Verifiable Credentials:
Concepts to Practice

Kristina Yasuda

Agenda

Context

Technical Stack Overview

Demo

Credential Formats (SD-JWT VC and mdocs)

Protocol: OpenlD for Verifiable Credentials
O Presentation: DCQL, transaction data, the Digital Credentials API

O Issuance: Batch Issuance, key attestations
O Interoperability Profile

o Q&A

Context

A New Model: Credential Issuance & Presentation Decoupled

Identity Federation Wallet Model
Identity Provider Issuer
% Reusable, contains all claims
E known to the Issuer
E -
End-User |S Only claims relevant to End-User
5 given request: Already (Holdeur))
9 selectively disclosed! £ Subset from the Issuer-
S signed credential relevant to
= given request.

v

Relying Party Verifier

Verifiable Credentials: Benefits

e Enhanced privacy and portability for end-users over their identity
information.

e Faster, cheaper, and more secure verification: Digitally issued
credentials reduce costs and delays associated with physical documents,
while improving resistance to fraud.

e Universal approach to handle identification, authentication, and
authorization in digital and physical space, hopefully across platforms,
sectors, and borders.

Global Adoption (selected use-cases)

=
N4 ERNE

Digital Identities- Trusted Web RRFEEWRIH I REFR

Mobile Driver's

License (mDL) [ExE)

—— — (DipandD For Verifisbla Credentials
1V TP =T AP FEH)
L 4
The European Digital NIST National Cybersecurity Japanese Government's
Identity Wallet[1;, ARF v.1.4 Center of Excellenceyz Trusted Web Project 3
mandates the usage of is running a project implementing has implemented OID4VC
OpenlD4VC protocols and testing implementations for protocols various use-cases
OID4VP to present mdocs/mDL

https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-presentation-profile/#workplace-credential
https://www.kantei.go.jp/jp/singi/digitalmarket/trusted_web/2023seika/files/004_report_oidf_conformance_test.pdf
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-issuance-profile/

Renting a car easily with the EUDI Wallet

Mary spontaneously EUDI-Wallet on your smartphone o
T— needs to rent a car Includes ID card, driver's license, debit card dentification via wallet
— ;n She securely identifies herself
- with her digital ID
— Chooses a car to rent Attestation via wallet
(] and starts the booking process She proves her driving
o privileges with her driver's
license
Digital signature _ _
She digitally and legally Authorizes payment On.arrlvaI: Directly
signs the rental agreement in (" [Z]] She easilv pavs rental chardes Digital car key pickupthecar @9
the wallet \Yi:tr{e wallet g transferred to wallet and drive off"

@) -

Main* Standards for Data Formats and Protocols

Tech Stack Layers Technical Standards
2a) Status .
. management IETF JWT/CWT Status List
Trust 2) Credential
Frame Format IETF SD-JWT, SD-JWT VC mdocs (ISO/IEC 18013-5)
works | b—m—— — — e] R | R ——
1b) Wallet IETF OAuth 2.0 Attestation-Based Client

Attestation

Authentication

1a) Verifier
Authentication

ISO/IEC 18013-5, 18013-7,

1) Protocol OIDF OpenID4VP, OpenID4VCI, HAIP 23220-3,23220-4

W3C Digital Credentials API, FIDO CTAP Hybrid

Main* Standards for Data Formats and Protocols

Tech Stack Layers Technical Standards
2a) Stat .
T
5 || | .
Trust 2) Credential
Frame e mdocs (ISO/IEC 18013-5)
works |————————— e e | S —
1b) Wallet
Attestation
1a) Verifier) .
AUtharteE e X.509 (with & without PKI)

ISO/IEC 18013-S86013-7,
232 Comr‘\butof

D0 CTAP Hybrid

1) Protocol OIDF mzwu, HAIP

W3C Digital

Standards Bodies 101

IETF — Internet Engineering Task Force

W3C — World Wide Web Consortium

OIDF — OpenID Foundation

ISO — International Organization for Standardization

ETS| — European Telecommunications Standards Institute
FIDO — Fast Identity Online

* % % % % %

10

Credential Formats

In the IETF OAuth Working Group:

- SD-JWT (Selective Disclosure JSON Web Token) — basic data format,

encoding
essential building block, very close to final

- SD-JWT VC — how to create credentials based on SD-JWT

essential building block, work in progress

11

Protocols

OpenlID Foundation (Digital Credentials Protocols WG):
- OpenlD for Verifiable Presentations — based on OAuth 2.0

essential building block, moving to first final version (1.0)

- OpenlD for Verifiable Credential Issuance — based on OAuth 2.0
essential building block, moving to first final version (1.0)

- Self-Issued OpenlD Provider v2 (SIOP v2)
- OpenlD4VC High Assurance Interoperability Profile (HAIP)

W3C (Web Incubation Community Group)
- Digital Credential API

can become an essential building block for ensuring security and good UX

12

Other Mechanisms

IETF OAuth Working Group:

- Status List
essential building block for status management

-> Attestation-Based Client Authentication

essential building block for trusting the Wallet

13

Security

IETF OAuth Working Group:

- RFC 9449: DPoP (Sender-constrained Access Token)
essential building block, final, deployed & tested

- OAuth Security BCP
How not to use OAuth.

- Cross-Device Flows: Security Best Current Practice
Can inform decisions on cross-device flows

OpenlID Foundation:

= Security and Trust in OpenlID for Verifiable Credentials

14

Demo

(Presentation of a German PID using German Government's official
EUDI Wallet)

Credential Formats

SD-JWT & SD-JWT VC 101

IETF SD-JWT & SD-JWT VC standards

e Formats for
o enabling selective disclosure and key binding for JWS/JWT (SD-JWT)
o credentials based on that format (SD-JWT VC)

e Attributes are structured as JSON

18

SD-JWT

Selective Disclosure for IWTs
using a simple, salted-hash based format
— for verifiable credentials and more.

IETF Draft: https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/

Daniel Fett
Kristina Yasuda
Brian Campbell

19

Selective Disclosure

Issuer issued a whole set of claims:

"iss": "https://server.example.com”,
"sub": "some-user-identifier",
"aud": "s6BhdRkqgt3",
"given_name": "John",
“family_name": "Doe",
"email": "johndoe@example.com",
"phone_number": "+1-202-555-0101",
"address™: {
"street_address": "123 Main St",
“locality": "Anytown",

“region": "Anystate", W
el

"country": "US" \t's not the us)

fing

b a subset du

"birthdate": "1940-01-01"

v signed

by Issuer

o selects

But Verifier only needs a subset in a given
request:

{
"iss": "https://server.example.com",
"sub": "some-user-identifier",
"aud": "s6BhdRkqgt3",
"given_name": "John",
"family_name": "Doe",
"email": "johndoe@example.com",

"phone_num ber'-

"address": {

b

by Issuer

20

SD-JWT in 5 Simple Steps

Step 1. Prepare User Data

{

"iss": "https://example.com”,

"type": "ldentityCredential",

"enf': {"jwk": {"kty": "RSA","n": "Ovx...Kgw","e": "AQAB" } },

"given_name": "Max",
“family_name": "Mustermann",
"email": "mustermann@example.com”,
"address": {
"street_address": "Musterstr. 23",
"locality": "Berlin",
"country": "DE"
}
}

21

SD-JWT in 5 Simple Steps

Step 2: Create Disclosures

{

"iss": "https://example.com”,
"type": "ldentityCredential",
"enf": {"jwk": {"kty": "RSA","n": "Ovx...Kgw","e": "AQAB" } },

"given_name": "Max", s "GO0 r26N0-IW5 0ZcA0QilFwW", "given_name", "Max"]

“family_name": "Mustermann",-«-xwumusininnnnn ["cSIbR135i0NjhsouMxrjjg”, "family_name", "Mustermann"]

"email": "mustermann@example.com" -« ["oHDt43Vwuh po8mzaprgCew”, "email”, "mustermann@example.com”]
"address": {

"street_address": "Musterstr. 23", - ["rGcOKtY6WmflywTTKEWIEQ", "street_address"”, "Musterstr. 23"]

"locality": "Berlin", e ["0 GQMQx-2tH2XWC_eQCFn4g”, "locality”, "Berlin"]
"country": "DE" s ["TI15M 8G5UIXPIWNZ-VLYBA", "country”, "DE"]
}
} t bt
salt claim name claim value

22

SD-JWT in 5 Simple Steps

Step 3: Hash Disclosures & Replace Original Claims

{

"iss": "https://example.com”,
"type": "ldentityCredential",
"enf": {"jwk": {"kty": "RSA","n": "Ovx...Kgw","e": "AQAB" } },

"_sd": ["EW100egqa5mGcbytT5S-kAubcEjYEUwRkXIu2vC5120", — ["GO0r26n0-iW50ZcAoQilFw", "given_name", "Max"]
"FEx-ITHt4118_cn0SS-hvolLneX_RGlJo_802xRNhfdk", — ["cSIbR135i0NjhsouMxrjjg”, “family_name", "Mustermann"”]
"igg7H5fn2eBEMIEKESCkbm23QuwDJITYoKRip08dYlic"], — ["oHDt43Vwuhpo8mzaprgCcw", "email", "mustermann@example.com"]

"address": {

"_sd": ["ggB5kmAwyry88aHjaAeO-USX6JOMaojukKsheo3800c", — ["rGcOKtY6WmflywTTKEWIEQ", "street_address"”, "Musterstr. 23"]
"w8InvxsPXdKoowuVpyBMgl1b9_R2b6Xpa3QYOljgQro*”, — ["]pGQMQx-2tH2XwC_eQCFn4g", "locality”, "Berlin"]
"vOnlYtcjr872fP3Wa750z17c-6_MOVdIUNtw LKKxZw0"] < ["TIT5M8G5UIXPIWNZ-VLYBA", "country”, "DE"]

}
}

23

SD-JWT in 5 Simple Steps

Step 4: Sign SD-JWT & Encode for Transport

eyJhbGciOiAIUIMyNTYiLCAia2lkljogImNBRUIVcUowY2 1MekQxa3pHemhlaUJhZzBZ
UkF6VmMRsZnhOMjgwTmdIYUEifQ.ey)pc3MiOiAiaHROcHM6Ly9le GFtcGxILmNvbS9pc
3N1ZXIILCAiY25mljogey)qd2siOiB7Imt0eSI61CJSUOEILCAIbil61Clwdng 3YWdvZ
WIHY1FTdS4uLi4tY3NGQ3Vy LWFZ 1U4YXdhcEp6S25xREtndy IsICJlljoglkFRQUIif
X0s1CJ0eXBlljoglklkZW50aXR5Q3ZGVud GlhbClsIUjcmVkZW50aWF sU3ViamVjd
ClelHsiX3Nkljog WyJFVzFv MGV ncWE1b UdjYnlOVDVTLWB dWJjRWpZRW3UmtYbHUyd
kM1bDIwliwg lkZFeC1JVEhONDFJOF9jbjBTUyTod m9MbmVYX1JHbEpvXzhvMnhSTmhmZ
GsiLCAIUXhKViOyVjFIOG 1jbHRSNNZWQzRtM3JIVTVhTkg5d2RK 6jJVZG 1Sb OkxRS s
CJhdFVuMVRZd 1JBbDRHUTdQZUVOWGFNdzJmNHVIVGIKclgOODV3TTh2NjdFliwg ImZUT
Xczd mtrRUX3TDFYTNVZSzhIN3pCSONIdV91aWY2MFNsRzFweVhJWEILCAiaWdnNOg1Z
mdyZUJFTUIFa0U1Q2tib TIzZUXV3RE psVFIVS 1JpcDA4ZFI)YylsICJOcF VObD cwaHBVX
3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUIZMEF4NOtjl10sICJIhZ GRyZXNzljogey Jfc
2QiOiBbImdxQjVrbUF3eXJ50DhhSGphQWVPLWTWDZKT01hb2plaltzaGVWwMzhPMGMiL
CAidk9ubFI0Y2pyODcyZIAzV2E3NU96bDdLTZf TUIWZEIVTNR3TEtLeF p3MCIsICI30
EludnhzUFhkS29v d3VWeHICTWdsMWISXTlyY)ZYcGEZT 11PSWpnUXIvil19fSwgimihd
CI6IDETMTYyMzkwMjlsICJleHAIQIAXNTE2MjQ3MDly LCAic2RfZGINZXNOX2RIcml2Y
XRpb25fYWxnljogInNoYSOyNTYifQ. TUHEPILLUXOT51jH3g g-3C-ZidWzsB9Un-VxmM
VdQtTo LLhwDTB6HJtt15p43yCXTzdpiZxtDI6frO7Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu
ASUBCFIGPiexgHID3w1G2hgepBS8DyQ5bA_p5kN_tKJVo P1xWhcQujRI8KkkEKQsRia4F
hrBIdI8f4 1wgu_ipPgh1Ix4BVI7GJCIZNx94nWPT7JUFkI6Y6JkahLf3S6gBOMxtmLAe
Y0qgkuz8VeOZNf|_CDog 55k VTkArorfoL6D6TEjl__-w6Yy UOPnIRIXJOwrYfoyhNI8LK
AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

V50ZcAoOQilFw", "given_name", "Max"]
vixrjjg", "family_name", "Mustermann"]

28mzaprgCcw"”, "email", "mustermann@example.com"]

mflywTTKEWIEQ", "street_address", "Musterstr. 23"]
2XwC_eQCFn4g", "locality”, "Berlin"]
WNZ-VLYBA", “country", "DE"]

24

SD-JWT in 5 Simple Steps

Step 5: Baseb4url-encode Disclosures for Transport

eyJhbGciOiAIUIMyNTYiLCAia2lkljogImNBRUIVcUowY2 1MekQxa3pHemhlaUJhZzBZ
UkF6VmMRsZnhOMjgwTmdIYUEifQ.ey)pc3MiOiAiaHROcHM6Ly9le GFtcGxILmNvbS9pc
3N1ZXIiLCAiY25mljogey)qd2siOiB7Imt0eSI61CJSUOEILCAIibil6IClwdng 3YWdvZ

WIJHY 1FTdS4uLidtY3NGQ3VyLWIFZ 1U4YXdhcEp6S25xREtndyIsIClljoglkFRQUIIf
X0s1CJ0eXBlljoglklkZW50aXR5Q3ZGVud GlhbClsIUjcmVkZW50aWF sU3ViamVjd
Cl6IHsiX3NkljogWyJFVzFvMGVncWE1bUdjYnlOVDVTLWB dWJRWpZRW3UmtYbHUyd
kM1bDIwliwg lkZFeC1JVEhONDFJOF9jbjBTUy1od mIMbmVYX 1JHbEpvXzhvMnhSTmhmZ
GsiLCAIUXhKViOyVjFIOG 1jbHRSNNZWQzRtM3JIVTVhTkg5d2RK 6j)VZG 1Sb OkxRS s
CJhdFVuMVRZd 1JBbDRHU Td QZUVOWGFNdzJmNHVIVGIKclg0OODV3TTh2NjdFliwg ImZUT
Xczd mtrRUX3TDFYTnVZSzhIN3pCSONIdV91aWY2MFNsRzFweVhJWEILCAiaWdnNOg1Z
mdyZUJFTUIFa0U1Q2tib TIZUXV3RE psVFIvS 1JpcDA4ZFI)YylsICJOcF VObDcwaHBVX
3hucnZaaTBHaEdvUlIxam10MXpZZ3Z2NUIZMEF4NOtjl10sICJhZ GRyZXNzljogey Jfc
2QiOiBbImdxQjVrbUF3eXJ50DhhSGphQWVPLWTWDZKT01hb2p1altzaG\VWwMzhPMGMiL
CAidk9ubFI0Y2pyODcyZIAzV2E3NU96bDdjLTZf TUIWZEIVTnR3TEtLeF p3MCIsICJI30
EludnhzUFhkS29v d3VWeHICTWdsMWI5X1TlyY)ZYcGEZT 11PSWpnUXIvII19fSwgimlhd
CI6IDETMTYyMzkwMjlsICJleHAIQIAXNTE2MjQ3MDly LCAi c2RfZGINZXNOX2RIcml2Y
XRpb25fYWxnljogInNoYSOyNTYifQ. TUHEPILLUXOT51jH3g g-3C-ZidWzsB9Un-VxmM
VdQtTo LLhwDTB6HJtt15p43yCXTzdpiZxtDI6frO7Tp0Dy_Umg3Q5_FxFj4WHnsVuVzu
ASUBCFIGPiexgHID3w1G2hgepBS8DyQ5bA_p5kN_tKJVo P1xWhcQujRI8KkkEKQsRia4F
hrBIdI8f4 1wgu_ipPgh1Ix4BVI7GJCIZNx94nWPT7JUFkI6Y6JkahLf3S6gBOMxtmLAe
Y0qgkuz8VeOZNf|_CDog 55k VTkArorfoL6D6TEjl__-w6Yy UOPnIRIXJOwrYfoyhNI8LK
AP38QYMpdR7z_rsvHpQHzFAPTmevnHDg

~WyJHTzByM;ZuTy1pVzUwWmNBbO9pb EZ3liwglmd pdmVuX25hb WUiLCAITWF4I10
~WyJjU2xiUjEZNWkwTmpoc291TXhyampnliwgImZhbWIiseVOuYW1lliwglk11c3RIcmThbm4iX

Q

~Wy v SERONDNWd 3VocG84b XphcHJNQ2N3liwgImVtYWIsliwgIm11c3RlcmThbm5AZ XhhbXB
sZS5jb20iXQ
~WyJyR2MwS3RZNIdtZmx5d1RUSOVXSUVRIiwgInNOcmVIdFOhZGRyZXNzliwglk11c3RIcnNOc
i4gMiMiXQ

~WyJwRTFENUXgtMnRIMIh3Q19IUUNGbjRnliwgimxvY2FsaXR5liwg Ikllcmxpbild
~WyJUSTET1TThHNVVJeFBpV05aLVZMWUIJBIliwglmNvdW50cnkiLCAIREUIXQ

- Done!
25

Design Principles

SD-JWT
Complexity Selective disclosure, as simple as possible
Algorithms Standard cryptography: JWS Signature + Hash function
Format JWT & JSON
Security Security-by-design
Easy to understand & verify
Hardware binding possible
Cryptographic agility
Availability Widely-available JWT libraries can be leveraged
Already five independent implementations
Use Cases Universal (beyond identity use cases)

26

Issuer

Issuance

v

End-User

(Holder)

Presentation

Verifier

JWT
plain-text claims
+ hashed Disclosures

by Issuer

Disclosures
salt + claim name + claim value

27

Issuer

Issuance

v

End-User

(Holder)

Presentation

Verifier

JWT
plain-text claims
+ hashed Disclosures

JWT
plain-text claims
+ hashed Disclosures

v signed

b

Issuer

v signed

b

Issuer

Disclosures
salt + claim name + claim value

Selected Disclosures
salt + claim name + claim value

3{_'_'_'__'__'______________'_'____'_ ___________

28

Issuer

Issuance

v

End-User

(Holder)

Presentation

Verifier

JWT
plain-text claims
+ hashed Disclosures

by Issuer

JWT
plain-text claims
+ hashed Disclosures

) —
by Issuer

SD-JWT

Disclosures
salt + claim name + claim value

SD-JWT+KB

Selected Disclosures
salt + claim name + claim value

3{_'_'_'__'__'______________'_'____'_ ______

Bin

non
aud

etc.

Key-

sd

ding JWT

ce
ience
hash

holder’s public key

-1 V signed
»_by Holder

29

Any Element may be Selectively Disclosable

in sub-structures
{

"iss": "https://issuer.example.com"”,
"iat": 1683000000,
"exp": 1883000000,
"sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
"address": {
"sd": [
"6vh9bq-zS4GKM_7GpggVbYzzu600 GXrmNVGPHP75Ud0",
"9gjVuXtdFROCgRitNcGUXmF65rdezi_6Er_j76kmYyM",
"KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88"
1 array elements
"country": "DE" {

} o . "iss": "https://issuer.example.com”,
_sd_alg": "sha-256 "iat": 1683000000,
} "exp": 1883000000,
"sub": "user_42",
"nationalities": [
{
"..": "pFndjkZ_VCzmyTabUjlZo3dh-ko8alKQcIDIGzhaVYo"
12
{

".." "7CfeJkPudry3lcbwHgeZ8khAv1U10SlerPOVkBIrWZ0"
}
I
" sd_alg": "sha-256",
"enf": .}
}

Recursive Selective Disclosure for Fine-Grained Release

{
"sd" [

"HvrkKX6fPVOvIK_yCVFBiLFHsMaxcD_114Em6VT8x1lg*” <«
Il
"iss": "https://issuer.example.com’,
“jat": 1683000000,
"exp": 1833000000,
"sub": "6c5c0a49-b589-431d-bae7-219122a%ec2c",
" sd_alg": "sha-256",
"enf"; {

jwk: {

"kty": "EC",

[
"Qg_064zqAxe412a108iroA",

} “address",
b
} "_sd" [
"6vh9bq-zS4GKM_7GpggVbYzzu60 OGXrmNVGPHP75Ud0",
"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
"KURDPh4ZC19-3tiz-Df39V8eidy 1oV3a3H1Da2N0g88",
"WN9r9dCBJBHTCsS2jKASXTIEYW5m5x65_Z_2ro 2jfXM"
]
}
]

» WyJRZ19PNjR6cUFAZT QxMmExMDhpcm9IBliwglmFkZHJIc3MiLCB7119z2ZC16
IFSINNZoOW JXLXp TN EdLTV83R3BnZ 1ZiWXp6dT ZvTOdYcm1OVkdQSFA3NVVk
MClsICI5Z2pWdVhOZEZSTONnUnJOTmMNHVV htRjY 1cmRlemIfN kVyX203Nmtt
WXINIliwglktV UkRQaDRaQzE5LTN 0aXotRGYzOVY4ZW IkeT FvVjNhMOgxRGEy
TjBnODgiLCAiV04 5¢jlkQOJKOEhUQ3NTMmpLQVN4VGpFeVc1bTVANV fWI8y
cm8yamZYTSJdfVO

decode

_ - =¥ WyJISThaV205UW5LUHBOUGVOZWS5IZGhRIiwgimNvdW 50cnkiL CAiREUIX

-
-
-
-

decode

[
"el8ZWm9QnKPpNPeNenHdhQ",

"country"”,
"DE"

36

Security Considerations (I)

Signature verification: Verifiers could verify the signature inadequately/partially and accept
tampered credentials

Mitigating measures:
e Simple processing model, specified in detail in the standard
e Established algorithms enable the use of existing implementations

Manipulation of disclosures: If the hashes of the disclosures are not checked by the verifier,
manipulated plaintext values could be accepted.

Mitigating measures:
e Design: Generally no assignment to the document possible without hash calculation

e Processing model specified in detail

37

Security Considerations (ll)

Missing check of key binding: Verifiers could accept credentials without key
binding

Mitigating measures:
e Different formats with/without key binding
e Differentiation in terminology

e Detailed discussion in the standard

38

Privacy Considerations

RP-RP unlinkability: Several presentations of the same credential can be
traced back to the same person (due to the same hash values).

Mitigating measures:
e Single use: Credentials are always issued in groups - same data, different salt

values. Each individual credential is then only used once.

e Solution in the making: ZKP (zero-knowledge proofs)

39

SD-JWT VC

SD-JWT VC

Credentials based on SD-JWT VC
using an extensible data model

IETF Draft: https://datatracker.ietf.org/doc/draft-ietf-oauth-sd-jwt-vc/

Daniel Fett
Oliver Terbu
Brian Campbell

41

Defined Claims

e iss — The Issuer of the Verifiable Credential. The value of iss MUST be a URI.
e nbf — The time before which the Verifiable Credential MUST NOT be accepted before validating.
e exp — The expiry time of the Verifiable Credential after which the Verifiable Credential is no longer valid.

e cnf — Contains the confirmation method identifying the proof of possession key. For proof of cryptographic Key Binding,
the Key Binding JWT in the presentation of the SD-JWT MUST be signed by the key identified in this claim.

e vct — The type of the Verifiable Credential, e.g., https://credentials.example.com/identity _credential.
e status — The information on how to read the status of the Verifiable Credential.

e sub — The identifier of the Subject of the Verifiable Credential. The Issuer MAY use it to provide the Subject identifier
known by the Issuer. There is no requirement for a binding to exist between sub and cnf claims.

e jat — The time of issuance of the Verifiable Credential. See [RFC7519] for more information.

44

mdoc 101

mdoc/MSQO basics

e Defined in the ISO/IEC 18013-5 (https://www.iso.org/standard/69084.html)

o focuses on mobile driving licence scenarios but could be used in other use-cases,
o -Includes a selective disclosure mechanism based on the salted hash values

e Expressedin CBOR
o because NFC/BLE
o Not originally defined as a “credential format”

51

MSO (issuer-signed object) structure

MobileSecurityObject = {

"digestAlgorithm" : tstr, ; Message digest algorithm used

"valueDigests" :ValueDigests, ; Array of digests of all data elements
"deviceKey" : DeviceKey, ; Device key in COSE_Key as defined in RFC 8152
"docType" . tstr, ; DocType as used in Documents

"validityInfo" > validity of the MSO and its signature

Blinds claim name by using “digestID”

52

mdoc response (presentation) structure

IssuerSignedltem = {
"digestID" : uint, ; Digest ID for issuer data authentication
"random" : bstr, ; Random value for issuer data authentication
"elementldentifier" : DataElementldentifier, ; Data element identifier
"elementValue" : DatakElementValue ; Data element value

How to send this mapping of direstID, random (salt), element name and claim
value during issuance is not defined.

53

mdocs: other facts

e predicates: 'age over NN claim

e unlinkability: issue the same copy of the credential with different User public
key that can be used per verifier (to prevent RP-RP’ unlinkability)

e refresh: can be only the issuer’s signature over hashes, or the entire “mdoc”

54

Protocol Layer Interoperability is Crucial

There was a need for the interoperable protocol layer that can support all of the credential
formats, key resolution mechanisms and trust frameworks.

Credential Credential
Issuance Presentati

_‘
—
= ————

d Wallet § Verifier

g
—‘~
g
~
—
-

/

User Interactions (authorization, consent, etc.)

\/

55

Problems we identified and how we solved them

Problem

Solution

A lot of entirely new Protocols. (Hard to get
security right, steep learning curve)

Building upon currently widely used protocols:
OAuth 2.0 and OpenlD Connect. (Secure, already
understood)

No clear winner among Credential Formats

Designing a protocol agnostic to the Credential
Formats.

No one way to do key management.

Designing a protocol agnostic to the key
management mechanism.

Participating entities cannot typically
establish trust upfront, using traditional
mechanisms.

Flexibility in Trust Management. Third Party Trust.

56

OID4VC: OpenlD for Verifiable Credentials set of
protocols

OpenlID for Verifiable OpenlD for Verifiable
Credential Issuance Presentations

OpeniD4VC High Assurance Interoperability (HAIP)

Issuer/

Verifier/
— —
Provider Wallet
4

User Interactions

\/

OID4VC set of protocols also includes Self-Issued OpenlID Provider v2 (SIOPv2) and OpenlD4VP
over BLE.

Open Source libraries

©

Microsoft

>

Walt.id Sphereon

Kotlin: Transcript: Swift: Rust:
github.com/walt- tinyurl.com/2de634n tinyurl.com/2jejntsp github.com/spruceid/
id/waltid-ssikit a oidc4vci-rs
— — Kotlin: —
Kotlin Multiplatform: shortur.at/yUnkA tinyurl.com/4bd5p3b Rust:
shorturl.at/XtE Xw I — tinyurl.com/rp35fsc8
shortur.at/MHW1z

EBSI

©

Impierce
Technologies

Javascript:

tinyurl.com/y945s5x
u

Rust:
github.com/impierce/
openid4vc

@

Trustbloc Italian

Government

Typescript: Go: Python: Dart:

github.com/animo/p github.com/trustbloc/ tinyurl.com/56ft5m34 github.com/TalacDA
aradym-wallet vcs I — O/AltMe

I Python:

github.com/trustbloc/ shortur.at/Gxd2D

wallet-sdk

Kotlin/ Swift/
ReactNative:
github.com/mosip/tu
vali

@

EUDI
Reference

Wallet

Implementation:
shortur.at/rD7tf

58

https://github.com/walt-id/waltid-ssikit
https://github.com/walt-id/waltid-openid4vc
https://github.com/Sphereon-Opensource/SIOP-OpenID4VP
https://github.com/Sphereon-Opensource/OpenID4VCI-client
https://github.com/Sphereon-Opensource/ssi-sdk
https://github.com/microsoft/VerifiableCredential-SDK-Android
https://github.com/microsoft/VerifiableCredential-SDK-iOS
https://github.com/spruceid/oidc4vci-rs
https://github.com/spruceid/oidc4vci-issuer
https://api-pilot.ebsi.eu/docs/libraries
https://github.com/impierce/openid4vc
https://github.com/animo/paradym-wallet
https://github.com/trustbloc/vcs
https://github.com/trustbloc/wallet-sdk
https://github.com/italia/eudi-wallet-it-python
https://github.com/italia/eudi-wallet-it-pid-provider/tree/v.1.1.1
https://github.com/TalaoDAO/AltMe
https://github.com/mosip/tuvali
https://github.com/eu-digital-identity-wallet/.github/blob/main/profile/reference-implementation.md

OpenlD4VC Security Analysis

»Security and Trust in OpenlD for Verifiable
Credentials” document describes the trust
architecture in OpenlD for Verifiable
Credentials specifications, outlines security
considerations and requirements for the
components in an ecosystem

(1)
@

Master Thesis ,,OpenlD for Verifiable
Credentials: formal security analysis using
the Web Infrastructure Model“ published:

59

Interoperability Events (selected)

Potential + Follow -
2,541 followers

-
2w - Edited - ®

#InteropWarsawEvent in a nutshell

- 2 days of intense work 2

«+ 140 participants

- 1 playground compatible with SDJWT and MDOC 8

« 159 interoperability tests carried out

- 15 digital identity wallets tested in peer-to-peer 11 B8 B¥ g wa % I 4= 10 25 e bl
-

« 20 user services tested

And a lot of knowledge provided and received, thanks to everyone who came with a
single goal in mind: to make EU digital identity wallets a reality in the very near
future!

Stay tuned for updates on the next tests.

#Potential4EUDIW #Digitalldentity #Interoperability EU Digital Identity Wallet

LSP POTENTIAL

Digital Identities -
Mobile Driver's
License (mDL)

NIST National Cybersecurity
Center of Excellenceyz

18013-7 Annex B with vanilla
OpenlID4VP with mdocs

HAIP OpenlD4VP over the DC
APl with mdocs

ISO/IEC SC17 WG10

Interoperability events (mDL)

- 18013-7 Annex B with vanilla
OpenID4VP with mdocs

- HAIP OpenID4VP over the DC
API with mdocs

60

https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://www.nccoe.nist.gov/projects/digital-identities-mdl

Next: OpenlD4VP and OpenlD4VCI

Exd

Open|
with
dlaim:
User.
based]
Provi

Now,
overt
cann
Users|
sharir|
know
portat
who |

The of
for Vel
as Sef
condy
and
150

worki

data |

The
intere:
crede
Itis in
using
other

First,
trustr]

Next,
into d
howt
flexibil

" itps:

Exocutive Sur
Terminology
Koy Takoaway}
Verifiable Cred
Benefitof T
Shift in the
Further Ady]
Demysi
Various Sc

Business Drivd

Use-Cases
VC Data s
VC Data M
Case)
ISO/IEC 181
FHIR Data

Technical 101
Demystifyin
Extending
SIOP v210)
OIDG4VP 1
OpeniDaC

AuthoriZ
Pre-Aut
Credent
Key Featurd

Conclusion
References

Appendix

Examples]

1sonec]
AnonCr

OpenlD

OpenlD for Verifiable
Credentials

A Shift in the Trust Model Brought by
Verifiable Credentials

June 23, 2022

Version: 2" Editor's Draft

Lead Editors: Kristina Yasuda, Torsten Lodderstedt, David
Chadwick, Kenichi Nakamura, Jo Vercammen

Follow QR-Code for the
“OpenlD for Verifiable
Credentials” whitepaper

61

https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf

OpenlD for Verifiable
Presentations

62

OpenlD for Verifiable Presentations: Highlights

Voting for Final 1.0 starting in few weeks

Designed for highest degree of privacy (e.g. wallet does not need a backend to store and
transmit Credentials)

Various Security levels can be supported

Easy of use for developers

Presentation of multiple Credentials in one response supported

Various Wallet deployment models supported

Xm) Q@ =

Various trust frameworks and credential formats can be supported

Same_de | End-User | | Wallet | | Authorization Server | | Credential Issuer |
Fommmmmmm e + Fommmmmm— - + B et + Fom e m e +

(1a) End-User
selects

| |
(1b) Credential Offer [|
Credential---> | |

(credential type)

I
(2) Obtains Issuer's [
Credential Issuer |

I

metadata

I

| (3) Authorization
[Request

I (type(s) of

| Credentials to
| be issued)
I

I

I

I

I

|
|
|
|
|
|
|
|
|
|
|
|
I
(4) Authorization |
Response (code) |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

| (5) Token Request
[(code)

| Token Response
[(Access Token)

(6) Credential Request [
(Access Token, proof(s))]|

I I
| Credential Response |
| with Credential(s) OR |
| Transaction ID |
I

Cross-device flow

Fmmm + - + R T
| End-User | | Verifier | | Wallet
| | | (device A) | | (device B)
tmmmmm————————— + - + e
|
| Interacts

|
I
(1) Authorization Request
(Request URI) |

|

|

|

ISR e e >

|

| (2) Request the Request Object
e — |
| (2.5) Respond with the Request Object

| (DCQL query)

| === e e e >

End-User Authentication / Consent

| (3) Authorization Response as HTTP POST
| (VP Token with Presentation(s))
|

Presentation
Request

The following is a non-normative example of an Authorization Request with a Request Object as value:

GET /authorize?
client_id=redirect_uri%3Ahttps%3A%2F%2Fclient.example.org%2Fcb

&request=eyJrd. ..

Where the contents of the request query parameter consist of a base64url-encoded and signed (in the
example with RS256 algorithm) Request Object. The decoded payload is:

{

"iss": "redirect_uri:https://client.example.org/cb",
"aud": "https://self-issued.me/v2",
"response_type": "vp_token",
"client_id": "redirect_uri:https://client.example.org/cbh",
"redirect_uri": "https//client.example.org/ch",
"dcql_query": {

"credentials": [

{

"id": "some_identity_credential”,
"format": "dc+sd-jwt",
"meta": {
"vct_values": ["https://credentials.example.com/identity_credential"]
e
"claims": [
{"path": ["last_name"]},
{"path": ["first_name"]}

}
]
},
"nonce": "n-0S6_WzA2Mj"
}

68

DCQL

Q u ery The following is a non-normative example of a DCQL query that requests a Credential of the format dc+sd-
jwt with a type value of https://credentials.example.com/identity_credential and the claims
last_name, first_name, and address.street_address:

{
"credentials": |
"id": "my_credential”,
"format": "dc+sd-jwt",
"meta"”: {
"vct_values": ["https://credentials.example.com/identity_credential"]
}
"claims": [
{"path": ["last_name"]},
{"path": ["first_name"]},
{"path": ["address", "street_address"]}
}
]
}

69

Presentation Response

The following is a non-normative example of an Authorization Response when the Response Type value in the
Authorization Request was vp_token:

HTTP/1.1 382 Found
Location: https://client.example.org/cb#
vp_token=. ..

8.1.1. Examples

The following is a non-normative example of the contents of a VP Token containing a single Verifiable
Presentation in the SD-JWT VC format after a request using DCQL like the one shown in Section 7.4 (shortened
for brevity):

{
"my_credential": ["eyJhbGci...QMA"]

70

Digital Credentials API

Background

Demo

Components

The Digital Credentials API
Cross-Device Presentation
Issuance

Q&A

74

Background

The problem

digital credential presentation on the web
currently relies on primitives such as custom &
schemes and QR codes which have 1@ e
poor security properties and an even ; e
worse user experience

S eEWA Wallet

Lissi wallet

° Sphereon Wallet

€t Presentation

eeeeeeeeeee

@ WalletEvo

76

tcslides.link/dc-customschemes

What is a custom URI scheme?

A custom identifier that an app can
register with an operating system
with the goal of being invoked from
other contexts, such as other apps or
from the web.

In many cases, these identifiers are

not globally unique, and may be
shared.

CUSTOM SCHEMES IN THE WILD

mdoc://
openid4vp://
eudi-wallet://
eudi-openid4vp://
mdoc-openid4vp://

openid-credential-offer://

77

https://tcslides.link/osw-3pc

Issues w/ custom schemes

Complete action using
invocation from insecure contexts Personal

on-device phishing via app selection

p—
=

no requestor origin / identity

not standardized & not guaranteed

context switch during app launch

no graceful fallback for errors poor UX for credential selection

(users don’t understand wallet selection)

78

Learnings from passkeys

users think about accounts and
credentials, not authenticators

caller context is key

cross-device authentication
needs to be secure, easy, and
resistant to phishing

On

Google Password Manager

Choose a saved passkey for
webauthn.io

Tim (Work)
Android Vault

Tim
Google Password Manager

Sign-in options

79

tcslides.link/wicg-dc

Design Principles

e Separate the act of requesting from the specific protocol, allowing flexibility in
both the protocol and credential formats. This way, the pace of changes in
browsers won't hinder progress or block new developments.

e Require request transparency, enabling user-agent inspection for risk analysis

e Assume response opacity (encrypted responses), enabling verifiers and
holders to control where potentially sensitive Pll is exposed

e Prevent website from silently querying for the availability of digital credentials
and communicating with credential providers without explicit user consent

80

https://tcslides.link/osw-3pc

From the User perspective

Who is
asking?

What are
they asking
for?

Share info with
digital-credentials.dev?

credential-centric

Who can
provide it?

81

O

emo Later

82

Layering

CREDENTIAL
PROTOCOLS FORMATS

OpeniD

Verifiable
Presentations

W3C (OID4VP) SD-JWT VC

Digital Verifiable Credential

Credentials Issuance W3C VCDM
AP (OID4VCI)

others?]

84

Roles and Responsibilities

Browser OS Platform
(web platform) (app platform)

<<<<<< Permission >>>>>>

Credential selector

API surface (presentation)
Basic request Provider selector
validation (issuance)
Secure context Cross-device
validation transport
Interaction with Native app
OS platform requests

Credential Provider
(app/wallet)

Holder consent

Holder verification

Presentation &
Issuance Protocols

(verifier / RP authentication,
selective disclosure, signing,

encryption)

Key management

85

Components: Same Device

Verifier: website or native app
Client: web browser or app instance
App Platform: underlying OS
Identity Wallet: native app

86

Layers: Same Device (Web Verifier) teslides link/dc-layers

Verifier Backend

e m==m=- .:
' verifier
: Site

Wallet
Mative App

[App Platform)

App Platform APls

App Platform (OS Platform Services)

LOCAL DEVICE

standardized API (W3C) platform-specific function AP

protocol-specific
standardized API (Other) platform-s pecific web translation API 87

https://tcslides.link/osw-3pc

Layers: Same Device (App Verifier) teslides link/dc-layers

Verifier Backend

Wallet
MNatve App

Verifier
Mative App

(App Platfarm) (App Platfarm)

App Platform APls

App Platform (OS Platform Services)

LOCAL DEVICE

standardized API (W3C) platform-specific function API

protocal-specific
standardized API (Other) platform-specific web translation API 88

https://tcslides.link/osw-3pc

Components: Cross-Device

Remote App Platform: underlying OS on remote device

Remote Identity Wallet: native app on remote device

89

Layers: Cross-Device (Web Verifier)

Verifier Backend

App Platform APls

Wallet
Mative App
(Apn Platiorm)

App Platform

| LOCALDEVICE

standardized API (W3C) platform-specific function AP

(0S Platform Services)] TP 1 I

App Platform
(OS5 Platform Services)

REMOTE DEVICE

standardized APl (Other) platform-specific web translation API

protocol-specific

tcslides.link/dc-layers

90

https://tcslides.link/osw-3pc

Layers: Cross-Device (App Verifier)

x Browser '\ !

icui f” (Web Platform) "%

Digital ' e ;
Credentials 14 Verifier
API : Site

standardized API (W3C)

Verifier Backend

» A

App Platform APIs

FIDO CTAP 2.2

tcslides.link/dc-layers

App Platform
(OS Platform Services)

LOCAL DEVICE

................................

Wallet
Native App

(App Platform)

App Platform APIs

App Platform

(OS Platform Services)

platfarm-specific function AP

standardized API (Other)

plattorm-specific web translation API

REMOTE DEVICE

protocol-specific

91

https://tcslides.link/osw-3pc

The API teslides Jink/dc-api

let cred = await
navigator.credentials.get ({
signal: controller.signal,
digital: {
requests: [{
protocol: "openid4vp-v1-unsigned”,
data: { ...request }
}]
}
+) s

https://tcslides.link/osw-3pc

Issuance

® [n scope now!

95

Get Involved

Prototype with Android and Chrome!

Instructions:

Short link: tcslides.link/dc-androidprotoype

Full link

96

https://github.com/WICG/digital-credentials/wiki/HOWTO%3A-Try-the-Prototype-API-in-Chrome-Android

OpenlD for Verifiable
Credential Issuance

97

OpenlD for Verifiable Credential Issuance: Highlights

Status: WG Last Call expected to start this week

|‘ Easy to use for developers
@ Various Security levels can be supported
./il Various business requirements and user-experiences can be achieved

* Various trust frameworks and credential formats can be supported

OAuth-protected API

User Authentication/ldentification + Consent

s s ~
[\
[(0) Wallet requests & User authorizes I
I (credential issuance I
I I
'\ (1) access token(, refresh token) "
Credential -
ssuer R 7 Wallet
(@ Wallet requests credential
Q‘ (3) Credential is issued [Z&

Alice

Credential issuance

OpenlD4VCI can be used in conjunction with any other OAuth extension RFC

99

Authorization Code Flow

- ™
Unlock App & @ Device Authenticator @ @
(Q)EAA Provider Add Data? Wallet
Information
) T
(Q)EAA Provider)
FacelD

Identify with Wallet

G

A /

(QEAA

© Add

() Decline

Close

® OO OO0

100

Pre-Authorized Code Flow

O = O
-
(Q)EAA Provider :‘:‘J l_ j
(m | m| (mm
(m e =
L J
D
/
O

101

Authorization [LEndlser |1 Welet |) Authordzation/enver || | Credential) Tester |
code flow s

selects

| |

| |

(1b) Credential Offer | |
Credential---> | |

(credential type)

I

(2) Obtains Issuer's
Credential Issuer |
metadata |

I

| (3) Authorization
| Request

| (type(s) of

| Credentials to
| be issued)
|

I

|

I

|

|
|
|
|
|
|
|
|
|
|
|
|
I
(4) Authorization |
Response (code) |
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| (5) Token Request
| (code)

| Token Response
| (Access Token)

(6) Credential Request
(Access Token, proof(s))|

I I
| Credential Response |
| with Credential(s) OR |
I I
I

Transaction ID 104

Pre_ End-User | | Wallet | | Authorization Server | | Credential Issuer

Authorized
Code flow

I |
| (1) End-User provides |
| information required |
| for the issuance of |
| a certain Credential |

(2) Credential Offer
(Pre-Authorized Code) |

(3) Obtains Issuer's |
Credential Issuer |
metadata |

I |
I [
I [
| (4) Token Request |
| (Pre-Authorized Code, |
| tx_code) |
|
[
[

Token Response
(access_token)

(5) Credential Request |
(access_token, proof(s))|

| Credential Response |
| (Credential(s)) |
| €= mmmm e m e | 105

Credential Offer

When the Credential Offer is displayed as a QR code, it would usually contain the Credential Offer by reference
due to the size limitations of the QR codes. Below is a non-normative example:

openid-credential-offer://?

credential_offer_uri=https%3A%2F%2Fserver%2Eexample%2Ecom%2Fcredential-offer
%2FGkurKxf5TQY-mnPFCHgWOMiZi4VS138cQ0_V7PZHAdM

Below is a non-normative example of a response from the Credential Issuer that contains a Credential Offer
Object used to encourage the Wallet to start an Authorization Code Flow:

HTTP/1.1 280 OK
Content-Type: application/json

{
"credential_issuer": "https://credential-issuer.example.com",
"credential_configuration_ids": [
"UniversityDegreeCredential”
] !
"grants": {
"authorization_code": {
"issuer_state": "eyJhbGciOiJSUBEt...FYUaBy"
}

}

} 106

Authorization
Request

Below is a non-normative example of an Authorization Request provided by the Wallet to the Authorization
Server using the scope UniversityDegreeCredential and in response to an HTTP 302 redirect (with line

breaks within values for display purposes only):

GET /authorize?
response_type=code
&scope=UniversityDegreeCredential
&resource=https%3A%2F%2Fcredential-issuer.example.com

&client_id=s6BhdRkqt3
&code_challenge=E9Melhoa20wvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

&code_challenge_method=S256
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Host: server.example.com

107

Authorization
Response

Below is a non-normative example of a successful Authorization Response:

HTTP/1.1 3062 Found
Location: https://Wallet.example.org/cb?
code=Sp1lx10BeZQQYbYS6WxSbIA

- PAR (Pushed Authorization Request can be used too)

108

Token
Request

Below is a non-normative example of a Token Request in a Pre-Authorized Code Flow (without Client
Authentication):

POST /token HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded

grant_type=urn:ietf:params:oauth:grant-type:pre-authorized_code
&pre-authorized_code=Splx10BeZQQYbYS6WxSbIA

&tx_code=493536
&authorization_details=%5B%7B%22type%22%3A%20%220penid_credential%22%2C%20%22

credential_configuration_id%22%3A%20%22UniversityDegreeCredential%22%7D%5D

- "authorization_details’ or 'scope” parameter

109

Token
Response

Below is a non-normative example of a Token Response when the authorization_details parameter was
used to request issuance of a certain Credential type:

HTTP/1.1 2068 OK
Content-Type: application/json
Cache-Control: no-store

{
"access_token": "eyJhbGci0iJSUzITNiIsInR5cCI6Ikp..sHQ",

"token_type": "Bearer",
"expires_in": 86400,
"authorization_details": [

{
"type": "openid_credential”,
"credential_configuration_id": "UniversityDegreeCredential”,
"credential_identifiers": ["CivilEngineeringDegree-2023", "ElectricalEngineeringDe
}

]
}

110

Credential
Request

Below is a non-normative example of a Credential Request for a Credential in [ISO.18013-5] format using the
Credential configuration identifier and a key proof type jwt:

POST /credential HTTP/1.1

Host: server.example.com

Content-Type: application/json

Authorization: Bearer czZCaGRSa3F@MzpnWDFmQmFeM2JW

{
"credential_configuration_id": "org.is0.18013.5.1.mDL",
"proofs": {
"jwt [
"eyJraWQiOiJkaWQ6ZXhhbXBsZTplYmZ1lYjFmNzEyZWJjNmYxYzI3NmUxMmVjMjEva2V5cy8xIiwiYWxnIj
h

111

Credential
Response

Below is a non-normative example of a Credential Response in an immediate issuance flow for multiple
Credential instances in JWT VC format (JSON encoded) with an additional notification_id parameter:

HTTP/1.1 2086 0K
Content-Type: application/json

{
"credentials": [
{
"credential”: "LUpixVCWJkBeOt4CXQel1NXK. .. .WZwmhmn90Qp6YxX6a2L"
{,
"credential”: "YXNkZnNhZGZkamZqZGFza23....29tZTIzMjMyMzIzMjMy"
}
|
"notification_id": "3fwe98js"
}

- There is also a deferred issuance endpoint

-HAIP
High Assurance
nteroperability Profile

116

HAIP was restructured

(D

W N =

Not be limited to SD-JWT VC, mdoc added

To be a collection of 4 profiles that can be used independently:

Issuance of IETF SD-JWT VC using OpenlID4VCl;
Presentation of IETF SD-JWT VC using OpeniD4VP;

Presentation of IETF SD-JWT VC using OpeniD4VP over W3C
Digital Credentials API;

Presentation of ISO mdocs using OpenlD4VP over W3C Digital
Credentials API;

[coming] Presentation of ISO mdocs using OpenlD4VP;
[coming] Issuance of ISO mdocs using OpenlD4VCI

117

OpenlD Certification Program Overview

= A light-weight, low-cost, self-certification program to serve members, drive adoption
and promote high-quality implementations
= |dentity Providers launched in early 2015
= Relying Parties launched in late 2016

= FAPI profiles launched in 2019
= Each certification makes it easier for those that follow and helps make subsequent

deployments more trustworthy, interoperable and secure
= All certified implementations are openly listed at

https://openid.net/developers/certified/

123

https://openid.net/developers/certified/

The process

For example to test a wallet for verifiable presentations:

N oS ok 0 bd -

Wallet provider runs the tests either locally or on our cloud server

The tests check if the wallet responds correctly to both positive and negative tests
Any failures that require fixing are surfaced to the tester

The logs & statement of compliance are submitted to OIDF

Certification fee is paid

OIDF publishes results after checking logs/etc are correct

“OpenlID Certified” mark can now be used by certified entity

124

Testing OpenlD VC specifications

Fairly good tests OpenlD for Verifiable Presentations
Tests wallets & verifiers, supports ID2 and ID3 of spec,
12+ wallets/verifiers tested & passed
Continuing to build out the tests

OpenlD for Verifiable Credential Issuance
Initial alpha tests available
Targeting ID3 (Dec 2024) of the specification
Access to a compliant issuer would really help us

125

Conformance tests support this process

e OpenlD for VCs Test Suite now includes: ﬂ EL :
Issuers using OpenlD for Verifiable Credential Issuance + HAIP g'ges pefrres .

— Implementers Draft 2 (alpha) El thyyt 't % o8
- Wallets using OpenlD for Verifiable Credential Issuance + HAIP))

- Implementers Draft 2 (alpha)

Wallets using OpenlID for Verifiable Presentations + HAIP
— Implementers Draft 2
— Implementers Draft 3 + draft 24
— Implementers Draft 3 + draft 24 + Browser DC API

Verifiers using OpenlID for Verifiable Presentations + HAIP
- Implementers Draft 2

— Implementers Draft 3 + draft 24 126

OpenlD For Verifiable Presentations — Current Status

Testing latest Implementer’s Draft ID2 & ID3

https://openid.net/specs/openid-4-verifiable-presentations-1 0-1D2.html

https://openid.net/specs/openid-4-verifiable-presentations-1 0-24.html (tests for -28 expected during June)

response_type=vp token

client_id scheme redirect_uri or xX509 san_dns

Direct Post or Direct Post JWT (encrypted response)

Cross device or same device

Traditional (custom url scheme) or (for testing wallets) W3C DC API
request_uri, request object by value or plain request

SD-JWT with SD-JWT VC, HAIP or ISO mDL
presentation_definition or DCQL

127

https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-ID2.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html
https://openid.net/specs/openid-4-verifiable-presentations-1_0-24.html

OpenlD For Verifiable Presentations — Roadmap

Further validation in current test
E.g. SD-JWT signature not yet checked

More client_id _scheme

More negative tests

Suggestions welcome

Please tell me what features you are using

128

OpenlD For Verifiable Issuance — Current Status

Testing latest Implementer’s Draft ID3

Focusing on testing current HAIP draft

Some non-HAIP features work

Alpha tests for both wallets & issuers

129

Demo

(Conformance testing Google’s Wallet that supports DC API)

Q&A

	Default Section
	Slide 0: Verifiable Credentials: Concepts to Practice
	Slide 1: Agenda

	background vcs
	Slide 2: Context
	Slide 3: Identity Federation
	Slide 5: Verifiable Credentials: Benefits
	Slide 6
	Slide 7: Renting a car easily with the EUDI Wallet

	Tech stack overview
	Slide 8: Main* Standards for Data Formats and Protocols
	Slide 9: Main* Standards for Data Formats and Protocols
	Slide 10: Standards Bodies 101
	Slide 11: Credential Formats
	Slide 12: Protocols
	Slide 13: Other Mechanisms
	Slide 14: Security

	demo 1 - DE EUDIW
	Slide 15: Demo

	sd-jwt
	Slide 16: Credential Formats
	Slide 17: SD-JWT & SD-JWT VC 101
	Slide 18: IETF SD-JWT & SD-JWT VC standards
	Slide 19: SD-JWT
	Slide 20: Selective Disclosure
	Slide 21: SD-JWT in 5 Simple Steps
	Slide 22
	Slide 23: SD-JWT in 5 Simple Steps
	Slide 24
	Slide 25
	Slide 26: Design Principles
	Slide 27
	Slide 28
	Slide 29
	Slide 35: Any Element may be Selectively Disclosable
	Slide 36: Recursive Selective Disclosure for Fine-Grained Release
	Slide 37: Security Considerations (I)
	Slide 38: Security Considerations (II)
	Slide 39: Privacy Considerations
	Slide 40
	Slide 41: SD-JWT VC
	Slide 44: iss — The Issuer of the Verifiable Credential. The value of iss MUST be a URI. nbf — The time before which the Verifiable Credential MUST NOT be accepted before validating. exp — The expiry time of the Verifiable Credential after which the Verif

	mdoc
	Slide 50: mdoc 101
	Slide 51: mdoc/MSO basics
	Slide 52: MSO (issuer-signed object) structure
	Slide 53: mdoc response (presentation) structure
	Slide 54: mdocs: other facts

	Protocol layer interop
	Slide 55
	Slide 56: Problems we identified and how we solved them
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

	OpenID4VP
	Slide 62: OpenID for Verifiable Presentations
	Slide 63: OpenID for Verifiable Presentations: Highlights
	Slide 66: Same-device flow
	Slide 67: Cross-device flow
	Slide 68: Presentation Request
	Slide 69: DCQL Query
	Slide 70: Presentation Response

	DC API
	Slide 74: Digital Credentials API
	Slide 75: Background
	Slide 76: The problem
	Slide 77: What is a custom URI scheme?
	Slide 78: Issues w/ custom schemes
	Slide 79: Learnings from passkeys
	Slide 80: Design Principles
	Slide 81: From the User perspective
	Slide 82: Demo Later
	Slide 83: Layering
	Slide 84
	Slide 85: Roles and Responsibilities
	Slide 86: Components: Same Device
	Slide 87: Layers: Same Device (Web Verifier)
	Slide 88: Layers: Same Device (App Verifier)
	Slide 89: Components: Cross-Device
	Slide 90: Layers: Cross-Device (Web Verifier)
	Slide 91: Layers: Cross-Device (App Verifier)
	Slide 92: The API
	Slide 95: Issuance
	Slide 96: Get Involved

	OpeniD4VCI
	Slide 97: OpenID for Verifiable Credential Issuance
	Slide 98
	Slide 99
	Slide 100: Authorization Code Flow
	Slide 101: Pre-Authorized Code Flow
	Slide 104: Authorization code flow
	Slide 105: Pre-Authorized Code flow
	Slide 106: Credential Offer
	Slide 107: Authorization Request
	Slide 108: Authorization Response
	Slide 109: Token Request
	Slide 110: Token Response
	Slide 111: Credential Request
	Slide 112: Credential Response

	HAIP
	Slide 116: HAIP High Assurance Interoperability Profile
	Slide 117

	Conformance tests
	Slide 123: OpenID Certification Program Overview
	Slide 124: The process
	Slide 125: Testing OpenID VC specifications
	Slide 126: Conformance tests support this process
	Slide 127: OpenID For Verifiable Presentations – Current Status
	Slide 128: OpenID For Verifiable Presentations – Roadmap
	Slide 129: OpenID For Verifiable Issuance – Current Status

	demo 2 - DC API & conformance
	Slide 130: Demo

	QnA
	Slide 131: Q & A

