
Security Signals
A framework to scale web security

Sławomir Goryczka
Information Security & Software Engineer
Google Switzerland
slawek@google.com

Michele Spagnuolo
Staff Software Engineer
Google Switzerland
mikispag@google.com

Introduction to Web Security

Collecting Signals

Processing Signals

Using Data to Improve Security

Use Cases

Example: Cross-Site Request Forgery

01

02

03

04

05

06

Agenda

Introduction to Web Security
01

Web services accept HTTP requests from users and return HTTP responses with
relevant data.

● Attack surface corresponds to the set of actions that can be invoked directly or

via client browser on the target service.

● Vulnerabilities can generally be triggered by sending HTTP requests.

● HTTP Headers on the HTTP request/response level are often sufficient to gain

an understanding of both potential attacks and applied defenses or mitigations.

Web Security

Possibly the largest number of web application in the world:
● more than 8000 web services,
● services are hosted across almost 1000 registrable domains,
● processing trillions of HTTP requests from billions of web users daily,

… serving web pages created and persisted by a heterogeneous ecosystem with:
● many programing languages, e.g. Java, C++, Python, Go,
● HTML template system engines, sanitizers,
● Billions of line of code, thousands of third-party libraries,

… changing all the time.

Why is Web Security hard, especially at Google?

With a large-scale, rapidly evolving codebase, fixing vulnerabilities one-by-one is neither
efficient nor scalable.
To make security an ambient property of the developer infrastructure, the following is
needed:

● Guidelines and recommendations for developers,

● Tools, libraries, and frameworks,

● A “well-lit path”,

● Security evaluation and justification of non-recommended approaches,

● Fixing regressions, blind spots, etc.

Secure-by-Design or Fail to Scale

Security Signals is a framework to collect static and security-related usage data (aka
signals) about a web ecosystem to generate insights, report bugs, or prioritize work.
It can also provide higher-level interpretations of the data to:

● Provide visibility into security stance of the web infrastructure,

● Optimize resource allocation, by evaluating web application risk,

● Determine if certain applications are inherently “secure-by-design” from broad

classes of vulnerabilities,

● Provide continuous monitoring of security controls and assurance of the

alignment to the “secure-by-design” principles.

Security Signals Framework

The main component is a scalable collection mechanism of runtime security
signals, which is:

● Technology-agnostic,

● Comprehensive.

… and a batch map-reduce pipeline, which joins signals with auxiliary data and
generates security-relevant insights.

Additional tools:
● Alerting when detecting anomalies or regressions,

● Automated bug reporting and assignment.

Security Signals Components

Security Signals Architecture

URLs

Collection

Processing

Usage

Collecting Signals
02

Security Signals Architecture

URLs

Collection

Web Traffic Flowing Through a Reverse Proxy

 Users Reverse Proxy Web Applications

app1.site.com

app2.site.com

app3.site.com

Web Traffic Flowing Through a Reverse Proxy

 Users Reverse Proxy Web Applications

internal.site.com

app2.site.com

app3.site.com

Collecting Security Signals

 Users Reverse Proxy Web Applications

app2.site.com

app3.site.com

Collected Signals

Google processes trillions of HTTP requests from billions of web users daily. To ensure

privacy of users, feasibility and quality of generated insights:

● Web traffic is sampled with a rate of usually up to 1%, and 10% for internal traffic,

● Sensitive data and request/response bodies are not collected,

● Individual HTTP requests/responses are not persisted for a long time – only

aggregated and de-identified data,

● A very short retention time,

● Isolation of persistent data with audited access, and only justified human access,

● Stability and functionality of the GFE.

Collecting Data: Challenges

● HTTP method,
● Destination host,
● Redacted path and no query parameters!
● Status code,
● Returned MIME type,
● Referrer-Policy,
● Cache-Control,
● User agent: only browser name and the main version,
● Cookies: security attributes, no value!

Nothing about and from the HTTP request/response body is collected.

Collecting Basic HTTP Request & Response Data

https://www.w3.org/TR/referrer-policy/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Web platform security mechanisms are generally configured through HTTP response
headers; similarly, clients often provide security-related information in request
headers, which Security Signals collect:

● Content-Security-Policy,
● Cross-Origin-Embedder-Policy,
● Cross-Origin-Opener-Policy,
● Cross-Origin-Resource-Policy,
● Sec-Fetch-*,
● Strict-Transport-Security,
● X-Content-Type-Options,
● X-Frame-Options,
● …

Collecting Security-Related HTTP Headers

https://w3c.github.io/webappsec-csp/
https://web.dev/articles/coop-coep
https://web.dev/articles/coop-coep
https://web.dev/articles/cross-origin-isolation-guide
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_metadata_request_header
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

Synthetic signals are a core capability of the Security Signals approach. They contain
additional metadata that is not normally included in the HTTP response.

They are:

● Generated by instrumented web frameworks,

● Using an internal-only X-Google-Security-Signals HTTP response header,

● Collected when passing reverse proxy…

● … and dropped before sending outside.

Synthetic Security Signals

Request-scoped synthetic signals (examples):
● TEMPLATE: The server-side templating system that generates HTML output.
● CSRF: The presence of Cross-Site Request Forgery protections to verify if an CSRF

check was carried out by the backend on state changing requests.
● SEC_FETCH: The presence of server-side isolation policies to assess if isolation

policies were applied to prevent cross-site attacks.

Service-scoped synthetic signals:
● FRAMEWORK: The serving web framework.
● ACTION: A pointer to the method/function generating the web response.
● BUILD: Information about the application’s build environment.

Collected Synthetic Security Signals

Auxiliary data are collected from internal databases. They enrich security signals with
information about:

● the production environment,

● product and ownership information,

● source-code information, etc.

This context is crucial for streamlining remediation efforts and automated bug filing.

Risk signals provide data necessary to assess risk and prioritize according to it, e.g.
sensitivity of the hosting domains based on Domain Tiers, exposure of services, volume
of traffic.

Auxiliary Data and Risk Signals

https://bughunters.google.com/blog/4562175388155904/externalizing-the-google-domain-tiers-concept

Processing Signals
03

Processing

Security Signals Architecture

URLs

Security Signals Pipeline

Stage 1 … Stage n

Collected Signals Security Signals Pipeline Security Signals Tables

 Auxiliary Data Risk Signals

Security Signals Pipeline is a Flume distributed map-reduce data processing pipeline,
which:
● reads billions of collected signals,

● reduces their number by deduplication and initial evaluation,

● joins them with auxiliary data and risk signals,

● evaluates enriched signals to generate insights,

● persists them in Security Signals Tables.

The pipeline is heavily focused on reducing the cardinality of input data and removing
privacy sensitive information, and producing high-quality output, which can be
queried efficiently.

Security Signals Pipeline

Collected Security Signals have billions of entries with high-cardinality dimensions, which
makes them impractical to query. The pipeline reduces cardinality by aggregating values,
while maintaining data usefulness.

URL paths often contain superfluous information, e.g. capability-bearing tokens,
timestamps, user inputs. All URL paths are redacted into path patterns by:

1. Leveraging path routing information to match and replace variable parts, e.g. from
synthetic signals or per-service infrastructure configurations (API definition).

2. On remaining paths, using filtering rules based on a manually curated set of
well-known high-entropy paths.

3. On the left-over paths, executing a ML model (random forest of 11 trees with max
depth of 5).

Cardinality Reduction

Output of the Pipeline is the main source of data and insights needed by
Security Signals.

It is:

● Persisting only aggregated and de-identified data,

● Accessed by approved engineers and job roles,

● Created from previously collected data every day,

● Monitored to detect any anomalies in quality of data,

● Retained for 30 days.

Security Signals Tables

Using Data to Improve Security
04

Usage

Security Signals Architecture

URLs

Security Signals Tables Users

Security Signals Tables Aggregated Data UI for Developers, etc.

 Frontend UI Monitoring Alerting Automated Bug Filing

Application endpoints are presented as
interactive “bubbles” organized by
code package and color-coded to
reflect their security status. This helps:

● Identifying security gaps,

● Initiating targeted remediations,

● Filing pre-populated bugs.

Security Signals UI for Security Engineers

Continuous monitoring of Security Signals Tables allows:
● Monitoring progress regarding coverage of security mitigation measures,
● Identifying violations of predefined security invariants,
● Monitoring regressions,
● Alerting about anomalies, findings and regressions,
● Automatically filing and assigning bugs for high confidence findings by leveraging

ownership information within Security Signals.

Monitoring, Alerting, Bug Filing

Web Security Portal provides insights tailored to
each team’s application framework. The portal:

● is dedicated to developers without security

expertise,

● shows web security posture of a product,

● highlights areas for improvement,

● offers framework-specific

recommendations.

Web Security Portal for Product Engineers

Security Signals provides high-level
visibility and strategic insights to
executives to allow:

● Assessing overall web security
posture,

● Identifying areas of focus,

● Tracking progress and quantifying
impact,

● Risk-based prioritization,

● Optimizing resource allocation
decisions.

Dashboards for Executives

Use Cases
05

The responsibility for ensuring security is moved to the developer environment (Safe
Coding environment) and product design (secure-by-design) and includes:

● Hardened and secure-by-design web frameworks,

● Frontend guidelines and recommendations,

● Required web security features.

New web applications adopt this approach seamlessly, but architecture of existing ones
need to be adjusted.

Safe Coding: Security Engineering Use Cases

Legacy code and systems create the need to continuously improve the security
state of existing web services.

Security remediations are engineering efforts aimed at mitigating systemic sources of
vulnerabilities. Each crucial step of remediations is driven by Security Signals:

1. Identifying potential security risks.

2. Designing mitigations.

3. Adopting mitigations and detecting future regressions (next slides).

Use Case: Security Research & Remediations

https://drive.google.com/open?id=1hCLvwm8XrWlUATDCvjdcxoVdirW2tSz5

Identified and evaluated classes of vulnerabilities are then addressed by proposed
mitigations at scale, by:

● Identifying services or specific endpoints that benefit from the mitigation,

● Gradually rolling out new security mitigations,

● Tracking deployment progress across hundreds or thousands of services,

● Handling exceptions and special cases,

● Alerting on any regression.

… and all that without impacting the functionality of any service.

Example (groups of) mitigations: Content Security Policy, Trusted Types, Fetch
Metadata isolation policies, Cross-Origin Opener Policy, etc.

Use Case: Adoption of Web Security Mitigations

https://drive.google.com/open?id=1-hRGgS9bX7TVSud8MHEREQJhjhxQJ4tq

● JavaScript Signals pipeline for all executed JavaScript scripts.

● Improving Security Scanning Coverage, which is limited by crawling.

● Non-security Use Cases to monitor rollouts of web features, debug issues, etc.

(~50 teams across Google).

● Surfacing AI/ML Properties by Web Endpoints.

Use Case: Additional Capabilities < ai>...</ai>

Example
06

Webpages can include resources from other places, e.g.

… or turn off your home router:

… or transfer money:

<form action="https://mybank.com/send?amount=10k&from=thomas&to=eve&do=true"

 method="POST" id="form">

</form>

<script>document.getElementById('form').submit()</script>

Example: Cross-Site Request Forgery

CSRF/XSRF token: a new piece of information that is both unguessable and
client-correlated and send with each request.

Xsrf-token=YL9yaTsbfn

The rollout:

1. Identify URL endpoints implementing state-changing functionality and their XSRF
tokens.

2. Introduce a new synthetic security signal: CSRF.

3. Refactor web frameworks to populate CSRF signal, prioritizing them by Domain Tiers.

4. Handle exceptions/special cases.

5. Go to (3).

Example: Cross-Site Request Forgery (Prevention)

http://go/crypto-faq#generating-random-numbers
https://g3doc.corp.google.com/company/teams/security-privacy/docs/secure-coding/XSRF.md?cl=head#client-correlation
https://bughunters.google.com/blog/4562175388155904/externalizing-the-google-domain-tiers-concept

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Example: Cross-Site Request Forgery (Data Flow)

URLs

Security Signals Infrastructure

URLs

Thank you

