Break things, but not security:

Cl/CD doneright

Gijs Van Laer

About me

CTO at XFA, a cybersecurity company focused on device security

Previous
e Information Security Consultant
e CISO at DPG Media
e Software developer
Education
e PhDin Cryptography (advised by Matt Green), Johns Hopkins University
e Master of Science in Security Informatics, Johns Hopkins University
e Master of Science in Pure Mathematics, University of Antwerp gijs.vanlaer@xfa.tech

AD
== SecAppDev

The audience (by show of
hands)

e Who owns or maintains a CI/CD pipeline?
e Fordevelopersintheroom:
o Do you get code in Production without approval of another person?
o How fast is your code in production after approval?
m More than an hour?
m Between 30 minutes and 1hour?
m Between 10 minutes and 30 minutes?
m Between5and 10 minutes?
m Below 5 minutes?
e Doesanyone intheroom have to triage findings of a SAST or DAST?
e Who has ever bypassed a security check to “get things done™?

:: SecAppDev

Why Secure CI/CD?

e CIl/CDisthe backbone of

A A modern software delivery

RCE T e Pipelines now execute code,
U manage secrets, deploy to prod
code @ tokens e They've become high-value
O targets
Dev A Cl/CD A Infra/Prod
Supply Chain

secrets bl
Injection

AD
== SecAppDev

OWASP TOP 10
C1/CD SECURITY RISKS
(2023)

O

— WO N ®O

Insufficient Logging & Visibility

Improper Artifact Integrity Validation

Ungoverned Usage of 3rd Party Services

Insecure System Configuration

Insufficient Credential Hygiene

Insufficient PBAC (Pipeline-Based Access Controls)
Poisoned Pipeline Execution (PPE)

Dependency Chain Abuse

Inadequate Identity and Access Management
Insufficient Flow Control Mechanisms

:: SecAppDev

10. Insufficient Logging & Visibility

- Risk Explained

Lack of logs for key pipeline events
(e.g. jobruns, artifact access)

No visibility into who triggered what,
when, and how

Missed detection of anomalies or
breaches

:: SecAppDev

10. Insufficient Logging & Visibility

- Best practices

Mapping the environment

Enable full audit logging for pipeline
runs, secrets access, approvals
Centralize logs securely (e.g. SIEM)
Use alerting for abnormal access
patterns

Redact secrets in logs

:: SecAppDev

9. Improper Artifact Integrity Validation - Real World
Case: Codecov Bash Uploader Breach (2021)

Summary:

e Attackers gained unauthorized access to Codecov’s
Google Cloud Storage bucket, which hosted the Bash
Uploader script.

e They modified the script to exfiltrate environment
variables, including sensitive credentials, from users’
Clenvironments.

e The malicious script was distributed to users for over
two months before detection. s}

Impact:

e Secrets from thousands of CI/CD pipelines were
compromised.

e The breach affected numerous organizations, leading

(Secrets Accessed) to widespread credential rotations and security audits.

Modified Script

AD
== SecAppDev

Source: https://about.codecov.io/security-update/

9. Improper Artifact Integrity

Validation
- Risk Explained

Artifacts (build outputs) not verified
before promotion/deploy

Tampered or stale artifacts may be
trusted as valid

Lack of inventory = unclear origin,
ownership, or integrity

AD
== SecAppDev

9. Improper Artifact Integrity

Validation
- Best practices

Enforce checksums/signatures before
promotion

Use immutable, versioned artifacts
Store artifacts in controlled,
access-logged registries

Implement provenance metadata and
SBOMs

Alert on untracked or unverified artifacts

:: SecAppDev

8. Ungoverned Usage of 3rd Party Services - Real

World Case: DeepSource GitHub App Compromise
(2020)

Summary:
e Anattacker compromised a DeepSource engineer’s
GitHub account via a phishing campaign.

e Thisgranted the attacker access to the DeepSource

_____ GitHub App’s credentials.
Q Using these credentials, the attacker accessed client
- repositories of organizations that had installed the

DeepSource GitHub App. ©si

DeepSource DeepSource
Engineer GitHub App Impact:
e Unauthorized access to multiple client codebases.
CI ; e Potential exposure of sensitive code and data across
'?n : various organizations.
Repositorie:

AD
L N
Source: https://discuss.deepsource.com/t/security-incident-on-deepsource-s-github-application/131 - S e CA p p D ev

8. Ungoverned Usage of 3rd Party
Services
- Risk Explained

\ e Overuse of SaaS tools, integrations, bots
o in CI/CD
&) e No review or control over what they
access ordo
e Weaklinkin the pipeline — external but
deeply embedded

build test deploy

Fye

:: SecAppDev

8. Ungoverned Usage of 3rd Party

Services
- Best practices

Vet all 3rd-party services before
integration

Use least privilege for app tokens and
permissions

Review app scopes regularly and
revoke unused ones

Prefer self-hosted, auditable
alternatives for sensitive steps
Monitor and alert on 3rd-party app
activity

:: SecAppDev

7. Insecure System Configuration - Real World Case:
SolarWinds Orion Build System Compromise (2020)

= , el Summary:
. e In 2020, attackers infiltrated SolarWinds’ CI/CD pipeline by
exploiting insecure system configurations.

e Theyintroduced a malicious backdoor, known as
SUNBURST, into the Orion software during the build
process.

e Thecompromised software was digitally signed and
distributed to approximately 18,000 customers, including
U.S. government agencies and Fortune 500 companies. 8}
o8

Impact:

e Widespread deployment of malicious software across
numerous organizations.

e Extended dwell time allowed attackers to conduct
espionage and data exfiltration.

e Significant reputational and financial damage to
SolarWinds and affected entities. «m»

—== SecAppDev

Source: https://www.lawfaremedia.org/article/solarwinds-and-holiday-bear-campaign-case-study-classroom

7. Insecure System Configuration

- Risk Explained

CI/CD System

CI/CD systems exposed to public
networks

Default credentials, outdated software,
poor hardening

Overprivileged runners or shared
agents

:: SecAppDev

7. Insecure System Configuration
- Best practices

e Harden CI/CD infrastructure (OS,
runtime, containers)

e Disable unused interfaces, ports, and
endpoints

Disable unused e Enforce strong authentication and

interfaces, ports,)
and endpoints role-based access

e Update dependencies and plugins
e Restrict network exposure with

allowlists and firewalls

Harden CI/CD
infrastructure

AD
—== SecAppDev

6. Insufficient Credential H glene Real World Case:
Travis Cl Secrets Exposure¥ 021)

Summary:
e Avulnerability in Travis Cl exposed sensitive
environment variables, including API keys and tokens.
e The flaw occurred when Travis Cl improperly shared
these variables with builds from forked repositories.
l - e Attackers could exploit this by creating malicious pull
@? —K T Y _Trigger requests to trigger builds and then querying the Travis
REGRETS b i - Cl API to extract these secrets. i
REPOSITORY FORK Impact:
L e Many affected projects and organizations had to rotate
their exposed credentials and conduct security audits
ATTACKER to prevent unauthorized access.
e Theincident underscored the risks associated with
relying on cloud-based CI/CD services without proper
security controls and secret management policies.

[@-.g,:, Travis CI] EXPOSED

:: SecAppDev

Source: https://travis-ci.community/t/security-bulletin/12081

6. Insufficient Credential Hygiene
- Risk Explained

e Secrets hardcoded in scripts, repos, or

env files
) e Long-lived tokens with broad scope
o, LOG and no rotation
— e Exposure via logs, forks, or public
ey workflows

:: SecAppDev

6. Insufficient Credential Hygiene
- Best practices

e Store credentialsin secret
management systems (Vault, AWS
Secrets Manager, etc.)

e Avoid storing secrets in repo history or

config files
e Use short-lived, scoped tokens with
coee rotation
e Never expose secrets vialogs or
outputs

e Automate detection with tools (e.g.
TruffleHog, Gitleaks)

AD
== SecAppDev

5. Insufficient PBAC (Pipeline-Based Access Controls)- Real
World Case: Dependency Confusion Leading to PBAC Abuse

(2021)

Summary:

i

Pipeline

Dependency o
Confusion Rt
ver-Permissive
Q o PBAC
([
] s 5

Source Code

Dependency

Confusion il

Attackers exploited dependency confusion
vulnerabilities in Node.js applications of companies like
Amazon, Zillow, Lyft, and Slack.

By publishing malicious packages with names
matching internal dependencies to public registries.
The malicious code executed within the pipeline’s
context, which had excessive permissions due to

————————————

Impact:

Execution of malicious code within CI/CD pipelines.
Access to sensitive data and systems beyond the
intended scope.

Potential lateral movement within the organization’s
infrastructure.

AD
[N
Source: https://lwww.bleepingcomputer.com/news/security/malicious-npm-packages-target-amazon-slack-with-new-dependency-attacks/ - S e CA p p D ev

5 Insufficient PBAC

ﬁ eline-Based Access Controls)-
Rls Explained

e Allpipelines or jobs can access shared
credentials/artifacts

e Developer pipelines run with excessive

privileges
N e Lackofisolation allows lateral
Q movement between jobs

P ° Sensitive
P Asset

:: SecAppDev

5. Insufficient PBAC
(Pipeline-Based Access Controls)-
Best practices

e Define fine-grained access rules per
job, repo, and pipeline

e Isolate secrets per stage and
environment

e Avoid sharing credentials or tokens
across pipelines

e Useidentity-aware execution (e.g.,
OIDC-based per-job auth)

e Audit pipeline permissions regularly

:: SecAppDev

4. Poisoned Pipeline Execution (PPE) - Real World
Case: Direct PPE via GitHub Actions (2021)

Summary:
Crypto-Mining Attack via e AGitHub user submitted a pull request to a repository,
Malicious Pull Request introducing a malicious GitHub Actions workflow file named
ci.yml.
[eoe) e The workflow was configured to trigger on pull_request

events and included a baseb4-encoded command that,

- NI e
: \ when decoded, initiated a cryptocurrency mining operation.
itk 7 /@ e The attacker repeatedly opened and closed the pull request

Repository

————————

Malicious to trigger multiple workflow runs. ice:iios;

Pull Request Cl/CD)
Pipeline ImpaCt'

e Unauthorized consumption of GitHub’s infrastructure
resources for illicit cryptocurrency mining.

e Potential for similar attacks to execute arbitrary code,
leading to data exfiltration or further compromise of CI/CD
pipelines.

:: SecAppDev

Source: https://dev.to/thibaultduponchelle/the-github-action-mining-attack-through-pull-request-2Imc

4. Poisoned Pipeline Execution

(PPE)
- Risk Explained

Untrusted code runs in trusted CI/CD
context

Malicious steps injected via PRs,
branches, jobs, or dependencies
Attackers “poison” the build process
for persistence or lateral movement

:: SecAppDev

4. Poisoned Pipeline Execution

(PPE)
- Best practices

Il

Review and restrict pipeline trigger
conditions (e.g., only on trusted
branches)

Run untrusted code in isolated,
sandboxed runners

Validate workfiow files and build scripts
via policy-as-code

Use ephemeral environments for PR
builds

Scan and verify any fetched
dependencies or artifacts

:: SecAppDev

3. Dependency Chain Abuse - Real World Case: Dependency
Confusion Attack on Major Tech Companies (20215J

Summary:

PayPal

Faker

Dependency
Confusion

Source: https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Security researcher Alex Birsan identified that many
organizations use internal packages not present in public
repositories.

By uploading malicious packages with the same names to
public reqgistries like npm, PyPI, and RubyGems, he
exploited package managers’ default behavior to prioritize
public packages with higher version numbers.

This led to the inadvertent installation and execution of
his code within the internal systems of over 35 major
companies, including Apple, Microsoft, and PayPal.

Impact:

Unauthorized code execution within corporate networks.
Potential exposure of sensitive data and internal systems.
Highlighting systemic vulnerabilities in software supply
chains.

:: SecAppDev

3. Dependency Chain Abuse

- Risk Explained

Trusting public or third-party packages
blindly

Automated installs allow malicious
updates or replacements

Attackers compromise the chain:
registry, package, or maintainer

A
—== SecAppDev

3. Dependency Chain Abuse
- Best practices

4

Pin versions and lock dependencies
(package-lock.json, requirements.txt)
Use only vetted and trusted reqistries
Sign and verify package integrity (e.g.,
Sigstore, Cosign)

Monitor for compromise of upstream
dependencies

Scan and audit dependencies
continuously

AD
== SecAppDev

2. Inadequate Identity and Access Management - Real
\(Aé%rzlgl:l)Case: Stack Overflow’s Exposed TeamCity Server

- Summary:

0"E nois “n'l' S|“Illv % o StackOverflow operated a TeamCity build server that

was accessible from the internet.

Bﬂﬂ“(I“T“ s'l:gﬂl(0"[““““ e The server was misconfigured, allowing unauthorized

access without proper authentication.
e Attackers exploited this exposure to gain access to the
' ‘ . ' build environment. &
N - Impact:
. ‘/

e Potential compromise of the CI/CD pipeline.

wn“ﬂ“TTc[]HSTA"Tlv LOOKING e Risk of unauthorized code execution and access to
UP HOWTO'DO S0 ON STACK OVERFLOW [GAc e

e Necessitated a comprehensive security review and
remediation efforts.

A
—== SecAppDev

Source: https://stackoverflow.blog/2021/01/25/a-deeper-dive-into-our-may-2019-security-incident/

2. Inadequate Identity and Access
Management - Risk Explained

e Weak or missing authentication on
CI/CD services

e Over-permissioned users, tokens,
service accounts

e Inconsistent |AM across tools: Git, Cl,
registries, cloud

:: SecAppDev

2. Inadequate Identity and Access
Management - Best practices

Best Practices

T

Use centralized IAM and SSO across all
pipeline tools

Enforce least privilege for users and
service accounts

Rotate tokens and credentials regularly
Audit |AM policies and access logs
Prefer short-lived, scoped tokens (e.g.
OIDC federation)

:: SecAppDev

1. Insufficient Flow Control Mechanisms
- Real World Case: PHP Git Server Compromise (2021)

Summary:

e InMarch 2021, attackers pushed two malicious
commits to the PHP source code repository,
masquerading as legitimate contributors.

e Thecommitsintroduced a backdoor that allowed
remote code execution when a specific HTTP header
was present.

e The malicious code was disguised as a minor typo fix to

Impact:

e Potential compromise of any server running the tainted
PHP version, leading to widespread security risks.

e Erosion of trust in the PHP development process and
its infrastructure.

A
—== SecAppDev

Source: https://news-web.php.net/php.internals/113981

1. Insufficient Flow Control Mechanisms
- Risk Explained

e Anyone can trigger builds, merges, or

P deploys
e Lackof approvals for critical steps (e.g.
.l. production deploy)
REVIEW A e No enforcement of peer review, testing,
TEST ot or artifact promotion flows
APPROVE

:: SecAppDev

1. Insufficient Flow Control Mechanisms
- Best practices

Require approvals before
merge/deploy (e.g. code owners, peer
review)

e Gate promotions with test + security

E] checks
2 o Q e Lockdeploysbehind change
, | management or handoffs
a e Use protected branches, environment

rules, and manual approvals
e Audit and enforce the pipeline flow via
policy-as-code

:: SecAppDev

What’s Not in the Top 10 (But Still

Matters)
oy e No mention of SAST, DAST, or container
S Q scanning
e Limited focus on toolchain coverage
(?I.\(I)VF;A,]SOP (e.g. laC, SBOMs)

e Gapsinorganizational practices:
metrics, SLAs, ownership

:: SecAppDev

Security Tools to Know

Wiz

Aikido

TruffleHog

Gitleaks

Semgrep

Sigstore / Cosign

OPA / Conftest

Dependency Track / OWASP Dependency-Check

A
—== SecAppDev

Resources

) owAsk.,.

OWASP Top 10 CI/CD Security Risks:
https://lowasp.org/www-project-top-10-ci-cd-s
ecurity-risks/

OWASP CI/CD Security Cheat Sheet:
https://cheatsheetseries.owasp.org/cheatshee
ts/CI_CD_Security_Cheat_Sheet.ntml

:: SecAppDev

