● no graceful fallback for errors poor UX for credential selection

(users don’t understand wallet selection)

78

Learnings from passkeys

users think about accounts and

credentials, not authenticators

caller context is key

cross-device authentication

needs to be secure, easy, and

resistant to phishing

79

● Separate the act of requesting from the specific protocol, allowing flexibility in

both the protocol and credential formats. This way, the pace of changes in

browsers won't hinder progress or block new developments.

● Require request transparency, enabling user-agent inspection for risk analysis

● Assume response opacity (encrypted responses), enabling verifiers and

holders to control where potentially sensitive PII is exposed

● Prevent website from silently querying for the availability of digital credentials

and communicating with credential providers without explicit user consent

tcslides.link/wicg-dc

Design Principles

80

https://tcslides.link/osw-3pc

From the User perspective

81

Demo Later

82

Layering

83

84

Roles and Responsibilities

85

Components: Same Device

Verifier: website or native app

Client: web browser or app instance

App Platform: underlying OS

Identity Wallet: native app

86

Layers: Same Device (Web Verifier) tcslides.link/dc-layers

87

https://tcslides.link/osw-3pc

Layers: Same Device (App Verifier) tcslides.link/dc-layers

88

https://tcslides.link/osw-3pc

Components: Cross-Device

Verifier: website or native app

Local Client: web browser or app instance

Local App Platform: underlying OS on calling device

Remote App Platform: underlying OS on remote device

Remote Identity Wallet: native app on remote device

89

Layers: Cross-Device (Web Verifier) tcslides.link/dc-layers

90

https://tcslides.link/osw-3pc

Layers: Cross-Device (App Verifier) tcslides.link/dc-layers

91

https://tcslides.link/osw-3pc

tcslides.link/dc-apiThe API

let cred = await
navigator.credentials.get({

signal: controller.signal,
digital: {
requests: [{
protocol: "openid4vp-v1-unsigned",
data: { ...request }

}]
}

});

92

https://tcslides.link/osw-3pc

Issuance

● In scope now!

95

Get Involved

Prototype with Android and Chrome!

Instructions:

Short link: tcslides.link/dc-androidprotoype

Full link

96

https://github.com/WICG/digital-credentials/wiki/HOWTO%3A-Try-the-Prototype-API-in-Chrome-Android

OpenID for Verifiable

Credential Issuance

97

Status: WG Last Call expected to start this week

Easy to use for developers

Various business requirements and user-experiences can be achieved

Various trust frameworks and credential formats can be supported

Various Security levels can be supported

OpenID for Verifiable Credential Issuance: Highlights

98

Wallet

⓪Wallet requests & User authorizes

credential issuance

③ Credential is issued

① access token(, refresh token)

②Wallet requests credential

Alice

Credential

Issuer

User Authentication/Identification + Consent

Credential issuance

OpenID4VCI can be used in conjunction with any other OAuth extension RFC

OAuth-protected API

99

Authorization Code Flow

100

Pre-Authorized Code Flow

101

Authorization

code flow

104

Pre-

Authorized

Code flow

105

Credential Offer

106

Authorization

Request

107

Authorization

Response

- PAR (Pushed Authorization Request can be used too)

108

Token

Request

- `authorization_details` or `scope` parameter

109

Token

Response

110

Credential

Request

111

Credential

Response

- There is also a deferred issuance endpoint

112

HAIP

High Assurance

Interoperability Profile

116

- Not be limited to SD-JWT VC, mdoc added

- To be a collection of 4 profiles that can be used independently:

1. Issuance of IETF SD-JWT VC using OpenID4VCI;

2. Presentation of IETF SD-JWT VC using OpenID4VP;

3. Presentation of IETF SD-JWT VC using OpenID4VP over W3C
Digital Credentials API;

4. Presentation of ISO mdocs using OpenID4VP over W3C Digital
Credentials API;

5. [coming] Presentation of ISO mdocs using OpenID4VP;

6. [coming] Issuance of ISO mdocs using OpenID4VCI

HAIP was restructured

117

OpenID Certification Program Overview

▪ A light-weight, low-cost, self-certification program to serve members, drive adoption

and promote high-quality implementations

▪ Identity Providers launched in early 2015

▪ Relying Parties launched in late 2016

▪ FAPI profiles launched in 2019

▪ Each certification makes it easier for those that follow and helps make subsequent

deployments more trustworthy, interoperable and secure

▪ All certified implementations are openly listed at

https://openid.net/developers/certified/

123

https://openid.net/developers/certified/

The process

For example to test a wallet for verifiable presentations:

1. Wallet provider runs the tests either locally or on our cloud server

2. The tests check if the wallet responds correctly to both positive and negative tests

3. Any failures that require fixing are surfaced to the tester

4. The logs & statement of compliance are submitted to OIDF

5. Certification fee is paid

6. OIDF publishes results after checking logs/etc are correct

7. “OpenID Certified” mark can now be used by certified entity

124

Testing OpenID VC specifications

▪ Fairly good tests OpenID for Verifiable Presentations

o Tests wallets & verifiers, supports ID2 and ID3 of spec,

o 12+ wallets/verifiers tested & passed

o Continuing to build out the tests

▪ OpenID for Verifiable Credential Issuance

o Initial alpha tests available

o Targeting ID3 (Dec 2024) of the specification

o Access to a compliant issuer would really help us

125

Conformance tests support this process

● OpenID for VCs Test Suite now includes:

• Issuers using OpenID for Verifiable Credential Issuance + HAIP

− Implementers Draft 2 (alpha)

• Wallets using OpenID for Verifiable Credential Issuance + HAIP

− Implementers Draft 2 (alpha)

• Wallets using OpenID for Verifiable Presentations + HAIP

− Implementers Draft 2

− Implementers Draft 3 + draft 24

− Implementers Draft 3 + draft 24 + Browser DC API

• Verifiers using OpenID for Verifiable Presentations + HAIP

− Implementers Draft 2

− Implementers Draft 3 + draft 24 126

OpenID For Verifiable Presentations – Current Status

▪ Testing latest Implementer’s Draft ID2 & ID3
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html

▪ https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html (tests for -28 expected during June)

▪ response_type=vp_token

▪ client_id_scheme redirect_uri or x509_san_dns

▪ Direct Post or Direct Post JWT (encrypted response)

▪ Cross device or same device

▪ Traditional (custom url scheme) or (for testing wallets) W3C DC API

▪ request_uri, request object by value or plain request

▪ SD-JWT with SD-JWT VC, HAIP or ISO mDL

▪ presentation_definition or DCQL

127

https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html

OpenID For Verifiable Presentations – Roadmap

▪ Further validation in current test

o E.g. SD-JWT signature not yet checked

▪ More client_id_scheme

▪ More negative tests

Suggestions welcome

Please tell me what features you are using

128

OpenID For Verifiable Issuance – Current Status

▪ Testing latest Implementer’s Draft ID3

▪ Focusing on testing current HAIP draft

o Some non-HAIP features work

▪ Alpha tests for both wallets & issuers

129

Demo
(Conformance testing Google’s Wallet that supports DC API)

Q & A

	Default Section
	Slide 0: Verifiable Credentials: Concepts to Practice
	Slide 1: Agenda

	background vcs
	Slide 2: Context
	Slide 3: Identity Federation
	Slide 5: Verifiable Credentials: Benefits
	Slide 6
	Slide 7: Renting a car easily with the EUDI Wallet

	Tech stack overview
	Slide 8: Main* Standards for Data Formats and Protocols
	Slide 9: Main* Standards for Data Formats and Protocols
	Slide 10: Standards Bodies 101
	Slide 11: Credential Formats
	Slide 12: Protocols
	Slide 13: Other Mechanisms
	Slide 14: Security

	demo 1 - DE EUDIW
	Slide 15: Demo

	sd-jwt
	Slide 16: Credential Formats
	Slide 17: SD-JWT & SD-JWT VC 101
	Slide 18: IETF SD-JWT & SD-JWT VC standards
	Slide 19: SD-JWT
	Slide 20: Selective Disclosure
	Slide 21: SD-JWT in 5 Simple Steps
	Slide 22
	Slide 23: SD-JWT in 5 Simple Steps
	Slide 24
	Slide 25
	Slide 26: Design Principles
	Slide 27
	Slide 28
	Slide 29
	Slide 35: Any Element may be Selectively Disclosable
	Slide 36: Recursive Selective Disclosure for Fine-Grained Release
	Slide 37: Security Considerations (I)
	Slide 38: Security Considerations (II)
	Slide 39: Privacy Considerations
	Slide 40
	Slide 41: SD-JWT VC
	Slide 44: iss — The Issuer of the Verifiable Credential. The value of iss MUST be a URI. nbf — The time before which the Verifiable Credential MUST NOT be accepted before validating. exp — The expiry time of the Verifiable Credential after which the Verif

	mdoc
	Slide 50: mdoc 101
	Slide 51: mdoc/MSO basics
	Slide 52: MSO (issuer-signed object) structure
	Slide 53: mdoc response (presentation) structure
	Slide 54: mdocs: other facts

	Protocol layer interop
	Slide 55
	Slide 56: Problems we identified and how we solved them
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

	OpenID4VP
	Slide 62: OpenID for Verifiable Presentations
	Slide 63: OpenID for Verifiable Presentations: Highlights
	Slide 66: Same-device flow
	Slide 67: Cross-device flow
	Slide 68: Presentation Request
	Slide 69: DCQL Query
	Slide 70: Presentation Response

	DC API
	Slide 74: Digital Credentials API
	Slide 75: Background
	Slide 76: The problem
	Slide 77: What is a custom URI scheme?
	Slide 78: Issues w/ custom schemes
	Slide 79: Learnings from passkeys
	Slide 80: Design Principles
	Slide 81: From the User perspective
	Slide 82: Demo Later
	Slide 83: Layering
	Slide 84
	Slide 85: Roles and Responsibilities
	Slide 86: Components: Same Device
	Slide 87: Layers: Same Device (Web Verifier)
	Slide 88: Layers: Same Device (App Verifier)
	Slide 89: Components: Cross-Device
	Slide 90: Layers: Cross-Device (Web Verifier)
	Slide 91: Layers: Cross-Device (App Verifier)
	Slide 92: The API
	Slide 95: Issuance
	Slide 96: Get Involved

	OpeniD4VCI
	Slide 97: OpenID for Verifiable Credential Issuance
	Slide 98
	Slide 99
	Slide 100: Authorization Code Flow
	Slide 101: Pre-Authorized Code Flow
	Slide 104: Authorization code flow
	Slide 105: Pre-Authorized Code flow
	Slide 106: Credential Offer
	Slide 107: Authorization Request
	Slide 108: Authorization Response
	Slide 109: Token Request
	Slide 110: Token Response
	Slide 111: Credential Request
	Slide 112: Credential Response

	HAIP
	Slide 116: HAIP High Assurance Interoperability Profile
	Slide 117

	Conformance tests
	Slide 123: OpenID Certification Program Overview
	Slide 124: The process
	Slide 125: Testing OpenID VC specifications
	Slide 126: Conformance tests support this process
	Slide 127: OpenID For Verifiable Presentations – Current Status
	Slide 128: OpenID For Verifiable Presentations – Roadmap
	Slide 129: OpenID For Verifiable Issuance – Current Status

	demo 2 - DC API & conformance
	Slide 130: Demo

	QnA
	Slide 131: Q & A

