
Break things, but not security:
CI/CD done right

Gijs Van Laer

CTO at XFA, a cybersecurity company focused on device security

Previous
● Information Security Consultant
● CISO at DPG Media
● Software developer

Education
● PhD in Cryptography (advised by Ma Green), Johns Hopkins University
● Master of Science in Security Informatics, Johns Hopkins University
● Master of Science in Pure Mathematics, University of Antwerp

About me

gijs.vanlaer@xfa.tech

The audience (by show of
hands)
● Who owns or maintains a CI/CD pipeline?
● For developers in the room:

○ Do you get code in Production without approval of another person?
○ How fast is your code in production after approval?

■ More than an hour?
■ Between 30 minutes and 1 hour?
■ Between 10 minutes and 30 minutes?
■ Between 5 and 10 minutes?
■ Below 5 minutes?

● Does anyone in the room have to triage findings of a SAST or DAST?
● Who has ever bypassed a security check to “get things done”?

Why Secure CI/CD?
● CI/CD is the backbone of

modern software delivery
● Pipelines now execute code,

manage secrets, deploy to prod
● They’ve become high-value

targets

10. Insuicient Logging & Visibility
9. Improper Artifact Integrity Validation
8. Ungoverned Usage of 3rd Party Services
7. Insecure System Configuration
6. Insuicient Credential Hygiene
5. Insuicient PBAC (Pipeline-Based Access Controls)
4. Poisoned Pipeline Execution (PPE)
3. Dependency Chain Abuse
2. Inadequate Identity and Access Management
1. Insuicient Flow Control Mechanisms

10. Insuicient Logging & Visibility
- Risk Explained

● Lack of logs for key pipeline events
(e.g. job runs, artifact access)

● No visibility into who triggered what,
when, and how

● Missed detection of anomalies or
breaches

10. Insuicient Logging & Visibility
- Best practices

● Mapping the environment
● Enable full audit logging for pipeline

runs, secrets access, approvals
● Centralize logs securely (e.g. SIEM)
● Use alerting for abnormal access

paerns
● Redact secrets in logs

9. Improper Artifact Integrity Validation - Real World
Case: Codecov Bash Uploader Breach (2021)

Summary:
● Aackers gained unauthorized access to Codecov’s

Google Cloud Storage bucket, which hosted the Bash
Uploader script.

● They modified the script to exfiltrate environment
variables, including sensitive credentials, from users’
CI environments.

● The malicious script was distributed to users for over
two months before detection. ￼

Impact:
● Secrets from thousands of CI/CD pipelines were

compromised.
● The breach aected numerous organizations, leading

to widespread credential rotations and security audits.

Source: https://about.codecov.io/security-update/

9. Improper Artifact Integrity
Validation
- Risk Explained

● Artifacts (build outputs) not verified
before promotion/deploy

● Tampered or stale artifacts may be
trusted as valid

● Lack of inventory = unclear origin,
ownership, or integrity

9. Improper Artifact Integrity
Validation
- Best practices

● Enforce checksums/signatures before
promotion

● Use immutable, versioned artifacts
● Store artifacts in controlled,

access-logged registries
● Implement provenance metadata and

SBOMs
● Alert on untracked or unverified artifacts

Source: https://discuss.deepsource.com/t/security-incident-on-deepsource-s-github-application/131

Summary:
● An aacker compromised a DeepSource engineer’s

GitHub account via a phishing campaign.
● This granted the aacker access to the DeepSource

GitHub App’s credentials.
● Using these credentials, the aacker accessed client

repositories of organizations that had installed the
DeepSource GitHub App. ￼

Impact:
● Unauthorized access to multiple client codebases.
● Potential exposure of sensitive code and data across

various organizations.

8. Ungoverned Usage of 3rd Party Services - Real
World Case: DeepSource GitHub App Compromise
(2020)

8. Ungoverned Usage of 3rd Party
Services
- Risk Explained

● Overuse of SaaS tools, integrations, bots
in CI/CD

● No review or control over what they
access or do

● Weak link in the pipeline — external but
deeply embedded

8. Ungoverned Usage of 3rd Party
Services
- Best practices

● Vet all 3rd-party services before
integration

● Use least privilege for app tokens and
permissions

● Review app scopes regularly and
revoke unused ones

● Prefer self-hosted, auditable
alternatives for sensitive steps

● Monitor and alert on 3rd-party app
activity

Summary:
● In 2020, aackers infiltrated SolarWinds’ CI/CD pipeline by

exploiting insecure system configurations.
● They introduced a malicious backdoor, known as

SUNBURST, into the Orion software during the build
process.

● The compromised software was digitally signed and
distributed to approximately 18,000 customers, including
U.S. government agencies and Fortune 500 companies. ￼
￼

Impact:
● Widespread deployment of malicious software across

numerous organizations.
● Extended dwell time allowed aackers to conduct

espionage and data exfiltration.
● Significant reputational and financial damage to

SolarWinds and aected entities.
Source: https://www.lawfaremedia.org/article/solarwinds-and-holiday-bear-campaign-case-study-classroom

7. Insecure System Configuration - Real World Case:
SolarWinds Orion Build System Compromise (2020)

7. Insecure System Configuration
- Risk Explained

● CI/CD systems exposed to public
networks

● Default credentials, outdated software,
poor hardening

● Overprivileged runners or shared
agents

7. Insecure System Configuration
- Best practices

● Harden CI/CD infrastructure (OS,
runtime, containers)

● Disable unused interfaces, ports, and
endpoints

● Enforce strong authentication and
role-based access

● Update dependencies and plugins
regularly

● Restrict network exposure with
allowlists and firewalls

6. Insuicient Credential Hygiene - Real World Case:
Travis CI Secrets Exposure (2021)

Summary:
● A vulnerability in Travis CI exposed sensitive

environment variables, including API keys and tokens.
● The flaw occurred when Travis CI improperly shared

these variables with builds from forked repositories.
● Aackers could exploit this by creating malicious pull

requests to trigger builds and then querying the Travis
CI API to extract these secrets. ￼

Impact:
● Many aected projects and organizations had to rotate

their exposed credentials and conduct security audits
to prevent unauthorized access.

● The incident underscored the risks associated with
relying on cloud-based CI/CD services without proper
security controls and secret management policies.

Source: https://travis-ci.community/t/security-bulletin/12081

6. Insuicient Credential Hygiene
- Risk Explained

● Secrets hardcoded in scripts, repos, or
env files

● Long-lived tokens with broad scope
and no rotation

● Exposure via logs, forks, or public
workflows

6. Insuicient Credential Hygiene
- Best practices

● Store credentials in secret
management systems (Vault, AWS
Secrets Manager, etc.)

● Avoid storing secrets in repo history or
config files

● Use short-lived, scoped tokens with
rotation

● Never expose secrets via logs or
outputs

● Automate detection with tools (e.g.
TrueHog, Gitleaks)

5. Insuicient PBAC (Pipeline-Based Access Controls)- Real
World Case: Dependency Confusion Leading to PBAC Abuse
(2021)

Summary:
● Aackers exploited dependency confusion

vulnerabilities in Node.js applications of companies like
Amazon, Zillow, Lyft, and Slack.

● By publishing malicious packages with names
matching internal dependencies to public registries.

● The malicious code executed within the pipeline’s
context, which had excessive permissions due to
insuicient PBAC. ￼ ￼ ￼

Impact:
● Execution of malicious code within CI/CD pipelines.
● Access to sensitive data and systems beyond the

intended scope.
● Potential lateral movement within the organization’s

infrastructure.

Source: https://www.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/

5. Insuicient PBAC
(Pipeline-Based Access Controls)-
Risk Explained

● All pipelines or jobs can access shared
credentials/artifacts

● Developer pipelines run with excessive
privileges

● Lack of isolation allows lateral
movement between jobs

5. Insuicient PBAC
(Pipeline-Based Access Controls)-
Best practices

● Define fine-grained access rules per
job, repo, and pipeline

● Isolate secrets per stage and
environment

● Avoid sharing credentials or tokens
across pipelines

● Use identity-aware execution (e.g.,
OIDC-based per-job auth)

● Audit pipeline permissions regularly

4. Poisoned Pipeline Execution (PPE) - Real World
Case: Direct PPE via GitHub Actions (2021)

Summary:
● A GitHub user submied a pull request to a repository,

introducing a malicious GitHub Actions workflow file named
ci.yml.

● The workflow was configured to trigger on pull_request
events and included a base64-encoded command that,
when decoded, initiated a cryptocurrency mining operation.

● The aacker repeatedly opened and closed the pull request
to trigger multiple workflow runs. ￼ ￼

Impact:
● Unauthorized consumption of GitHub’s infrastructure

resources for illicit cryptocurrency mining.
● Potential for similar aacks to execute arbitrary code,

leading to data exfiltration or further compromise of CI/CD
pipelines.

Source: https://dev.to/thibaultduponchelle/the-github-action-mining-attack-through-pull-request-2lmc

4. Poisoned Pipeline Execution
(PPE)
- Risk Explained

● Untrusted code runs in trusted CI/CD
context

● Malicious steps injected via PRs,
branches, jobs, or dependencies

● Aackers “poison” the build process
for persistence or lateral movement

4. Poisoned Pipeline Execution
(PPE)
- Best practices

● Review and restrict pipeline trigger
conditions (e.g., only on trusted
branches)

● Run untrusted code in isolated,
sandboxed runners

● Validate workflow files and build scripts
via policy-as-code

● Use ephemeral environments for PR
builds

● Scan and verify any fetched
dependencies or artifacts

3. Dependency Chain Abuse - Real World Case: Dependency
Confusion Aack on Major Tech Companies (2021)

Summary:
● Security researcher Alex Birsan identified that many

organizations use internal packages not present in public
repositories.

● By uploading malicious packages with the same names to
public registries like npm, PyPI, and RubyGems, he
exploited package managers’ default behavior to prioritize
public packages with higher version numbers.

● This led to the inadvertent installation and execution of
his code within the internal systems of over 35 major
companies, including Apple, Microsoft, and PayPal.

Impact:
● Unauthorized code execution within corporate networks.
● Potential exposure of sensitive data and internal systems.
● Highlighting systemic vulnerabilities in software supply

chains.
Source: https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

3. Dependency Chain Abuse
- Risk Explained

● Trusting public or third-party packages
blindly

● Automated installs allow malicious
updates or replacements

● Aackers compromise the chain:
registry, package, or maintainer

3. Dependency Chain Abuse
- Best practices

● Pin versions and lock dependencies
(package-lock.json, requirements.txt)

● Use only veed and trusted registries
● Sign and verify package integrity (e.g.,

Sigstore, Cosign)
● Monitor for compromise of upstream

dependencies
● Scan and audit dependencies

continuously

Summary:
● Stack Overflow operated a TeamCity build server that

was accessible from the internet.
● The server was misconfigured, allowing unauthorized

access without proper authentication.
● Aackers exploited this exposure to gain access to the

build environment. ￼
Impact:

● Potential compromise of the CI/CD pipeline.
● Risk of unauthorized code execution and access to

sensitive information.
● Necessitated a comprehensive security review and

remediation eorts.

Source: https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/

2. Inadequate Identity and Access Management - Real
World Case: Stack Overflow’s Exposed TeamCity Server
(2021)

2. Inadequate Identity and Access
Management - Risk Explained

● Weak or missing authentication on
CI/CD services

● Over-permissioned users, tokens,
service accounts

● Inconsistent IAM across tools: Git, CI,
registries, cloud

2. Inadequate Identity and Access
Management - Best practices

● Use centralized IAM and SSO across all
pipeline tools

● Enforce least privilege for users and
service accounts

● Rotate tokens and credentials regularly
● Audit IAM policies and access logs
● Prefer short-lived, scoped tokens (e.g.

OIDC federation)

1. Insuicient Flow Control Mechanisms
- Real World Case: PHP Git Server Compromise (2021)

Summary:
● In March 2021, aackers pushed two malicious

commits to the PHP source code repository,
masquerading as legitimate contributors.

● The commits introduced a backdoor that allowed
remote code execution when a specific HTTP header
was present.

● The malicious code was disguised as a minor typo fix to
evade detection. ￼ ￼ ￼

Impact:
● Potential compromise of any server running the tainted

PHP version, leading to widespread security risks.
● Erosion of trust in the PHP development process and

its infrastructure.

Source: https://news-web.php.net/php.internals/113981

1. Insuicient Flow Control Mechanisms
- Risk Explained

● Anyone can trigger builds, merges, or
deploys

● Lack of approvals for critical steps (e.g.
production deploy)

● No enforcement of peer review, testing,
or artifact promotion flows

1. Insuicient Flow Control Mechanisms
- Best practices ● Require approvals before

merge/deploy (e.g. code owners, peer
review)

● Gate promotions with test + security
checks

● Lock deploys behind change
management or handos

● Use protected branches, environment
rules, and manual approvals

● Audit and enforce the pipeline flow via
policy-as-code

What’s Not in the Top 10 (But Still
Maers)

● No mention of SAST, DAST, or container
scanning

● Limited focus on toolchain coverage
(e.g. IaC, SBOMs)

● Gaps in organizational practices:
metrics, SLAs, ownership

Security Tools to Know

● Wiz
● Aikido
● TrueHog
● Gitleaks
● Semgrep
● Sigstore / Cosign
● OPA / Conftest
● Dependency Track / OWASP Dependency-Check

Resources

● OWASP Top 10 CI/CD Security Risks:
hps://owasp.org/www-project-top-10-ci-cd-s
ecurity-risks/

● OWASP CI/CD Security Cheat Sheet:
hps://cheatsheetseries.owasp.org/cheatshee
ts/CI_CD_Security_Cheat_Sheet.html

Than
k you

gijs.vanlaer@xfa.tech

