
Secure defaults
developer-friendly security

Pieter De Cremer & Claudio Merloni

Who here has heard of secure defaults?

Who is already sold on this idea?

Secure defaults is NOT just…

Secure defaults is NOT just…

…having developers fix all security bugs

Secure defaults is NOT just…

…having developers fix all security bugs

…only fixing high priority issues

 make it easy to write secure code
 make it hard to write insecure code

Secure defaults

Security
team

Dweilen met de kraan open
English: mopping while the tap is still running

Pieter De Cremer
0xDC0DE

Claudio Merloni
p4p3r

Security researchers at Semgrep

Early adopters are doing this already
Netflix
https://www.youtube.com/watch?v=HIdexRqjpWc

Meta / Facebook
https://about.fb.com/news/2019/01/designing-security-for-billions/

Microsoft
https://www.acsac.org/2007/workshop/Howard.pdf

Google
https://sre.google/books/building-secure-reliable-systems/

Snowflake
https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

Semgrep
https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

And many more

https://www.youtube.com/watch?v=HIdexRqjpWc
https://about.fb.com/news/2019/01/designing-security-for-billions/
https://www.acsac.org/2007/workshop/Howard.pdf
https://sre.google/books/building-secure-reliable-systems/
https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale
https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

Despite security automations,
vulnerabilities are still prevalent

Every application
suffers from security issues throughout its lifetime

Underlying code
is where vulnerabilities lie, in most cases

Nothing new under the sun
as vulnerabilities evolve just slowly

Traditional security tools were designed
to be part of software testing

DevelopPlan Build Test Release

Code
analysis

Penetration
testing

BreachesFix

The development team and security team
historically had an adversarial relationship

AppSecCali 2019 - A Pragmatic Approach for Internal Security Partnerships - Netflix

Two separate worlds
with different priorities and perspectives

Not working in tandem
instead pushing around large lists of potential issues

No empathy, little collaboration
caught up in a system that doesn’t scale

https://www.youtube.com/watch?v=HIdexRqjpWc

Modern development practices
require security teams to adapt

Automation is a key element
to increase speed of finding and fixing vulnerabilities

Context switching kills productivity
and same goes for security outside of dev workflows

Testing speed is fundamental
to avoid friction and make security “seamless”

A shift-left movement is ongoing to
address security earlier in development

DevelopPlan Build Test Release

Code
analysis

Penetration
testing

BreachesFix
Code

analysis
Code

review

Traditional security tools
use a reactive approach

user input

Traditional security tools
use a reactive approach

user input

not yet detected

Security teams should be enablers

DevelopPlan Build Test Release

Detect vulnerabilitiesPrevent & fix
vulnerabilities

With secure defaults
we can be more proactive

detected by ignoring context

Relevant
to the developer’s work

Efficient
in meeting the developer’s needs

Usable
and well-integrated into the developer’s workflow

They should provide developers with
role-specific tools

Don’t just take our word for it

Owasp Top 10
“If we genuinely want to "move left" as an industry, we need more threat
modeling, secure design patterns and principles, and reference
architectures.”

Owasp SAMM
Security Architecture - Level 2: “Direct the software design process toward
known secure services and secure-by-default designs.”

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

The security team is responsible for finding
vulnerabilities in the software

75 - 220
Developers

1
AppSec

APPSEC Cali 2018 - We Come Bearing Gifts: Enabling Product Security

https://youtu.be/L1WaMzN4dhY

Security should become a shared responsibility

Shared responsibility means shared goals

Ship features fast
what developers care about

Prevent and fix vulnerabilities
what security people care about

Improving one at the detriment of the other
is not real improvement

Security is not special
Plan and scope it with the rest of the work

To make secure code more scalable,
we can learn from the DevOps movement

Before: Operators responsible
developers throw finished code over the wall

After: Self-service deployment
with CICD pipeline and infrastructure as code

Eliminate bug classes one at a time

secrets XSS

Auth
SQLi

AppSec time spent

Eliminate bug classes one at a time

secrets XSS

Auth
SQLi

bug bounty

code review

threat model

rotating

AppSec time spent

Example 1: secrets must be stored in AWS

Example 1: secrets must be stored in AWS

response = client.get_secret_value(
 SecretId='MyTestDatabaseSecret',
)
print(response)

private final SecretCache cache = new SecretCache();

@Override public String handleRequest(String secretId, Context c) {
final String secret = cache.getSecretString(secretId);
 System.out.println(secret);
}

Python

Java

Eliminate bug classes one at a time

secrets XSS

Auth
SQLi

bug bounty

code review

threat model

rotating

AppSec time spent

Killing bug classes leads to compounding
effects to leverage your time better

secrets XSS

Auth
SQLi

AppSec time spent

Example 2: queries must be parameterized

Killing bug classes leads to compounding
effects to leverage your time better

secrets XSS

Auth
SQLi

AppSec time spent

Example 3: no direct response writer

Solution: Use framework like JavaServer Faces (JSF) instead

Killing bug classes leads to compounding
effects to leverage your time better

secrets XSS

Auth
SQLi

AppSec time spent

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

59% of XSS vulnerabilities could have been
prevented with secure defaults

The power of Guardrails, Colleen Dai, Grayson Hardaway, BSides San Francisco

Fraction of XSS vulnerabilities preventable
with secure defaults

https://bit.ly/2022-BSidesSF-XSS-Guardrails

What does success look like?

Classes of security risk eliminated

Average time to find and fix reduced

Average severity reduced

Bug bounty costs reduced

How Netflix does secure defaults

Netflix Culture Meets Product Security | by Bryan D. Payne | Medium
The Paved Road at Netflix
APPSEC Cali 2018 - We Come Bearing Gifts: Enabling Product Security
Scaling Appsec at Netflix. By Astha Singhal
AppSecCali 2019 - A Pragmatic Approach for Internal Security Partnerships
The Show Must Go On: Securing Netflix Studios At Scale
Scaling Appsec at Netflix (Part 2) | by Netflix Technology Blog

https://medium.com/@bdpsecurity/netflix-culture-meets-product-security-599ceecd615d
https://www.slideshare.net/diannemarsh/the-paved-road-at-netflix
https://youtu.be/L1WaMzN4dhY
https://netflixtechblog.medium.com/scaling-appsec-at-netflix-6a13d7ab6043
https://www.youtube.com/watch?v=HIdexRqjpWc
https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479
https://netflixtechblog.com/scaling-appsec-at-netflix-part-2-c9e0f1488bc5

How Netflix does secure defaults

In-house consulting
no long-term relationships, no clear priorities

Per-app assessment does not scale
actionable self-service is important

Scaling Appsec at Netflix. By Astha Singhal

https://netflixtechblog.medium.com/scaling-appsec-at-netflix-6a13d7ab6043

How Netflix does secure defaults

Context, not control
not required, recommended

Partnerships
invest in paved road together with the consuming team

APPSEC Cali 2018 - We Come Bearing Gifts: Enabling Product Security with Culture and Cloud

https://youtu.be/L1WaMzN4dhY

How Netflix does secure defaults

The Show Must Go On: Securing Netflix Studios At Scale

1. Engagement Identification
2. Discovery meeting
3. Security Review
4. Alignment and Document priorities
5. Sync regularly

https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479

How Netflix does secure defaults

The Show Must Go On: Securing Netflix Studios At Scale

Missing or incomplete authentication
most critical type of issue they regularly faced

https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479

How Netflix does secure defaults

The Show Must Go On: Securing Netflix Studios At Scale

No organic adoption
until other features were added

https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479

How Netflix does secure defaults

Paved road simplifies reviews
are you using it or not?

Security was not the main motivation
the secure default allowed developers to move faster

The Show Must Go On: Securing Netflix Studios At Scale

https://netflixtechblog.com/the-show-must-go-on-securing-netflix-studios-at-scale-19b801c86479

How Meta / Facebook does secure defaults

Designing Security for Billions - Facebook

Defense in Depth
Secure frameworks to reduce programming errors
Automated testing tools to analyze code non-stop,
automatically and at scale

https://about.fb.com/news/2019/01/designing-security-for-billions/

How Snowflake does secure defaults

Appsec Development: Keeping it all together at scale - Jacob Salassi

Unscalable security reviews
performed by security engineers

security engineer

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Snowflake does secure defaults

Self-service threat modeling
by security partners
a big long questionnaire

security engineers

security partners

Appsec Development: Keeping it all together at scale - Jacob Salassi

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Snowflake does secure defaults

Self-service threat modeling
by security partners

Risk assessment
to determine if threat modeling can be skipped
6 questions to determine if it is Low, Med, or High risk

security engineers

security partners

Appsec Development: Keeping it all together at scale - Jacob Salassi

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Snowflake does secure defaults

Self-service threat modeling
by security partners

Risk assessment
to determine if threat modeling can be skipped

Security impact assessment
to filter “no security impact” worksecurity engineers

security partners

Appsec Development: Keeping it all together at scale - Jacob Salassi

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Snowflake does secure defaults

Self-service threat modeling
by security partners

Risk assessment
to determine if threat modeling can be skipped

Security impact assessment
to filter “no security impact” work

Project risk impact assessment
to manage timeline risk

security engineers

security partners

Appsec Development: Keeping it all together at scale - Jacob Salassi

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Snowflake does secure defaults

Never threat model the same thing twice
create re-usable secure defaults

Speed up reviews
block anti-patterns with Semgrep

Appsec Development: Keeping it all together at scale - Jacob Salassi

https://semgrep.dev/blog/2021/appsec-development-keeping-it-all-together-at-scale

How Semgrep does secure defaults

Fixing leaky logs: how to find a bug and ensure it never returns - Nathan Brahms

Self-service DevSec
without security team

Faster resolution
solved in minutes

Security can focus on high-impact work
not fixing devs latest XSS mistake

https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

How Semgrep does secure defaults

Fixing leaky logs: how to find a bug and ensure it never returns - Nathan Brahms

1. Mitigate
Revert logging change

2. The secure default
Replace str param with ObfuscatedStr

3. Enforcement

Found tokens being logged

https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

How Semgrep does secure defaults

Fixing leaky logs: how to find a bug and ensure it never returns - Nathan Brahms

3. Enforcement

Block commits to SQLAlchemy models for security review

Yearly training on the pitfalls of logging sensitive data

Audit logs weekly

File an issue with your SAST provider, demanding they add
checks to catch sensitively logged data!

https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

How Semgrep does secure defaults

Fixing leaky logs: how to find a bug and ensure it never returns - Nathan Brahms

3. Enforcement

Block commits to SQLAlchemy models for security review

Yearly training on the pitfalls of logging sensitive data

Audit logs weekly

File an issue with your SAST provider, demanding they add
checks to catch sensitively logged data!

https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

How Semgrep does secure defaults

Fixing leaky logs: how to find a bug and ensure it never returns - Nathan Brahms

3. Enforcement
Enforce an invariant with Semgrep

https://semgrep.dev/blog/2020/fixing-leaky-logs-how-to-find-a-bug-and-ensure-it-never-returns

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

Think long term, think high impact

Think long term, high impact

1. Select vulnerability class
2. Build a scalable solution and

make it the default
3. Measure adoption
4. Drive organic adoption

1. Select vulnerability class

BSidesSF 2020 - How to 10X Your Company’s Security (Without a Series D) - Clint Gibler

Focus on best ROI
maximize impact, minimize ongoing time requirements

Reduce risk, ensure a baseline
don’t try to find and fix every bug

Eliminate bug classes
find and prevent at scale for compound effect

secrets XSS

Auth
SQLi

AppSec time spent

https://youtu.be/tWA_EBNsQH8

1. Select vulnerability class

BSidesSF 2020 - How to 10X Your Company’s Security (Without a Series D) - Clint Gibler

Focus on best ROI
maximize impact, minimize ongoing time requirements

Reduce risk, ensure a baseline
don’t try to find and fix every bug

Eliminate bug classes
find and prevent at scale for compound effect

secrets XSS

Auth
SQLi

AppSec time spent

https://youtu.be/tWA_EBNsQH8

2. Build a scalable solution and
 make it the default

Scaling AppSec - sec4dev - Clint Gibler

AppSec time spent

Detect lack of
secure default

Find bug
(automated)

Confirm bug
(manual)

Write POC
exploit

https://youtu.be/KUJRK-rzxik

3. Measure adoption

Track costs and fix time
per team and per bug class

Track adoption of secure defaults
speak to your “customers”

also provides friendly peer pressure

Team Score

 1

 2

 3

4. Drive organic adoption
 by productizing your secure defaults

Integrate into existing features
make the secure way, the easy way

Add non-security features
make it attractive to use

4. Drive organic adoption

Integrate into existing features
make the secure way, the easy way

Add non-security features
make it attractive to use

Automate checks
to observe, and to enforce adoption

An effective false positive is a marking where
the developer chooses not to take action

Tricorder: Building a Program Analysis Ecosystem, Sadowski et. al, Google

False positive (FP)
security perspective
secure code marked as insecure

Effective False Positive (EFP)
developer perspective
any marking a developer won’t fix

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43322.pdf

Drive adoption with better tools

The Paved Path Methodology, Pieter De Cremer, OWASP BeNeLux Days

Relevant
project-specific guidelines

Efficient
fast scan times, well-integrated

Usable
not just detect mistakes, but help with fixing

https://youtu.be/mlYwZ8oTIt4

A relevant tool allows for customized rules

The Paved Path Methodology, Pieter De Cremer, OWASP BeNeLux Days
Find critical vulnerabilities and eradicate them, forever - CodeQL

98%

95%

Fix rate

“Industry leading”

Customized rules

No customized
rules

https://youtu.be/mlYwZ8oTIt4
https://github.com/features/security/code

Semgrep allows for easy rule customization

A relevant tool uses customized rules

Customized rules 50% higher fix rate
compared to generally applicable rules

The tool should provide remediation guidance

The Paved Path Methodology, Pieter De Cremer, OWASP BeNeLux Days

Remediation
guidance

No remediation
guidance

during assignment when finished

79% free of markings

6% free of markings

https://youtu.be/mlYwZ8oTIt4

The tool should provide remediation guidance

The Paved Path Methodology, Pieter De Cremer, OWASP BeNeLux Days

Remediation
guidance

No remediation
guidance

during assignment when finished

79% free of markings

6% free of markings

Reduced effective
false positives!

https://youtu.be/mlYwZ8oTIt4

Semgrep provides remediation guidance in
the form of autofixes

Semgrep provides remediation guidance in
the form of autofixes

Semgrep provides remediation guidance in
the form of autofixes

Semgrep provides remediation guidance in
the form of autofixes

Rules with autofix have 50% higher fix rate
compared to rules without autofix

Struggles and future work

Political and cultural resistance
the security team wants control

Code quality takes time away from features
markings are false positives

Siloed teams and persistent habits
no empathy or synergy, need for building partnerships

Security must scale

The secure way, the easy way

Success stories

Think long term, high impact

Secure defaults

WHY

WHAT

WHO

HOW

Secure defaults is NOT just…

…having developers fix all security bugs

…only fixing high priority issues

Secure defaults is NOT just…

…having developers fix all security bugs
 but building scalable self-service solutions

…only fixing high priority issues

Secure defaults is NOT just…

…having developers fix all security bugs
 but building scalable self-service solutions

…only fixing high priority issues
 but killing high-impact bug classes

TL;DR secure defaults
WHY Security must scale
speed of development has increased
security experts are understaffed

WHAT The secure way, the easy way
systematic fundamental solutions
productizing those solutions

WHO Early adopters have been successful
Netflix, Meta, Snowflake, Semgrep, and more

HOW Think long term, high impact
leverage your time most effectively now
to have big wins in the future
automate smart

Secure defaults
developer-friendly security

Pieter De Cremer & Claudio Merloni

