
about:me

The Bug Bounty Effect

Emil Vaagland
Head of Product Security
Vend

SecAppDev 2025

From
To Security Success

Some Numbers for Context

● Going towards the same platform
● 1000+ applications per market
● 5000+ deployments per week
● 450+ developers / 70 teams
● All the languages and frameworks

Nice attack surface

2014-2018
Developer in product team
Small scope
➔ Secrets Management

2018
Security Engineer in group function
Huge scope
➔ Scanner orchestration, vulnerable

dependencies, dynamic web app
scanning

2019 - 2022
First FTE in FINN, Security Manager
Scope: one brand, 200+ developers
One-man show
➔ Pentesting, bug bounty, code

scanning
➔ Security champions

2022-2025
Team of 5 Security Engineers
Scope: Many brands, 450+ developers
➔ Cloud Security & more bug bounty

programs

My Security Journey (in current job)

The DevOps Lifecycle

Sprinkle Security Across Everything

Pen-testing

Bug Bounty
programs

Threat
detection

Dynamic scanning

Code scanning

Secure defaults

Security culture

Threat Model

Vulnerability Sources

Vuln Sources
Different tools

Code
● CodeQL
● Dependencies
● Secrets

Dynamic
● Web app
● Attack surface
● Cloud scanning

Testing ● Pen-testing
● Bug Bounty

Internal ● Developers
● Security Team

Which source do you trust the most?
Imagine you have one critical finding from each
source, which one would you prioritize first?

● Code Scanning
● Dependency (software library)
● Web App Scanning
● Attack Surface / Cloud
● Pen-test / Bug Bounty

● Exploitable in production
● Real, provable impact
● Must be fixed
● Usually found by humans (👋AI)

Verified Vulnerabilities Busywork Vulnerabilities

Focus on What Matters

● False positives
● Theoretical correct
● Lacks context
● Mostly from automated tools

No risk
reduction

Lost dev
time

“It is time to ignore most dependency alerts” - https://blog.doyensec.com/2024/03/14/supplychain.html

2019: Verified Vulnerabilities

Mostly XSS
3 engagements

Ad-hoc testing of
suspicious code

Started in
September

Pentesting Journey at FINN.no
● Been doing it for 15+ years in many different forms

○ Release test
○ Monthly on-site testing by external partner
○ Two larger tests per year

● Works well with few releases
○ But not with over 1000+ deployments per week

● Vulnerability forecast:
○ Foggy with a high chance of undiscovered bugs in production

Vulnerability Fun Facts From 2019 Era
Lifespan
● Avg exposure time

○ over 800 days
● Oldest finding

○ 11 years in prod

Discovery
● Findings per year

○ 15 on average
● Cost per finding

○ > $2000

Low Weakness Diversity

The Bug Bounty Effect

Bug Bounty Gives Better Diversity

1 year of Bug Bounty

5 years of Bug Bounty

4 years of Pen-Testing

Weakness types

{22} {45}{8}

What is a Bug Bounty Program?
● Crowdsourced security testing: pay per valid finding
● Usually hosted on a platform: HackerOne, Intigriti, BugCrowd
● Program types: Public or Private
● The platform deals with:

○ Sourcing and paying hackers
○ Receiving reports and sometimes triage

● You decide scope and policy for the researcher’s behavior:
○ What domains are in scope or out of scope?
○ Rate-limits, required headers
○ “Use bb platform email, do not spam end-users”

The Life of a Bug Bounty Report

h4x0r

Triage

Accepted

Invalid

60%

40%

No Action Needed 🔁
➔ Duplicate, Informative, Out of Scope

Rejected ❌
➔ Spam, N/A, Low Quality

Edge Cases 🟡
➔ Accepted Risk

Will be fixed ✅
➔ Time to fix dependent on severity

Bug Bounty Benefits
● Many eyes on the target
● Diverse backgrounds and skill sets
● Better coverage and continuous like testing
● Effective: Scope once & pay per finding
● Being a part of the bug bounty community and building a good

reputation

Bug Bounty Challenges
● Hard to test admin interfaces / back office in prod

○ Requires you to setup dedicated test environments
● Duplicate submissions:

○ If your teams are slow at fixing issues
● Scanner noise, not following policies

○ Happens, but can easily be handled
● Too many critical findings at launch?

○ Pause program and fix before relaunching

How much do we pay?
● We pay the hackers based on severity and business impact

○ We started at $100-$3000, now we are at max $6000
● Since 2019:

○ ~$200.000 paid in bounties (FINN)
○ ~$400.000 across 6 programs
○ Median bounty around $200-$400 the last years

● Cannot compete with “Big Tech” payouts:
○ Shopify: max $200,000
○ Google: max $151,515 ��

●

Competing for bug bounty talent
● Just be nice

○ Friendly and respectful tone in messages
○ Lax on scope definition: accept all reports with impact
○ Pay fairly, increase severity/bounty instead of limiting
○ Working with hackers to determine the maximum impact

● Fast response times
○ Better than the top 20 programs on HackerOne
○ Top 20 measures in hours/days
○ We measured in minutes/hours

Competing for bug bounty talent
● Just be nice

○ Friendly and respectful tone in messages
○ Lax on scope definition: accept all reports with impact
○ Pay fairly, increase severity/bounty instead of limiting
○ Working with hackers to determine the maximum impact

● Fast response times
○ Better than the top 20 programs on HackerOne
○ Top 20 measures in hours/days
○ We measured in minutes/hours

Being Lax on Scope Saved us!

This asset is not in scope, and would not be accepted by platform triage ❌
But we were intrigued, and accepted it! Critical issue found ✅

Vulnerability Explanation
● A docker image published on Docker Hub in 2019 contained a

GitHub PAT with OWNER privileges in the organization
● The public fiaas GitHub org:

○ Our Kubernetes deployment platform
○ Core infrastructure component with high privileges

● Potential scenario:
○ Sophisticated attackers could easily misuse this to

supply chain attack & ransomware us hard
2019 Docker bug

6 years exposure time

2025 Report received

Why Did it Happen?
● Our developers were innocent, this was caused by a bug in

Docker multi stage builds

Lessons Learned
● Our container secret scanning would have found it today

○ But this container was not in use, too old
● Scan everything, even old stuff!
● Ban PATs and use fine-grained access tokens instead
● Use short-lived OIDC tokens wherever possible
● Being lax on scope definition saved us
● Add all your open source projects to scope!

Response times

2022

2019 2020

For 2020 / 280+ reports:
Time to triage: 4.5h (avg) 18m (median)
Time to 1st response: 2.3h (avg) 12m (median)

Time to triage:
21h (avg) 2h (median)

Critical fixed on a Saturday Night

21:18 report received

Report triaged

Fix deployed

Report closed

Happy Hacker

+14 min +16 min +2 min +5 min

“/actuator/httptrace exposed”

��

Vulnerability Transparency
● Give platform access to all developers gives you:

○ Awareness about all reports coming in
○ Faster response on critical findings

● “Critical fix on a Saturday” not possible without it
○ We could always ping somebody
○ Easier when they just show up and fix it

Bug Bounty Rollercoaster

Bug Bounty Rollercoaster

$15.000

$47.000

$30.000

Bug Bounty Rollercoaster

Top 10 Vulnerabilities
By Count By Spend

XSS XSS

Information Disclosure Subdomain Takeover
Access Control Information Disclosure
Misconfiguration Access Control

IDOR IDOR
Authentication Authentication
Open Redirect Denial of Service

CSRF Business Logic Errors
Web Cache Poisoning SSRF
Business Logic Errors HTTP Request Smuggling

Critical bugs: more than just AppSec

Cloud & Infrastructure
Misconfigurations: subdomains,

load balancer bypass

Application Bugs
IDOR, XXE, SSRF, Auth

Secrets in The Wild
High privileged API tokens {17} {12} {4}

Report Quality
● Running a private program helps

○ Less random automated bounty beggars
● Closing bad reports is not a big time sink

○ “XSS” via Console:

3 Degrees of Low Quality Reports
No Bounty
No bounty accepted

Beg Bounty
Begs for bounty or
positive close status

Threat Bounty
Threatens to publicly
disclose if no bounty
or positive close
status

Denial of Funds Attack (DoF)
● We usually have about 10k EUR in our bounty pool
● Program auto-suspends if bounty pool is depleted
● The platform reserves the bounty amount before triage
● What happens if one researcher spam us with “Criticals”?

○ Denial of Funds attack!

DoF Attack + Threat Bounty
● We got three high severity reports
● Program was auto-suspended
● Two of those:

○ Almost same title
○ Same content, different order
○ … but different severity
○ No impact whatsoever - Likely AI generated

● Closed as Not Applicable

Threat Bounty
● W

Meme Bounty

Bug Bounty Program Impact
● We found and fixed a lot of old vulnerabilities

○ Over 700+ vulnerabilities fixed
● We are discovering vulnerabilities faster than before
● The number of findings per year are decreasing
● It is effective

○ Cost per finding $400 vs $3000 before

Only 2 out of 700 reports were caused by a
vulnerable dependency

Key Ingredient in AppSec Program
● Builds security awareness among developers

○ All reports are open for anybody to read
○ Devs like to talk about new interesting findings

● Over 700 verified vulnerability reports
○ Valuable vulnerability data & metrics
○ Helps us focus our AppSec efforts

No SQL Injection found on FINN.no since 2014

No SQLi Bugs Happened Organically

Most libraries encode input
automatically

Dev’s do not need to
manually encode

10 years of pen-testing
5 years of Bug Bounty
A lot of Code scanning
24/7 Dynamic scanning
2x Bounty promotion campaigns

Secure Defaults FTW Did we look close enough?

Secure defaults:
Squash bug classes, not individual bugs

Secure Defaults in Practice

XSS findings
Total findings

SQL Injection findings

Bug Bounty Findings
400711 5

“Weaponizing” the Vulnerability Data
● Created CTF challenges based on bug bounty reports
● 35 challenges in the categories:

○ XSS/CORS, JWT, Cryptography, SSRF, XXE,
/internal-backstage/, secrets in github/CI/CD

● Released a few challenges per week until main event
○ Kept teams on their toes

● Developers loved it

Simplified XSS example

app.get("/", (req, res) => {
 const { query = "" } = req.query;
 res.send(`
 ${heading}
 <body>
 ${req.query ? `<h2>Results</h2><p>No results for ${req.query}</p>` : ""}
 <script type="application/json">${JSON.stringify({ req.query })}</script>
 </body>
 </html>
`);});

Sanitized by DOMPurify

app.get("/", (req, res) => {
 const { query = "" } = req.query;
 const sanitized = DOMPurify.sanitize(query);
 res.send(`
 ${heading}
 <body>
 ${sanitized ? `<h2>Results</h2><p>No results for ${sanitized}</p>` : ""}
 <script type="application/json">${JSON.stringify({ sanitized })}</script>
 </body>
 </html>
`);});

DOMPurify Removes Dangerous bits

DOMPurify.sanitize(''); // becomes
DOMPurify.sanitize('<svg><g/onload=alert(2)//<p>'); // becomes <svg><g></g></svg>
DOMPurify.sanitize('<p>abc<iframe//src=jAva	script:alert(3)>def</p>'); // becomes <p>abc</p>

DOMPurify

Foot-gun Potential
app.get("/part4", (req, res) => {
 const { query = "" } = req.query;
 const sanitized = DOMPurify.sanitize(query);
 res.send(`
 ${heading}
 <body>
 ${sanitized ? `<h2>Results</h2><p>No results for ${sanitized}</p>` : ""}
 <script type="application/json">${JSON.stringify({ sanitized })}</script>
 </body>
 </html>
`);});

Foot-gun example

// Removes dangerous <script> tag
DOMPurify.sanitize('<script>alert(1)</script>');
// outputs

// <script> tag is not dangerous inside attribute quote context
DOMPurify.sanitize('<img src="<script>alert(1)</script>">');
// outputs <img src="<script>alert(1)</script>">

Payload example

We send payload: <img src="</script><script>alert(1)</script>">

<h2>Results</h2><p>No results for <img src="</script><script>alert(1)</script>"></p>
<script type="application/json">{"sanitized":"<img src=\"</script><script>alert(1)</script>\">"}</script>

The Long Tail of Vulnerabilities
● Bug bounty by far outclasses other activities

○ Effective in terms of $ and vulnerabilities
● Still we spend time and resources on other activities

○ Code/Dynamic scanning, Cloud tools, Pentesting
● While others yields less verified vulnerabilities, they often

yield different types of vulnerabilities

● All in all this gives us better assurance

Only 5 out of 20 critical bugs could be found
with code scanning.

What if I could only do one thing?
Code Scanning
● Hard to roll out
● Findings lacks deployment context
● Can annoy developers if done badly
● High cost per year, no guarantees

Bug Bounty Program
● Scope once, hackz everywhere!
● Mostly real exploitable bugs
● Developers only see real bugs
● Pay-as-you-go for bounties

Traditional Advice: Roll out a SDL with a bunch of
tools and practices before bug bounty.

Spicy Advice: Launch a private bug bounty program and
do some real risk reduction.

5 Years of security.txt vs Bug Bounty
security.txt
● 1-2 valid findings
● 99% spam

Bug Bounty Program
● > 700 valid findings
● < 1% spam

For the win

5 findings

All companies should do bug bounty

How to Launch a Program
Get money & a platform

● Test different platforms
● Managed triage service = slow

response times

Scoping
● Start small and expand as you

mature the program
● Do pen-tests before launch?
● 24/7 scanning to catch

low-hanging fruits

Triage process
● Set bounties based on business

impact
● Get inspired by other programs

Communication
● Inform the org about it!
● Onboard people in your process
● There will be scanner noise

Platform must-haves: SSO
Why?
Give everybody easy access
Manually managing access sucks
Importing to JIRA sucks

Impact
No time spent on manual processes
Developers talk about reports!
Security vulnerability awareness
No JIRA-headache

Platform must-haves: Good API
What is good enough?
Should not be painful to use
Be able to import reports
Export data/metrics
Automate missing things

Examples
Silly rate limits / auth methods
Avoid paying for known findings
Crunch custom metrics
Use data in other platforms
Auto assign reports based on URLs

Automation Example
● All our deployments are tagged with an owner
● We can find a deployment from an URL
● Report with url finn.no/user/api

○ Lookup owner from ingress /user/api
○ Find team: ‘account’
○ Assign report to team ‘account’
○ Notify their alert slack channel

http://finn.no/user/api

Platform must-haves: Report disclosure
Why is it important
Knowledge sharing
Increase activity
Community building
Shows fair treatment

Impact
Bypasses!
More reports!

Regex is pronounced /rɪˈgrɛts/
● Any URL with /internal-backstage/ or /_/ is blocked
● “Hiding” endpoints like /metrics, /health, /actuator
● The blocking is done by a RegEx in HAProxy configuration
● Vulnerability forecast:

○ Cloudy with a high chance of RegEx Bypass

Regex Bypass Galore

Hacker #1

Bypass:
/ib;/env

September 2019

Hacker #2

January 2020

Hacker#2

January 2020

Hacker#3

August 2020

Bypass:
/ib;abc/env

Bypass:
/_;/env

Bypass:
/_;abc/env

Lessons Learned
● RegEx is hard & report disclosure is effective
● Bug had been in production for 3 years:

○ No pentest discovered it (or other tooling)
○ Bug bounty discovered it after 7 days
○ … And kept re-discovering it!

Dependency Confusion

[1] https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

1. Find name of an internal package
2. Publish a public version with higher version number
3. Profit! (Literally)

Attacker code can then run on:
● Developer’s machines
● Build Systems
● In production

Recipe:

Impact:

How we protected ourselves…

@alex.birsan Research
released Feb 2021

✅Mitigated

Blog post released

Artishock open-sourced

RCE via NPM reported

+8 days +14 days +2 months +1.5 years

Blogged it, Built it, Forgot to use it!

@alex.birsan Research
released Feb 2021

✅Mitigated

Blog post released

Artishock open-sourced

RCE via NPM reported

+8 days +14 days +2 months +1.5 years

From Blog to Bug Bounty
● The researcher referenced our own blog post

● The blog post was more impactful than the tool?
○ Sometimes words are mightier than the sword

● After this the team made the tool run 24/7

Expect the Unexpected
● Wow-factor reports

○ Critical bugs that lived in production too long
● Reality check

○ What if the bad guys found this first?
● Continuous learning

○ Each surprise finding drives improvements

The Bug Bounty Effect
● Bug bounty has been priceless for us

○ Key ingredient in our AppSec program
● We still do pen-tests and all things DevSecOops

○ Secure defaults are effective
● Launching a program is easy & impactful

○ Every large company should have one
● The key to bug bounty success

○ Be nice and be fast on response

CREDITS: This presentation template was
created by Slidesgo, and includes icons
by Flaticon, and infographics & images by
Freepik

SecAppDev

Thanks!
Do you have any questions?
Emil Vaagland @ LinkedIn
twitter.com/emil_no
emilpls.bsky.social
emil@vend.com

Please keep this slide for attribution

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

