
Continuous Threat
Modeling

Let Developers Figure It Out

Izar Tarandach - SecAppDev 2025

Your Speaker

● Sr. Principal Security Architect at a major broadcasting
company

● Doing security in a way or another since…well, a long time
● Many top and big companies, but some startups as well
● I’ve had lots of successes and a non-zero number of failures
● My focus is Threat Modeling, uses of AI in Security (like

everyone else…) and improving security processes for
developers. Big advocate of soft skills in Security

● Creator of CTM, co-author of this book →, some essays,
co-author of the TMM and TMC documents, webinars and ⅓
of The Security Table podcast

● I produce walls of text. Sorry. I call them “references”.

Who are you ?
● What is your threat modeling background, if any ?

● How much do you …
○ Use threat modeling on a day to day basis ?
○ Would like to use threat modeling ?
○ Fail at threat modeling?

● Do you participate in threat modeling ?
● Do you lead threat modeling sessions ?

● What would you like to learn by the end of today ?
● What is your biggest security development lifecycle frustration ?

Start with “why”.

http://www.collectspace.com/review/andyanderson/apollo13_orientation01-lg.jpg

“Houston, we’ve had a problem here.”

So this is the situation …

Flying back home

● New software written “on the flight” to use a different engine and nav comp

● Lots of math performed by the astronauts and checked at Mission control

● Lots of flight maneuvers made with only visual references

● About 10.000 things that needed to go absolutely right.

● The “mailbox” had to be imagined and built

“Apollo 13” - Universal Studios - 1995

CM

LM

The “Mailbox”

https://www.nasa.gov/wp-content/uploads/static/history/alsj/a13/ap13-S70-5826a-sm.jpg

The Point Of The Story
I am definitely not criticizing NASA design, I’m no rocket scientist

BUT

While there were contingency plans available…
… they couldn’t take into consideration all the possible bad outcomes

The astronauts’ life depended in large part on the ability of the ground
team to know what was available, how it could be improvised, and create
and transmit those instructions, with the astronauts performing flawlessly,
under the stress of time and penalty of death.

The Point Of The Story - from the script of “Apollo 13”

GK - What about the scrubbers on the command module?

EE - They take square cartridges.

TM - The ones on the LM are round.

GK - Tell me this isn't a government operation.

TM - This isn't a contingency we've remotely looked at.

DR - Those CO2 levels are gonna be getting toxic.

Dealing with modes of failure

● A contingency plan is a strategic plan covering a possible bad outcome.
● It aims at emergencies or extraordinary situations.
● It is limited to what can be predicted, and can fail when faced with

“different ways” the issue can happen.

● Solving a problem “by design” means removing the possibility of the mode
of failure that can cause the problem.

…and so we get to Threat Modeling

Threat Modeling is …

● “... analyzing representations of
a system to highlight concerns
about security and privacy
characteristics.” - TMM

● Getting in front of problems
before they even have a chance
to happen

● Something we all do, all the time

What Threat Modeling is NOT ….

● A security review
● A risk assessment
● A compliance tool
● A checkbox to be filled
● Billable hours to be burned
● A chance to “call someone else’s baby ugly”

Who should threat model?

● You
● Everyone
● Anyone concerned about the privacy, safety, and security of their systems and

their users

● You will hear me say many times that “threat modeling is a team sport”.
● Bring as many interested parties into the process as you can - developers,

architects, QE/QA, UX, product and program managers, management, etc.
● “But that’s a huge draw on the team! Why do I need everyone?” - Eureka

Moments

….which is all awesome, but what does it mean?

Threat Modeling is a process that intrinsically promotes those two newfangled
approaches:

● Secure-by-design = well-known controls +secure-by-default (CISA)
● Secure-by-design = “We designed this thing to be secure” (everyone else)

If ALL the CO2 scrubbers fit everywhere they are needed, then we CAN use them
wherever needed whenever needed and no need for contingency plans.

4 Questions, 2 Parts, 1 artifact:

System Modeling

+

Threat Elicitation

=

Threat Model

1. What are we building?

2. What could go wrong?

3. What will we do about it ?

4. Did we do a good job?

System Modeling

● Basically any way that suits the team: from formal modeling
languages like SysML to a drawing on a napkin

● The important bit is that once the system is modeled, two things
need to happen:
○ The participants can look back at the representation of the system, and

recognize “this is what we are working on”
○ The representation is expressive enough to help elicit threats.

Dataflow Diagrams (DFDs) are a popular representation

https://github.com/OWASP/threat-model-cookbook/tree/master/Flow%20Diagram/online-battleroyale-game

Threat Elicitation

● What could go wrong?

● What could POSSIBLY go wrong?

● How BAD does it have to be?

● What if North Korea decides to break into my dog grooming business site?

● “Think like a hacker”. No. Really don’t.

● Threat libraries, security fundamentals, and everything in between

A bad example …

THREAT: something will break

MITIGATION: avoid something breaking

THREAT: secrets can leak

MITIGATION: stop secrets from leaking

A better example … THREAT/MITIGATION/PRIORITY

THREAT: too many requests too fast will cause the endpoint /abc to stop responding

MITIGATION: perform rate limitation, report on the number of requests/second, the number of
successfully served and missed requests inside a configurable time period. This is a high priority
issue, as the endpoint is required for the service to run.

PRIORITY: MEDIUM - P2

THREAT: the key used for encrypting data at rest is available for any service account with read
rights

MITIGATION: either accept this as a design feature, or limit access to the key to only the
accounts that actually need to be able to use it, in which case this is a high priority issue

PRIORITY: REALLY IMPORTANT - P0

The result of a threat model should be ….

● A list of mitigations, for every flaw identified in the design
that is open to exploitation by a threat actor via the existing
attack surface

○ Actionable - developers, not security people
○ Shareable - among all who need to see it
○ Valuable - increments the security posture

Threat Modeling is also
good for …

● Creating a common language and view around the system we are working on
● Of course, pointing out possible design flaws in it
● But so much more!

○ Design your own training program
○ Get a security test plan done!
○ Understand development patterns and playbook them
○ Map out and enforce “security contracts”

● “Reasonable security”

The developer in today’s Development Lifecycle

Threat Modeling in the Traditional SDLC

Requirements

Threat

Modeling

Development tools, coding
standards

Automated tools, pentesting

Playbooks,
security controls

What value can Threat Modeling actually provide

Threat Modeling is an expensive process.

Design Secure-by-design, eliminate whole classes of flaws, shrink attack
surface

Implementation Secure-by-default - secure libraries, known-good configurations,
guardrails, paved road

Testing Priorities and initial issues - what to test for and how - the chewy
bits

Deployment Secure-by-default - how the application interacts with its
environment, secure services available, guardrails

Maintenance New features tested in isolation, old code versus new threats

It is all about VALUE.

“The outcomes of threat modeling are meaningful when they are of value to stakeholders” - TMM

● There isn’t one magical methodology
○ There isn’t one perfect representation of a system
○ There are many ways to do threat elicitation

● The process takes time
○ Developers don’t like to give time to Security
○ Managers like even less
○ Training exists but is there is little absorption

● Requirements on developers:
○ Sparsely trained, but expected to provide perfect security
○ Security team is often a bottleneck

Threat Modeling Manifesto

● 15 of the top voices in Threat Modeling education, research and
execution sharing their experience

● 5 values:
○ A culture of finding and fixing design issues over checkbox compliance
○ People and collaboration over processes, methodologies, and tools
○ A journey of understanding over a security or privacy snapshot
○ Doing threat modeling over talking about it
○ Continuous refinement over a single delivery

● 4 principles
● 5 patterns
● 4 anti-patterns

Threat Modeling Capabilities

● Same authors, more or less
● It is a catalog of capabilities that help cultivate value from your threat

modeling practice
● It is NOT a maturity document - we don’t say how well you need to be doing

something, only what you need to be threat modeling!
● 7 process areas

But there’s more!

● Managers love processes
● You can threat model processes as well

● In addition to developing contingencies and what-if-it-goes-wrong plans, you
can apply threat modeling concepts to remove risk altogether!

Threat Modeling Your Way Into The Office

● 0600AM! Wake up
○ What if my alarm doesn’t ring ?

■ Double check it the night before
■ Set two separate alarms in two separate devices

● Get Dressed
○ My clothes are not presentable

■ Wear something else
■ Use a handheld vapor press

● Commute
○ It started raining

■ I didn’t bring an umbrella!
● Arrive at the office

○ Have a spare change of clothes in the office, if your region has sudden rains

(better source and material: Dr. Michael Loadenthal, Univ. of Cincinnati - “Taking Threat Modeling Offline for IRL Human Application”)

Threat Modeling Fails
● Do not bring value

○ Do not lead to security posture
improvement

○ “Hero Threat Modeler”
○ “Admiration for the Problem”

● Do not express threats
○ At all
○ The right threats

■ “Tendency to Overfocus”

● Do not represent the system
○ “Perfect Representation”

● Dead threat models
○ No alignment to culture and practices

Orgs/teams/devs don’t WANT to threat model

https://leaddev.com/security/supporting-influencing-and-leading-security-practitioner

‘Pushing security practices is a bit like selling insurance; people know they need it but
nobody enjoys the associated costs.’

‘...by adopting the perspectives of the decision-makers, we can grasp how they’re
likely to perceive our plans and attempts at persuasion.’

perspective-taking!

How You Win
● People will start asking unprompted questions.

● People will refer to the threat model as part of documentation

● People will start asking “how can I ask better questions ?”

● People will start asking “where can I find security training ?”

● People will start asking “where is the threat model for X ?”

● Create a repeatable process and organize a threat modeling program

Takeaways

● It’s all about understanding your “customer” - try
perspective-taking

● People cannot be forced to threat model, but
they can be shown that they are already doing it

● Don’t expect perfection right at the start, threat
modeling is an evolutionary practice

● A “bad” threat model is better than no threat
model

More takeaways

● Make threat modeling a verb - say “let’s threat model this
feature” rather than “bring me a threat model of this feature”

● Model and foster curiosity

● Everyone should threat model early and often

● You don’t need to be paranoid, but it helps!

Who should threat model?

● You
● Everyone
● Anyone concerned about the privacy, safety, and security of their systems and

their users

● You will hear me say many times that “threat modeling is a team sport”.
● Bring as many interested parties into the process as you can - developers,

architects, QE/QA, UX, product and program managers, management, etc.
● “But that’s a huge draw on the team! Why do I need everyone?” - Eureka

Moments

Methodologies

● DREAD IS NOT A THREAT MODELING METHODOLOGY.
● CVSS IS NOT A THREAT MODELING METHODOLOGY.

● STRIDE is a threat modeling methodology
● PASTA
● ATASM
● TARA
● … and CTM

Methodologies!

The 4 Questions

It really doesn’t
need to be

complicated

The 4 Questions framework was authored by
Adam Shostack and adopted by the TMM

● What are we building?
● What can go wrong?
● What will we do about it?
● Did we do a good job?

What are we building?

If you don’t know how to explain what you are
building, well, then you have bigger problems
than threat modeling.

But the real challenge here is - does the whole
team agree on what we are building?

What is the scope and the resolution?

What are the “crown jewels” and where are they
stored and transiting?

What are the trust boundaries?

DO IT: Given this description, please create a diagram of
the system. (paper, excalidraw, anything)

RideShare is a cloud-hosted Service that matches customers (riders) with
drivers (partners) in such a way that ETA, wait time, and unnecessary driving
are minimized. To access the service, riders install the RideShare rider app
and drivers the RideShare driver App.

The rider and driver applications send real-time location and ride data to the
backend when a ride has started. For requesting a driver, the rider makes a
request with the geographical cell-id, as defined by the google s2 library, the
pickup point and the vehicle type to the backend. The driver app is constantly
sending the geographic location and occupancy details to the backend.

The backend matches rider and driver based on geographical proximity, traffic,
and route length.

What could go wrong?

What are some reasonable ways to make the
system behave contrary to expectations?

Can we make it …

… reveal sensitive information?

… stop answering?

… kill itself?

… injury someone?

What will we do about it?

Now that we know what we want to build…

… and how it can fail:

What are some reasonable measures we can
take in order to prevent the bad outcomes?

Did we do a good job?

Are the results worth the work?

Did we learn something new?

Did we do better than we did last
time?

Will we be doing this again?

Did we create value for the
participants?

STRIDE

STRIDE is an acronym

S - spoofing

T - tampering

R - repudiation

I - information disclosure

D - denial of servive

E - elevation of privilege

Originated in 1999 at Microsoft, authored by Loren Kohnfelder and Praerit Garg - see “The Threats To
Our Products”

Spoofing

Email Spoofing:

One of the most common examples of spoofing is email spoofing. An attacker sends an email
that appears to come from a trusted source, such as a bank, a friend, or a reputable company.

The email might tell you that there's a problem with your account and ask you to click on a link to
verify your account details.

The link actually leads to a fake website set up by the attacker to collect your login credentials.

This is a form of spoofing because the attacker is pretending to be your bank in order to trick you
into giving them your login details.

Tampering

One example: Data Tampering, the unauthorized modification of data.

● an attacker targeting a retail store might change the prices of certain items,
giving themselves or their friends a significant discount when purchasing
those items.

● attacker is able to intercept and modify the data being transmitted. In a
Man-in-the-Middle (MitM) attack, the attacker changes the data being sent
and the recipient has no way to sense the change

Possible mitigation: sender signs data, tamper-proof checksums, etc.

Repudiation

Online Transaction Repudiation:

A customer makes a purchase on an e-commerce website using their credit card. Once
the transaction is completed and the goods are delivered, the customer denies making
the purchase and claims that their credit card information was stolen and used
fraudulently. They then ask their credit card company to reverse the charges.

Possible mitigation: logs with non-repudiable information, 2FA, RFID/chip card
reader

Information Disclosure

A company's database, which contains sensitive customer information such as names,
email addresses, and credit card numbers, is not adequately protected. An attacker
exploits a SQL injection in the company's system and gains unauthorized access to the
database.

Possible mitigation: use an ORM, rigorous data validation and sanitization

Denial of Service

A web interface, with an eye on preventing credential stuffing attacks, where an
attacker repeatedly tries combinations of login/password pairs, establishes a
policy where after 5 failed tentatives, a user is locked until an administrator
manually unlocks access.

An attacker throws garbage as passwords on valid logins, and those logins are
locked, denying access to the valid users.

Possible mitigation: passkeys instead of passwords, escalating timeouts rather
than lock-outs.

Elevation of Privilege

An email daemon, written in C, runs in a UNIX machine.

In order to open port tcp/25 it needs super-user privileges.

The developer did not relinquish privileges after opening the port, and a string
copy operation when parsing the Subject line is writing to a buffer than is shorter
than it should be. The input is not checked for length.

An attacker can exploit the short buffer to overwrite the return pointer present in
the stack, and direct execution to code inside the string it just sent.

Possible mitigation: use memory-safe libraries and languages, validate input
before processing, drop privileges when not needed

How to STRIDE

1. Create a representation of the system being threat modeled
2. Apply STRIDE to the system or to specific elements (STRIDE-by-element)
3. Has a new threat been identified?

a. Add to the list
4. Return to step 2 until no more threats can be identified
5. Rank the threats by criticality
6. Identify mitigations to the top X threats
7. Document the findings
8. Execute the mitigations!

Variations: STRIDE-per-element, STRIDE-per-interaction, LINDDUN

Let’s STRIDE

SecMess - Security Messaging For The Masses!

This application allows for the secure exchange of messages. It has a client, a server and an encryption module.
Each will be explained in the next slide.

Using this information:

1. Create a diagram
2. Identify at least three STRIDE threat scenarios
3. Document in a table - use Critical/High/Medium/Low for severity

Element STRIDE Scenario Mitigation Severity

SecMess

Clients - user interface for registering users and logging into the system,
composing and sending messages, receiving and decrypting messages. Users
can create accounts in the local system and log into them.

Server - the server handles message storage and delivery. It receives encrypted
messages and stores them until the recipient logs in.

Encryption module - responsible for encrypting and decrypting messages, using
ROT13.

STRIDE, go! 5 minutes

In 5 minutes, share your threat table and let’s discuss the experience.

PASTA

Process for Attack Simulation and Threat Analysis

● Authored by VerSprite CEO Tony UcedaVélez and security leader Marco M. Morana in 2012
● Focuses on:

○ Risk-centric: “how much is this going to cost me”
○ Attacker-centric
○ Application context referring back to business to determine importance
○ Using existing processes for communication
○ Evidence-based threat modeling to support threat motives and leverage data
○ Focus on probability of attack, likelihood, inherent risk, impact of compromise

Cooking PASTA

1. Define business objectives
2. Define technical scope
3. Decompose the application
4. Perform threat analysis
5. Detect vulnerabilities
6. Enumerate attacks
7. Perform risk and impact analysis

https://gfkitchenadventures.com/gluten-free-one-pot-spaghetti/

1. Define business objectives

A. Define business requirements
B. Define security and compliance requirements
C. Perform a preliminary business impact analysis (BIA)
D. Define a risk profile

Output: a BIAR (Business Impact Analysis Report) - a description of the
application functionality and business objectives, constrained by the requirements

2. Define Technical Scope

A. Enumerate software components
B. Identify actors and data sources - where data is created, data sinks - where it

is stored away
C. Enumerate system-level services
D. Enumerate third-party infrastructures
E. Assert completeness of secure technical design

Output: lists of all assets involved, mode of deployment, and their dependencies in
order to create a high-level end-to-end overview of the system

3. Decompose the application

A. Enumerate all application use cases
B. Construct data flow diagrams for identified components
C. Perform security functional analysis and use trust boundaries in the system

Output: DFDs, abuse cases

4. Perform threat analysis

A. Analyze the overall threat scenario
B. Gather threat intelligence from internal sources
C. Gather threat intelligence from external sources
D. Update threat libraries
E. Map the threat agents to assets mapping
F. Assign probabilities to identified threats

5. Detect Vulnerabilities

A. Review and correlate existing vulnerability data
B. Identify weak design patterns in the architecture
C. Map threats to vulnerabilities
D. Provide context risk analysis based on threats and vulnerabilities
E. Conduct targeted vulnerability testing

6. Enumerate attacks

A. Examine the vulnerabilities and their probabilities and decide what can
become an attack

B. Update the attack library, vectors and control framework by using threat
intelligence

C. Identify the attack surface of your system and enumerate the attack vectors
matching previous analysis

D. Analyze identified attack scenarios by correlating them with the threat library
and attack trees, and validate which is viable

E. Assess the probability and impact of each viable attack scenario
F. Derive a set of cases to test existing countermeasures

7. Perform risk and impact analysis

A. Mitigate the threats identified that are most probable to result in attacks
B. Apply countermeasures that are relevant to your system:

a. Determine the risk of each threat being realized (happening)
b. Identify the countermeasure
c. Calculate the residual risk: are countermeasures good enough against this threat?
d. Recommend a strategy to manage residual risk

Exercise time: perform PASTA!

● You have 6 weeks.
● Just kidding. No PASTA for you. I am sorry I put you through that.

Continuous Threat Modeling

What and why

● Introduced in 2018 at Autodesk by none other than yours truly
● Developed earlier at DellEMC, where an enormous amount and variety of

teams made one-size-fits-all impossible
● Focuses on the developer to build a security mindset and threat model as

they develop
● “Teach principles, not formulas” - Richard Feynman
● “Threat model every story” - me

The Case For Continuous TM

Continuous Threat Modeling in a pinch

Baseline

Continuous

Threat Model Every Story

● build a baseline - involving everyone. Use whatever technique works for your team. CTM suggests a “subject
based” list of points of interest

● designate one or more “threat model curators” who will be responsible for maintaining the canonical threat
model document and the findings queue

● instruct your developers to evaluate each one of their stories with focus on security:

○ if the story has no “security value”, continue as usual

○ if the story generates a security “notable event”, either fix it (and document as a mitigated finding) or pop it up as a “threat model
candidate finding” for the curator to take notice of (at Autodesk we are doing this using labels on JIRA tickets)

● make sure your curators are on top of the finding and candidate finding queues

But…how do my developers know what has “security
value”?

Subject areas
Question and then continue
questioning during “official design
time” or when building a baseline

Checklist
Verify that the
principles have
been followed at
implementation
time

Handbook and Subject areas

Principles Checklist

Threat Model Every Story - again, slow

● build a baseline - involving everyone. Use whatever technique works for your team. CTM provides a “subject based” list of
points of interest - they’re starting points, not a checklist!

● designate one or more “threat model curators” who will be responsible for maintaining the canonical threat model
document and the findings queue

● instruct your developers to evaluate each one of their stories with focus on security:

○ if the story has no “security value”, continue as usual

○ if the story generates a security “notable event”, either fix it (and document as a mitigated finding) or pop it up
as a “threat model candidate finding” for the curator to take notice of (at Autodesk we are doing this using labels
on JIRA tickets)

● make sure your curators are on top of the finding and candidate finding queues

● “Uh...what?”

● “This is still too heavy”

● “But how do I know I did everything?”

● “I never saw a room of architects excited about threat modeling before”

Reactions from product teams

Caveat Emptor: This Is Not Perfect

● Difficult to convince teams that the Subject List is not a threat library and
developers that the Checklist is not a requirements list – not exhaustive, just
a starting point

● The resulting TM won’t be perfect – evolutionary

● A SME or security group may still be necessary for education

● GIGO – garbage-in, garbage-out

CTM - Exercise

Let’s add some more features to SecMess, and threat model their stories as we go.

Refer to the baseline threat model we created back in STRIDE, or create one with the
Subject List in the handbook

Go over the new Stories in the next slide and use the Developer Checklist and the
Subject List to identify their security value (or lack of) and write a threat model
addition ticket if necessary.

User Stories https://tinyurl.com/mrymnet5

● As a USER, I want to be able to have a central login server that manages
all users in the system.

● As an ADMIN, I want to be able to change the cipher used for the
cryptography of the system, at will

● As a DEVELOPER, I want to document the latest version of the API
● As a DEVELOPER, I want to be able to create new clients and interfaces

at will
● As a LEO, I want to be able to escrow keys so I can intercept messages in

transit
● As a QA person, I want to be able to run the whole system in a contained

environment so I can test its features

Tools, tools, tools!

Let’s come up with a system to model

Write yourself the description of a system.
Something simple like a calculator that stores

results, or the operating system for an
airliner. Now threat model it.

Can we even automate this ?

● What do YOU think?
● Some things can be automated:

○ Diagraming
○ Low hanging fruit
○ Management of output
○ Communication of findings

● Some … “can’t”
○ Really innovative new findings
○ System modeling

● Somebody say LLM. I dare you. I double dare you.

But Izar, what do you have against LLMs ?

● Nothing. They’re great tools. For what they’re good for.
● They are not good for threat modeling.
● The answer to “Please threat model this system” is not a threat model. It is a

collection of regurgitated material that at some point links in context to some
already known issue with an easy to identify/parse element.

● Do you really want hallucinated threats?
● And no, I am not afraid they’ll replace me any time soon.

OWASP Threat Dragon

● Open a browser and go to https://www.threatdragon.com/#/
● Click on “Login With Local Session”
● Click on “Explore a sample threat model”
● Click on “Version 2 demo threat model”
● Click on “Main request data flow”
● Click on elements to see and edit their attributes
● Click on “+ New Threat” and create a new threat
● Click on “x Close”
● Click on “Report”
● Now do yours!

https://www.threatdragon.com/#/

Microsoft Threat Modeling Tool (TMT)

http://www.youtube.com/watch?v=Wry2get_RRc

OWASP Pytm - the pythonic library for threat
modeling
Schema

Element

type
name
purpose
role
exposes...
privileges
uses...
contains...
connects to...
listens for…

Rules

Weakness w =

(target.type == Process &&
 target.privileges == “root” &&
 len(target.exposes) > 0
)

Threat t =

(target.exposes.port == 80 &&
 source_data.is_hci()
)

Engine

Loader

Parser

Sequencer

Analyzer

Renderer

Calculator

Reporter

Using pytm

1. Define the components of the model and their relationships (dataflows)

2. Generate a dataflow diagram and/or a sequence diagram

3. Annotate the components with their attributes

4. Generate a report with the threats identified as a function of component and

dataflow attributes

#!/usr/bin/env python3

from pytm import (
 TM, Actor, Boundary, Classification, Data,
 Dataflow, Datastore, Process, Server
)

tm = TM("TM Demo v0.0.1")

...

tm.process()

Pytm CLI arguments

Working with pytm

1. Checkout the code
2. Copy (or use) tm.py (the sample code) to a name of your choosing
3. Edit the copied file to reflect the system you are working on
4. Save the pytm script file in the same repo than the code it reflects
5. Create your dfd: ./yourfile.py --dfd | dot -Tpng > sample.png
6. Create your sequence file: ./yourfile.py --seq | java -Djava.awt.headless=true

-jar /usr/local/lib/plantuml.jar -tpng -pipe > seq.png
7. Create your report: ./yourfile.py --report docs/basic_template.md > report.md
8. Use pandoc to translate your report into whichever format you’d like:

pandoc -f md -t pdf report.md report.pdf

Pytm with Docker

● Clone: git clone https://github.com/izar/pytm/

● Build: docker build -t pytm .

● Run: docker run -it -v `pwd`:/usr/src/app/ pytm

● Work:

○ Edit tm.py

○ Run: ./tm.py –dfd | dot -Tpng > tm.png

● In a different terminal, open tm.png

Pytm hands-on

File sharing service

1. Web interface, file server, authentication service, storage and database
2. The web interface and file server use HTTP to talk to each other
3. The database and file server are not hardened
4. The authentication service is not encrypted
5. The web interface does not perform input validation

But I don’t know Python!

● No need - you may think you’re writing C++. Or Java. Javascript. Whatever
helps think about object.attribute = value

● Or…you can use PytmGPT!
https://chatgpt.com/g/g-soISG24ix-pytmgpt

https://chatgpt.com/g/g-soISG24ix-pytmgpt

In closing - that AI thing again

I have been playing with AI and Threat Modeling on and off:

● PytmGPT - https://chatgpt.com/g/g-soISG24ix-pytmgpt

● Vibe Threat Modeling -
https://www.linkedin.com/pulse/vibe-threat-modeling-really-izar-tarandach--du
wse/

https://chatgpt.com/g/g-soISG24ix-pytmgpt
https://www.linkedin.com/pulse/vibe-threat-modeling-really-izar-tarandach--duwse/
https://www.linkedin.com/pulse/vibe-threat-modeling-really-izar-tarandach--duwse/

Threat Model And Prosper!

Threat Modeling Manifesto -
https://www.threatmodelingmanifesto.org

Threat Modeling Capabilities -
https://www.threatmodelingmanifesto.org/capa
bilities/

“Threat Modeling: A Practical Guide For
Development Teams” - https://amzn.to/3Ss8vlv

“Threat Modeling: Designing for Security”,
Adam Shostack - https://amzn.to/3VLsXkq

https://www.threatmodelingmanifesto.org
https://www.threatmodelingmanifesto.org/capabilities/
https://www.threatmodelingmanifesto.org/capabilities/
https://amzn.to/3Ss8vlv
https://amzn.to/3VLsXkq

Thank you! Questions?

Threat Modeling Manifesto - https://www.threatmodelingmanifesto.org

Threat Modeling Capabilities -
https://www.threatmodelingmanifesto.org/capabilities/

“Threat Modeling: A Practical Guide For Development Teams” -
https://amzn.to/3Ss8vlv

“Threat Modeling: Designing for Security”, Adam Shostack -
https://amzn.to/3VLsXkq

“Building In Security At Agile Speed”, James Ransome & Brook Schoenfield
- https://amzn.to/3MTDbuN

CISA “Secure By Design”,
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.
pdf

https://www.threatmodelingmanifesto.org
https://www.threatmodelingmanifesto.org/capabilities/
https://amzn.to/3Ss8vlv
https://amzn.to/3VLsXkq
https://amzn.to/3MTDbuN
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf

