
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

PASSKEYS: THE FUTURE
OF USER AUTHENTICATION

? What is the current state
of user authentication?

https://www.cnet.com/news/privacy/gates-predicts-death-of-the-password/

https://blogs.manageengine.com/it-security/passwordmanagerpro/2013/12/12/will-passwords-become-obsolete-soon.html

https://blog.google/technology/safety-security/the-beginning-of-the-end-of-the-password/

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

? What are requirements for a good
and secure user authentication system?

REQUIREMENTS FOR SECURE USER AUTHENTICATION

• Simple user experience that inspires secure use
• Easy to select and use
• Nothing to remember to avoid re-use across different applications

• Resistant against common attacks against authentication mechanisms
• Not subject to guessing or brute force attacks
• Protected against phishing attacks

• Easily portable across different devices
• Users authenticate on computers, phones, tablets, etc.
• Ideally, an authentication factor is portable across devices, even on less-trusted devices

! Most current authentication mechanisms
(e.g., passwords, TOTP codes, ...) do not
meet these security requirements

3 Authenticate by sending the signature

1 Provide a challenge

4Verify the signature
using the public key

PRIVATE
PUBLIC

2Generate a signature
using the private key

The signature acts as a proof-of-
possession mechanism,

demonstrating that the user has
access to the private key

KEY-BASED USER AUTHENTICATION

INTERMEZZO: DIGITAL SIGNATURES

Data to sign … e06b5924…5d672d79c15b1Data to sign … e06b5924…5d672d79c15b1

PRI
VAT

E

The data to protect
with the signature

A cryptographic
signing function

(e.g. RSA)

The signature
calculated on the data

with the private key

A private key belonging
to this particular user

INTERMEZZO: DIGITAL SIGNATURES

Data to sign … e06b5924…5d672d79c15b1

Data to sign …

e06b5924…5d672d79c15b1 The data is the same and the
signature is created with the

expected private key

The data is different
or the wrong signing

key has been used

PRI
VAT

E

PUB
LIC The public key is uniquely

linked to the private key

KEY-BASED AUTHENTICATION IN PRACTICE

• The user has a private key with an associated public key
• Possession of the private key is used for authentication

• Typically by signing a challenge with the private key
• The service requiring authentication verifies the signature with the public key

• A valid signature means that the other party possesses the private key

• Key-based authentication does not rely on shared secrets
• Only the legitimate party is supposed to have this private key
• Best practices require secure storage of the private key (E.g., in an OS-backed keychain)

• Implementing key-based authentication requires client support
• The use of mutual TLS is a common pattern, but not in browser-based applications
• Out-of-band mobile applications can be used to manage authentication keys
• The new Web Authentication API supports various key-based mechanisms

1 Establish a mutual TLS (mTLS) connection

PRIVATE

PUBLIC

Verify that the server
certificate is trusted

Verify that the user
certificate is trusted

A communication channel
providing confidentiality,
integrity, and authenticity

PRIVATE

PUBLIC Backend public
key/cert

User public
key/cert

User private
key

Backend private
key

KEY-BASED AUTHENTICATION WITH MTLS

https://textslashplain.com/2020/05/04/client-certificate-authentication/

CHALLENGES WITH MTLS

• mTLS is great for building machine-to-machine authentication
• Certificate generation and deployment can be automated
• mTLS is supported by virtually all TLS libraries, so small implementation effort
• Supported by default in service meshes like Istio

• mTLS is horrible for building user authentication
• Users do not understand certificates
• Installing certificates in a browser is quite challenging
• Authentication failures result in protocol errors, making error handling difficult
• Unless you have a certificate on a dedicated device, the certificate is not portable

• Key-based authentication is great, but mTLS is not the way to implement it

https://developer.apple.com/passkeys/

PASSKEYS FROM THE USER'S PERSPECTIVE

authentication data
Authenticator protocol

(CTAP 2)

The Web Authentication API
defines the JS API that client-
side code can use to interact

with authenticators

The service has to provide data
to the browser, and vice versa.

These interactions are not
defined in specifications.

Authenticators handle the
actual keys and can be the OS, a
password manager, a phone OS,

a USB key, ...

SETTING UP A PASSKEY

1 Register for a new account

7 Credential data

2 Data required for creating a credential

3 Create credential request6Credential

4 User interaction
with the authenticator

8 Store credential (public key)

5
Generate new key pair
and include public key

in the response

Creating a passkey on passkeys.io

USING A PASSKEY CREDENTIAL

1 Load the main page of the application

8 Signature response

2 Main page with the code
to run a passkey authentication

4 Challenge signature request7Signature
 response

5 Interact with the
authenticator

6Sign the challenge and
create a response

9 Verify signature with
stored public key

3Select a passkey

Using a passkey on passkeys.io

? Does a passkey meet
our initial requirements?

USING A PASSKEY CREDENTIAL

1 Load the main page of the application

8 Signature response

2 Main page with the code
to run a passkey authentication

4 Challenge signature request7Signature
 response

5 Interact with the
authenticator

6Sign the challenge and
create a response

9 Verify signature with
stored public key

3Select a passkey

Authenticators can be cross-
platform, making them portable
by nature (e.g., a phone, a USB

key, ...)

Selecting a passkey is generally
a smooth user experience

Passkeys are phishing resistant,
because the application's origin

is embedded throughout the
protocol.

Depending on the authenticator, passkeys can be synchronized
to multiple devices (e.g., a password manager, iCloud keychain)

The full passkey experience

caniuse.com

PASSKEYS FROM A DEVELOPER'S PERSPECTIVE

Using the Web Authentication API to create a new passkey

1
2
3

const credential = await navigator.credentials.create(
 createCredentialOptions
);

Browsers offer a credentials API to
support two crucial operations:

create and get

The credentials API supports various
use cases. The options provided here

determine the type of credential.

For the use of passkeys, the type of
credential is publicKey

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

Information about the relying party
(i.e., the service asking for

authentication)

A human-readable name
for the relying party

The ID of the relying party. This value must
correspond to the match the relying party’s origin

or domain.

For example, for https://app.restograde.com, the
ID can be app.restograde.com or restograde.com

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

A username and a display
name intended for use in UX

A unique ID to identify the user with their passkey credential. This ID should not contain PII
(i.e., no email) and is preferably indepdent from the user’s primary ID in the application.

Also referred to as the user handle.

The user handle is embedded in the
credential and is provided to the server

during authentication

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

A challenge that should be signed by the
credential. The challenge is provided by

the server.

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

A resident key is the indicator of a discoverable
credential, which allows the user to select this

credential for authentication, even when using it
the first time in a specific browser.

This is an important requirement for passkeys.

THE AUTHENTICATORSELECTION OBJECT

• The authenticatorAttachment indicates where the key can be stored
• Platform: the key will be stored locally (e.g., keychain with password or touch ID)
• Cross-platform: they must be portable across different machines (e.g., USB)

• The userVerification property indicates if the user identity should be verified
• Fingerprint, password, or biometrics counts as user verification
• Touching a yubikey (without fingerprint scan) is not considered user verification

• This is known as user presence, but not user verification
• Browsers can allow verifiable authenticators, even when user verification is discouraged

• The residentKey properties indicate “discoverable credentials”, aka passkeys
• These are credentials that can be used without the server explicitly asking for them

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

Indicates which algorithms can be used
to generate signatures. This allows a

relying party to indicate what types of
signatures the backend service can verify.

Self-explanatory, right?

https://github.com/w3c/webauthn/issues/1757

As it turns out, there’s no clear
understanding of which

authenticator supports what …

https://github.com/w3c/webauthn/issues/1757

As it turns out, there’s no clear
understanding of which

authenticator supports what …

Using the Web Authentication API to create a new passkey

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const createCredentialOptions = {
 publicKey: {
 rp: {
 id: 'restograde.com',
 name: 'Restograde',
 },
 user: {
 id: Uint8Array.from(serverData.userId, (c) => c.charCodeAt(0)),
 name: serverData.userEmail,
 displayName: serverData.userDisplayName,
 },
 pubKeyCredParams: [
 { type: 'public-key', alg: -7 },
 { type: 'public-key', alg: -257 },
],
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 authenticatorSelection: {
 residentKey: 'required',
 requireResidentKey: true
 }
}}

Indicates which algorithms can be used
to generate signatures. This allows a

relying party to indicate what types of
signatures the backend service can verify.

-7 (ES256) and -257 (RS256) cover
the main authenticators, but it’s a

good idea to also support -8 (EdDSA)
if your backend can handle it

THE RESULT OF CREATING A CREDENTIAL

• Creating a credential yields a promise that resolves to a PublicKeyCredential
• This object holds a bunch of data about the newly created credential (e.g., an ID)
• The important property is the response, which is an AuthenticatorAttestationResponse

• In the response, there's an encoded JSON value called clientDataJSON
• This value is the JSON data that was passed to the authenticator at creation time

• Values include the origin of the context that created the credential
• The client can use the JSON data to do a sanity check on the generated credential

• The client sends the following data to the backend for registration
• The public key of the credential
• The authenticatorData, a binary format providing the flags and ID of the authenticator

https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredential
https://w3c.github.io/webauthn/#authenticator-data

Digging into passkey creation
on learnpasskeys.io

Using the Web Authentication API to use an existing passkey

1
2
3

const credential = await navigator.credentials.get(
 getCredentialOptions
);

Browsers offer a new credentials API
to support two crucial operations:

create and get

The credentials API supports various
use cases. The options provided here

determine the type of credential.

For passkeys, the type of credential
is publicKey

Using the Web Authentication API to use an existing passkey

1
2
3
4
5
6

const getCredentialOptions = {
 publicKey: {
 rpId: 'restograde.com’,
 challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),
 }
}

The ID of the relying party, used to
identify which existing credentials can be

used. Must be an exact match for the
value used during registration.

The challenge provided by the server
to sign with the private key.

It is critical to avoid replay attacks
that this value is not empty, and
generated from a secure random

source.

This rpId offers phishing protection. A
phishing website would have to use

restograde.com, but the browser will
refuse to use that on rest0grade.com

THE RESULT OF USING A CREDENTIAL

• Using a credential yields a promise that resolves to a PublicKeyCredential
• This object holds the data of using the credential (e.g., its ID, the generated signature)
• The important property is the response, which is an AuthenticatorAssertionResponse

• The client sends all the relevant ArrayBuffers to the backend for verification
• The ID of the credential (rawId)
• JSON data from creating the credential (response.clientDataJSON)
• Authenticator data, e.g., flags indicating user verification (response.authenticatorData)
• The signature (response.signature)

• The client does not handle this data, it just forwards it to the backend

https://www.w3.org/TR/webauthn-2/#authenticatorassertionresponse

Digging into passkey usage
on learnpasskeys.io

Attestations represent the authenticator
acknowledging the creation of a new keypair

Assertions represent the authenticator
acknowledging that a specific key was used

! Conditional mediation is critical for a
seamless user experience

https://developer.chrome.com/blog/webauthn-conditional-ui/

Modern browsers support a conditional UI for various authentication mechanisms

1 <input type="text" name="username" autocomplete="username webauthn" ...>

This input field accepts either a username, or
triggers the selection of a passkey when

available.

It is designed to offer a seamless user
experience regardless of the authentication

mechanism the user wants to use.

This is optional, as the application
can always explicitly start the

selection of a passkey.

However, when there is no passkey
available, this will result in a

disruption of the flow with an error.

Modern browsers support a conditional UI for various authentication mechanisms

1 <input type="text" name="username" autocomplete="username webauthn" ...>

Trigger the passkey UI on the input field if passkeys are discovered

1
2
3
4
5
6
7

const credential = await navigator.credentials.get({
publicKey: {
rpId: 'app.example.com',
challenge: Uint8Array.from(serverData.challenge, (c) => c.charCodeAt(0)),

},
mediation: 'conditional'

});

This API call starts a conditional passkey
authentication dialog, which only suggests
passkey authentication as an autocomplete

option if a passkey is discovered.

Conditional mediation in action

caniuse.com

? What about the server?

RESPONSIBILITIES OF THE BACKEND

• The specification does not define how to send credential data to the backend
• Most server-side libraries and frameworks define the format/data they expect
• Some of the data is binary, so they must be base64-urlencoded for safe transport

• During registration, the backend is responsible for
• Providing the browser with a user handle and challenge for credential creation
• Verifying the incoming credential data

• Make sure the origin matches the expected origin
• Verify the feature flags of the authenticator (e.g., user verification, user presence, …)
• Verify additional metadata if included

• Storing the authenticator data and public key to use during authentication

RESPONSIBILITIES OF THE BACKEND

• The specification does not define how to send credential data to the backend
• Most server-side libraries and frameworks define the format/data they expect
• Some of the data is binary, so they must be base64-urlencoded for safe transport

• During authentication, the backend is responsible for
• Providing the browser with the challenge to sign
• Verifying the incoming data

• Lookup the authenticator using the provided authenticator ID
• Ensure that origin included in the response data matches the expected origin

• Verifying the signature using the public key of the authenticator

https://passkeys.dev/docs/tools-libraries/libraries/

https://developers.yubico.com/java-webauthn-server/

https://simplewebauthn.dev/

AUTHENTICATING WITH PASSKEYS

• Passkeys are key-based credentials with embedded user information
• This information is typically a unique identifier pointing to a specific user
• The authenticator stores this data along with the private key

• During authentication, the authentication data includes the unique identifier
• The service can verify the signature using the authenticator’s public key
• If the signature matches, the service uses the unique identifier to authenticate the user

• Passkey authentication relies on two core building blocks in the browser
• The Web Authentication API handles the interactions between JS and authenticators
• Conditional mediation enables the UX to allow seamless passkey selection

INTEGRATING PASSKEYS INTO YOUR APPLICATIONS

PASSKEY ADOPTION

• Conditional mediation allows passkeys to co-exist with passwords
• Give users the option to create passkeys to gradually move away from passwords
• Consider allowing users to disable password-based authentication for enhanced security

• Keep in mind that users will want to use multiple passkeys
• Ideally, a user authenticates once with a cross-platform passkey
• The application then prompts the user to register a platform-specific passkey

• This passkey will be added to the user's account, along with the cross-platform passkey
• The platform-specific passkey improves the user experience

• Adding multiple passkeys to an account is straightforward
• Multiple credentials with their IDs/public keys map to a specific user account
• During authentication, the application matches the used credential to a specific user

! Passkeys are linked to an origin

RELAXING THE PASSKEY ORIGIN

• Typically, passkeys are associated with the origin of the page creating them
• The origin is embedded in the protocol and cannot be changed for a particular passkey
• This behavior offers strong phishing protection
• This behavior can become a drawback when changing the origin of an application

• E.g., moving the application from www.restograde.com to app.restograde.com

• Browsers allow creating passkeys where the relying party is the parent domain
• E.g., app.restograde.com can create a passkey for restograde.com
• This behavior is still resistant against phishing attacks, but offers some flexibility

• Relaxing the passkey's relying party is not intended for sharing passkeys
• Subdomain-based attacks illustrate the danger of sharing resources with subdomains
• Only use this mechanism for flexibility in (re)deploying applications within the parent domain

! When possible, consider offloading passkey
usage to an (internal) identity provider

1 Start authentication

2 Please use the IDP

3 Authenticate for Restograde

4 Please use a passkey for authentication

5 Passkey authentication

6 Authentication confirmation

7 Authentication confirmation

8 Welcome back Philippe

The offloading of authentication in this way is typically
implemented using OpenID Connect.

The application never has to handle passkeys, since user
authentication is the responsibility of the identity provider.

When an Identity Provider supports
passkeys, enabling it is typically

straightforward, as the IDP handles
all the heavy lifting.

pdr.online

Passkeys offer key-based authentication with a great UX1

Passkeys are widely adopted by browsers, password managers, etc.2

Consider offering users passkey support to eradicate passwords3

KEY TAKEAWAYS

Thank you!

https://pragmaticwebsecurity.com

Need training or security guidance?
Reach out to discuss how I can help

