The Quantum Threat and Post-Quantum Cryptography (PQC)

4 June 2024

Bart Preneel The Quantum Threat and Post-Quantum Cryptography (PQC)

5

Outline

- Quantum computers and impact on cryptography
- The NIST competition: focus on public-key encryption • digital signatures: see tutorial of Ludovic Perret
- Migration issues

8

The advent of quantum computers

Yuri Manin 1980 Richard Feynman 1981 Exponential parallelism

Jan. 2014: NSA has spent 85 M\$ on research to build a quantum computer

If a large quantum computer can be built

public-key cryptography algorithms have to be replaced [Shor'94]

RSA, Diffie-Hellman (including elliptic curves)

Breaking RSA-2048 requires 4096 ideal qubits or 20 million real qubits

symmetric crypto: key sizes: x2 [Grover'96] but huge quantum devices needed

10

12

The Quantum Threat and Post-Quantum Cryptography (PQC)

What does BSI	Burdetaant Deutschland Gir Scherheit in der Informationstechnik
say?	Studie: Entwicklungsstand Quantencomputer Version 2.0 Datum 13.11.2023
	Noisy Intermediate-Scale Quantum (NISQ): due to the unknown scaling of these algorithms and based on larger theoretical arguments it is not likely that cryptanalytic quantum advantage can be reached in the NISQ domain.
	Cryptographically Relevant Quantum Computers (QRQC): superconducting system with the surface code or an ion-based system with the color code will take at least one decade, more likely two. But surprises are possible.
https://www.bsi.bund.de	/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Quantencomputer/Entwicklungstand_QC_V_2_0.html 17

The Quantum Threat and Post-Quantum Cryptography (PQC)

21

NIST Post-Quantum Competition (2016-2026?) https://en.wikipedia.org/wiki/Post-Quantum_Cryptography_Standardization https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

Encryption: KYBER

Digital signatures: Dilithium, Falcon, SPHINCS+ (hash-based signature)

	Signatures	Encryption/KEM	TOTAL
Lattice	4/3/2/2	24/9/3/1	28/12/5/3
Code	5/0/0/0	19/7/1/ <mark>0</mark>	24/7/1/ <mark>0</mark>
Multivariate	7/4/ <mark>1/0</mark>	6/0/0/0	13/4/ <mark>1/0</mark>
Hash	4/1/0/1	0/0/0/0	4/1/ <mark>0</mark> /1
Other	3/1/0/0	10/1/ <mark>0/0</mark>	13/2/ <mark>0/0</mark>
TOTAL	23/9/3/3	59/17/4/1	82/26/7/4

IETF (independent of NIST): 2 hash-based signatures

RFC 8554 Leighton-Micali signatures

RFC 8391 XMSS eXtended Merkle signatures

NIST: Winners and 4th round candidates

Family	Signatures	KEM / Encryption
Lattice-based	Dilithium Falcon	Kyber Saber NTRU FrodoKEM NTRUprime
Hash-based	Sphincs+	BSI
Code-based		Classic McEliece Bike HQC
Multivariate	GeMSS Rainbow	
Other	Picnic	SIKE

26

NIST: Winners and 4th round candidates

Family	Signatures	KEM / Encryption
Lattice-based	Dilithium Falcon	Kyber Saber NTRU FrodoKEM NTRUprime
Hash-based	Sphincs+	BSI
Code-based		Classic McEliece Bike HQC
Multivariate	GeMSS Rainbow	
Other	Picnic	SIKE
		28

4 June 2024

Bart Preneel

The Quantum Threat and Post-Quantum Cryptography (PQC)

30

Slide credit: Frederik Vercautere

 $\begin{array}{l} \label{eq:connection LWE with lattices}\\ \end{tabular} Given vector $\mathbf{b} \in \mathbf{Z_q}^{n\mathbf{x1}}$ and matrix $\mathbf{A} \in \mathbf{Z_q}^{n\mathbf{xn}}$ with $\mathbf{b} = \mathbf{A} $\mathbf{s} + \mathbf{e}$ \\ \end{tabular} Free terms are "small" when reduced in the interval [-q/2,q/2] \\ \end{tabular} Natural definition of smallness \\ \end{tabular} Consider the set of vectors in $\mathbf{Z_q}^{m\mathbf{x1}}$ \\ \end{tabular} \Lambda(\mathbf{A}) = \{\mathbf{z} \in \mathbf{Z_q}^{m\mathbf{x1}} | \end{tabular} \mathbf{z} = \mathbf{A}.\mathbf{x}$ mod \mathbf{q} and $\mathbf{x} \in \mathbf{Z_q}^n$ } \} \\ \end{tabular} \Lambda(\mathbf{A}) = \{\mathbf{z} \in \mathbf{Z_q}^{m\mathbf{x1}} | \end{tabular} \mathbf{z} = \mathbf{A}.\mathbf{x}$ mod \mathbf{q} and $\mathbf{x} \in \mathbf{Z_q}^n$ } \} \\ \end{tabular} \Lambda(\mathbf{A})$ forms a lattice; indeed if $\mathbf{z_1}$, $\mathbf{z_2} \in \Lambda(\mathbf{A})$ then $\mathbf{z_1}$^- $\mathbf{z_2} \in \Lambda(\mathbf{A})$ lif $\mathbf{e} \neq 0$ but small, then $\mathbf{b} \notin L(\mathbf{A})$ but still quite close to it $ Solving Bounded Distance Decoding (distance \mathbf{d}) with $\mathbf{d} > ||\mathbf{e}||$ removes errors} \end{tabular}$

The Quantum Threat and Post-Quantum Cryptography (PQC)

Key Aspects of Lattice-based Systems

Pros

• efficient and parallizable

- matrix-vector arithmetic, Fast-Fourier Transform for polynomial multiplication
- worst-case to average-case reductions

Cons

- · difficult to find good sampling methods
- · difficult to assess exact security
- · large keys (except for ring, module and NTRU versions)
- probabilistic decryption

Digital signatures

34

	PQ	Siz	e (Bytes)	CPU time (low	ver is better)
		Public Key	Signature	Signing	Verification
Dilithium2	Y	1,312	2,420	4,8	0,5
Falcon512	Y	897	666	8*	0,5
Sphincs+ (speed)	Y	32	17,088	550	7
Sphincs+ (size)	Y	32	7,856	8,000	2,8
RSA-2048	Ν	256	256	70	0,3
Ed25519	Ν	32	64	1 (baseline)	1 (baseline)

Disclaimer: numbers by Cloudflare, should be used with caution. These numbers vary considerably for different platforms and implementations. Should only be used as rough guideline. Source: https://blog.cloudflare.com/nist-post-quantum-surprise/

The Quantum Threat and Post-Quantum Cryptography (PQC)

37

Security levels

Level	Classical	
I	AES 128	2 ¹⁷⁰ /MAXDEPTH quantum gates or 2 ¹⁴³ classical gates
II	SHA3-256	2 ¹⁴⁶ classical gates
III	AES192	2 ²³³ /MAXDEPTH quantum gates or 2 ²⁰⁷ classical gates
IV	SHA3-384	2 ²¹⁰ classical gates
V	AES256	2 ²⁹⁸ /MAXDEPTH quantum gates or 2 ²⁷² classical gates
Criticism: to • circuit de • cost of m • which qui	o vague pth emory antum gates?)

	Size (Bytes)		Op	os/sec (Higher is be	tter)
	Public Key	Ciphertext	Keygen	Encaps / Encrypt	Decaps / Decrypt
Kyber-512	800	768	125,000	80,000	100,000
RSA-2048	256	256	30	150,000	1,400
ECC X25519	64	64	80,000	15,000	19,000

Disclaimer: numbers by Cloudflare, should be used with caution. These numbers vary considerably for different platforms and implementations. Should only be used as rough guideline. Source: https://blog.cloudflare.com/nist-post-quantum-surprise/

44

NIST Post-Quantum Standardization Effort

http://csrc.nist.gov/pqcrypto

Fall 20	016		Formal call for proposals – NISTIR 8105
July 2	022	4	Winners announced batch 1
Sep. 2	022		Call for new digital signature schemes
Oct. 2	022	3	Start of Round 4: BIKE, Classic McEliece, HQC, SIKE
Jun. 2	023		Deadline for submitting new signature schemes
Summer	2023		Release draft standard batch 1 (Falcon only late 2024)
Summer			
Summer	2024		Parameters batch 1 chosen and standard published
202	4		Parameters batch 1 chosen and standard published End of Round 4?
202 202	4		Parameters batch 1 chosen and standard published End of Round 4? Selection of new signature schemes
202 2025 2026	4 5? 6?		Parameters batch 1 chosen and standard published End of Round 4? Selection of new signature schemes Additional standards published

46

National Cybersecurity Center of Excellence (NCCoC) (US): pragmatic approach (missing in EU)

- NIST Special Publication 800-38A: Migration to Post-Quantum Cryptography: Preparation for Considering the Implementation and Adoption of Quantum Safe Cryptography
- Coordination
- Automated tools for detection of cryptographic libraries
- Interoperability and performance demonstrations across different technology and protocols to include TLS, QUIC, SSH, code signing, public key certificates, hardware security modules, etc.
- <u>https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-postquantum-cryptographic-algorithms</u>

53

Some applications will migrate to pure symmetric cryptography or will add this as backup

- Computationally secure: most likely
 - Performance is excellent (AES < 1 cycle/byte)
 - Always online: fine today
 - To trusted center: problematic but threshold systems may work
 - Or hardware assumption

• Information theoretic security for some applications

• one-time pad + unconditionally secure MAC algorithm

Challenges: technical

- Slow process
- Larger keys/ciphertexts/signatures
- Most robust schemes have worse performance: hash-based signature and Classic McEliece
- Lattice based schemes
 - Good performance
 - Some uncertainty about parameters for structured lattices
 - Decryption failure, floating point, noise sampling
- Side channel resistance: KyberSlash, KEM in Fujisaki-Okamoto mode: FO-calyps [Azouaoui et al., Surviving the FO-CALYPS: Securing PQC Implementations in Practice, RWC'22]

56

55

Challenges: other • Upgrading is slow • Upgrading is expensive Long term problem New EU Recommendation on • PKI: middleboxes and clients break when Post-Quantum Cryptography certificate chains grow by 10kB/30kB Need regulation: strategic EU approach for 2026 (3 years behind)

https://www.nldigitalgovernment.nl/news/new-eurecommendation-on-post-quantum-cryptography/

On 11 April 2024, the European Commission published a recommen dation regarding the transition to Post-Quantum Cryptography (PQC),

57

58

McEliece security notions

Private key security

Relies on the difficulty of retrieving inner code from public matrix H and thus getting access to efficient decodina

Message security

decryption security relies on NP-hardness of the syndrome-decoding problem for a random code assuming that structure of H does not leak (best known algorithms take exponential time)

McFliece: suitable codes don't have too much structure

The Quantum Threat and Post-Quantum Cryptography (PQC)

