

Outline Symmetric cryptology ° confidentiality ° data authentication ° authenticated encryption Public key cryptology (asymmetric cryptology) Hybrid cryptology Applications

Cryptana	lysis e	xamp	le:					
TIPGK	RERCP	JZJZJ	WLE	GVCTX	EREPC	WMWMW	JYR	
UJQHL	SFSDQ	какак	XMF	HWDUY	FSFQD	XNXNX	KZS	
VKRIM	TGTER	LBLBL	YNG	IXEVZ	GTGRE	YOYOY	LAT	
WLSJN	UHUFS	MCMCM	ZOH	JYFWA	HUHSF	ZPZPZ	MBU	
XDTKO	VOVGT	NDNDN	API	KZGXB	IVITG	AQAQA	NCV	
YNULP	WKWHU	OEOEO	BQJ	LAHYC	JWJUH	BRBRB	ODW	
ZOVMQ	XKXIV	PFPFP	CRK	MBIZD	KXKVI	CSCSC	PEX	
APWNR	YLYJW	QGQGQ	DSL	NCJAE	LYLWJ	DTDTD	QFY	
BQXOS	ZMXKX	RHRHR	ETM	ODKBF	MZMXK	EUEUE	RGZ	
CRYPT	ANALY	SISIS	FUN	PELCG	NANYL	FVFVF	SHA	
DSZQU	BOBMZ	TJTJT	GVO	QFMDH	OBOZM	GWGWG	TIB	
ETARV	CPCNA	UKUKU	HWP	RGNEI	PCPAN	нхнхн	UJC	
FUBSW	DQDOB	VLVLV	IXQ	SHOFJ	QDQBO	IYIYI	VKD	
	Plai	ntext?	7	k = 1	7			KU LEUVEN

10

KU LEUVEN

17

30

32

CTR: properties

- > different IV necessary; otherwise insecure (Venona)
- uses only encryption
- > key stream independent of plaintext: can be pre-computed
- > no error propagation: errors are only copied
- > random access on decryption
- > optimal for hardware:
 - $\,\,$ $\,$ parellellism: one can process multiple counter values at the same time
 - $^{\prime\prime}$ pipelining: no need to know the ciphertext block corresponding to the current plaintext block to start processing the next plaintext block
- > risk: what if counters are (accidentally) reset to same value?

32

31

KU LEUVEN

KU LEUVEN

Public key cryptology: digital signature Clear VERI Clear Clear Clear SIGN text FY text text text **Private key Public key** 55 KU LEUVEN

57

How to continue? Pre-Quantum era RSA / ECC Hybrid era RSA / ECC + Post-Quantum Post-Quantum Era Once confidence in post-quantum is high enough New call for signature schemes: deadline 1 June 2023 – four more years

Disadvantages of public key cryptology

- > Calculations in software or hardware two to three orders of magnitude slower than symmetric algorithms
- > Longer keys: 64-512 bytes rather than 10..32 bytes
- > What if factoring is easy or if a large quantum computer can be built?
- > Post-quantum cryptography

62

61

66

KU LEUVEN

РКІХ

Public-Key Infrastructure

IPsec VPN models: Hosts and Security Gateways Host-to-Internet D host (not ed Ne VPN) IPSec Gatewa IPSec Gateway Internet P Branch-to-D usted No branch IPSec Gatewa Internet D D Host-to-1 ntrusted Network gateway Network 74 KU LEUVEN

74

Selected books on cryptology

A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1997. The "bible" of applied cryptography. Thorough and complete reference work but slightly outdatednot suited as a first textbook. http://www.cacr.math.uwaterloo.ca/hac

D. Boneh, V. Shoup, A Graduate Course in Applied Cryptography, https://toc.cryptobook.us/ Draft. Rather advanced course with interesting applications.

N. Smart, Cryptography Made Simple, Springer, 2015. Solid and up to date but on the mathematical side.

D. Stinson, M. Peterson, *Cryptography:Theory and Practice*, CRC Press, 4th Ed., 2018. Solid introduction, but only for the mathematically inclined.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman & Hall, 2014. Rigorous and theoretical approach.

76

KU LEUVEN