
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

OAUTH 2.0 AND OPENID CONNECT
ARCHITECTURES

Authenticate the user for me?

OpenID Connect

! OpenID Connect is an authentication
protocol, supporting SSO and federation

Authenticate the user for me?

Can I access an API please?

Request with an access token

Help me out here,
is this access token valid?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

! OAuth 2.0 offers an authorization framework
to support complex applications

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

USING OPENID CONNECT FOR AUTHENTICATION

1 I want to authenticate (click the login button)

2 The STS handles that. Go there to confirm your identity

3 I want to tell application X who I am

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The identity token representing
the authenticated user

10 Authenticate the user
with the identity token

11 Welcome back Philippe!

THE CONCEPT OF OPENID CONNECT

The encoded identity token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik5U
VkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBRVVU1UVRZeFFV
VXlPVU5FUVVVeE5qRXlNdyJ9.eyJuaWNrbmFtZSI6InBoaWx
pcHBlIiwibmFtZSI6InBoaWxpcHBlQHByYWdtYXRpY3dlYnN
lY3VyaXR5LmNvbSIsInBpY3R1cmUiOiJodHRwczovL3MuZ3J
hdmF0YXIuY29tL2F2YXRhci9mNDBkNjRhNGIxNjc4OTUwODA
2MmU2NjRiZTZhZTU3NT9zPTQ4MCZyPXBnJmQ9aHR0cHMlM0E
lMkYlMkZjZG4uYXV0aDAuY29tJTJGYXZhdGFycyUyRnBoLnB
uZyIsInVwZGF0ZWRfYXQiOiIyMDIwLTA2LTA5VDA0OjE4OjA
0LjkwM1oiLCJlbWFpbCI6InBoaWxpcHBlQHByYWdtYXRpY3d
lYnNlY3VyaXR5LmNvbSIsImVtYWlsX3ZlcmlmaWVkIjp0cnV
lLCJpc3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZjIwMzY
2YzYiLCJhdWQiOiJGTjk4M0NFWWd4NG1kVWczTktOS0hqd2Z
OQUw1RmI0MiIsImlhdCI6MTU5MTY3NjI5MCwiZXhwIjoxNTk
xNzEyMjkwfQ.m60Br25jY8MOwIpCAjv3tRYF7IMR11ydzaP1
m6qJwsX74Sr5WUh49IK3iwaK72U6r2KXAp3_Oys9aabdoSc6
EkiYo7sho2W_fbLrUz8ocHFcTdHemuM0zoDQ6lVgobDNiwtl
eht8iNnIf9ghlRa-
TBtuL0TIRxkSHsCuJHKlWEG7zVHwll1q34XcLtkq4mnjWKlM
P5dNZoqIB_0Gek-EG05nUuoYwK7IqaZIGFLgc4EaK0fel-
MIqqDAwiD3etAkILSu7Phejk6zHwuEQlt3YzlbP5ZHNPK5hn
Sph80BPL7VMdDUWhjMdl1eW21cRq5CQNIKAJDbVLDdWqemO9
Kp_A

The decoded JWT payload

1
2
3
4
5
6
7
8
9
10
11
12
13

{
"nickname": "philippe",
"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,
"exp": 1591712290

}

The decoded JWT payload

1
2
3
4
5
6
7
8
9
10
11
12
13

{
"nickname": "philippe",
"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,
"exp": 1591712290

}

User account information from the STS

The issuer of the identity token (STS)

The audience of the identity token (client)

Lifetime information about the identity token

The user's unique ID within the STS

The identity token payload

1
2
3
4
5
6
7
8
9
10
11
12
13

{
"nickname": "philippe",
"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676410,
"exp": 1591712410

}

The backend's internal user database

The sub claim is guaranteed to be
unique and immutable

ID Name Sub

1 alice auth0|8c34361ea1c8bff697e3a81e

2 philippe auth0|5eb916c258bdb50bf20366c6

The sub value is used to
find the authenticated

user in the Virtual
Foodie database

The session is
populated with the

information about the
authenticated user

1 I want to authenticate (click the login button)

2 The STS handles that. Go there to confirm your identity

3 I want to tell application X who I am

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The identity token representing
the authenticated user

10 Authenticate the user
with the identity token

11 Welcome back Philippe!

1 I want to authenticate (click the login button)

2 Azure AD handles that. Go there to confirm your identity

3 I want to tell my company's application who I am

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The identity token representing
the authenticated user

10 Authenticate the user
with the identity token

11 Welcome back Philippe!
Company applications

using SSO with Azure AD

Your company's
Azure AD

1 I want to authenticate with GitHub

2 Go to GitHub to confirm your identity

3 I want to tell Netlify who I am

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The identity token representing
the authenticated user

10 Authenticate the user
with the identity token

11 Welcome back Philippe!
Netlify, supporting social

login with GitHub

GitHub

! OpenID Connect has nothing to do with
API access or authorization

The authorization request (a redirect to the STS)

1
2
3
4
5
6

https://sts.restograde.com/authorize
?response_type=code
&scope=openid profile email
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&nonce=66QK3qqWhxQD_L0ZAuqritZi5Sy6

Indicates the authorization code flow
We want an ID token with email/profile info

Where the STS should send the code

2 3

The client requesting authentication

Security measure to preserve flow integrity

The redirect back to the backend application

1
2

https://restograde.com/callback
?code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY The temporary authorization code

6 7

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&client_secret=6ODRv0g…OVOSWI
&redirect_uri=https://restograde.com/callback
&code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY

8

Indicates the code exchange request
The client exchanging the code

The code received in step 9
The redirect URI used before
The client needs to authenticate to the STS

The response from the Security Token Service

1
2
3

{
"id_token": "eyJhbGciO...du6TY9w",

}

9

The identity token representing the authenticated user

User authentication with OpenID Connect

OIDC AND THE IDENTITY TOKEN

• OIDC allows the client (i.e., the backend app) to delegate authentication
• OIDC relies on OAuth 2.0 to run a flow with the Security Token Service
• The de facto standard to implement Single Sign-On in modern applications

• The client runs an OIDC flow to obtain an identity token
• The client uses scopes to indicate the required information (openid, profile, email, …)
• The identity token contains information about the user's authentication
• The iss claim identifies the STS and the sub claim identifies the user

• Once the user is authenticated, the client maintains an authenticated session
• The client is responsible for keeping track of the authenticated user
• OIDC is only intended to support authenticating users, not

! SaaS applications are often asked to support
a customer's STS with OIDC or SAML

HOW DO YOU SUPPORT MORE THAN ONE STS?

Customer's
Auzre AD

G-Suite login SAML

An on-prem
OIDC provider

IDENTITY BROKERING WITH OIDC

The client relies
on a single STS

Many STS implementations offer identity
brokering as a core feature and handle all

low-level implementation details

USING OAUTH 2.0 FOR API ACCESS

1 I want you to access an API on my behalf

2 Sure, let's go ask the STS for a token

3 Allow application X access on my behalf

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9 The access token representing
the authority to access the API

10 Access API with
access token

THE CONCEPT OF OAUTH 2.0

INTEGRATING OAUTH 2.0 IN EXISTING APPLICATIONS

Existing legacy application
that needs to interact with

newly-added APIs

The backend acts as an OAuth
2.0 client and uses access token

to access the API

USING OAUTH 2.0 WITH MOBILE APPS / WEB FRONTENDS

Mobile applications and web
frontends can use OAuth 2.0 to

contact the API directly

ALLOWING THIRD-PARTY ACCESS WITH OAUTH 2.0

Use OAuth 2.0 to obtain an access token, giving
the third-party application the authority to

access the API on behalf of the user

1 I want you to read my reviews at Restograde

2 Sure, let's go ask the STS for a token

3 Get us an access token

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Are you sure you want to give
VirtualFoodie access to your review data?

9 Call endpoint with temporary value

10Exchange temporary value for a token

11 The access token representing
the authority to access the API

12 Access API with
access token

ALLOWING THIRD-PARTY ACCESS WITH OAUTH 2.0

3rd party
application

Restograde
STS

Restograde
API

7 Yes, let's do it!

8 Sure thing. Here's the temporary authorization code

ACCESS TOKENS

• Access tokens represent the authority of a client to access specific resources
• Typically, the access token represents the authority to act on behalf of the user
• The user has the ability to delegate partial permissions to a client

• An access token associated with the user will contain user-specific details
• The sub claim will hold the user's identifier, supporting authorization decisions by the API
• Additional claims can contain further information about the user

• Access tokens should only be used for their specific purpose
• They are issued by the STS and used by the client
• They are consumed by the API

The authorization request (a redirect to the STS)

1
2
3
4
5
6

https://sts.restograde.com/authorize
?response_type=code
&scope=reviews:read
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&redirect_uri=https://restograde.com/callback
&… PKCE parameters omitted for brevity …

Indicates the authorization code flow
We want read permissions

Where the STS should send the code

2 3

The client requesting authentication

Security measure to preserve flow integrity

The redirect back to the backend application

1
2

https://restograde.com/callback
?code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY The temporary authorization code

6 7

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42
&client_secret=6ODRv0g…OVOSWI
&redirect_uri=https://restograde.com/callback
&code=ySVyktqNkEKJyyIjOKCVwCurNlGoRDcaLYEbW2j5WxZY

8

Indicates the code exchange request
The client exchanging the code

The code received in step 9
The redirect URI used before
The client needs to authenticate to the STS

The response from the Security Token Service

1
2
3
4
5

{
"access_token": "eyJhbGciO...du6TY9w",
"token_type": "Bearer",
"expires_in": 3600,

}

9

The access token with the authority to call the API

The expiration time of the access token

The request to the API using the access token

1
2
3

GET /reviews
Host: api.restograde.com
Authorization: Bearer eyJhbGciO...du6TY9w

12

The access token from the OAuth 2.0 flow

Getting OAuth 2.0 access tokens

? What happens when the access token expires?

THE REFRESH TOKEN FLOW

3
Request new access token

with refresh token
and client credentials

4 Access token

1 Request with
access token

2 Token expired

5 Request with
new access token

6 Response

1 I want you to access an API on my behalf

2 Sure, let's go ask the STS for a token

3 Allow application X access on my behalf

4 Who are you? Please authenticate to me!

5 I am Philippe with password FluffyDog17!

6 Good. Now go back to application X
and give them this temporary value

7 Call endpoint with temporary value

8Exchange temporary value for a token 9
The access token representing the authority to
access the API, and a refresh token to get a
fresh access token in the future

10 Access API with
access token

OAUTH 2.0 REFRESH TOKENS

Refresh tokens are often
explicitly revocable by

the user.

SUMMARIZING ACCESS TOKENS AND REFRESH TOKENS

• Access tokens are more exposed than refresh tokens
• The guideline for access tokens is to keep them short-lived
• When an access token expires, the refresh token can be used to get a fresh token

• Refresh tokens are consumed by the STS
• The STS issues them to the client and the client uses them with the STS
• Refresh tokens are as sensitive as credentials, so they should be handled securely

• The lifetime of refresh tokens is at the discretion of the STS
• For backend clients, refresh tokens can be valid for months, or even eternally
• For mobile clients, refresh tokens are stored securely and often long-lived
• For web clients, refresh tokens should have a lifetime of a few hours

https://www.youtube.com/watch?v=OpFN6gmct8c

USING OAUTH 2.0 WITHOUT USERS

2 The access token representing
the authority to access the API

3 Access API with
access token

USING OAUTH 2.0 FOR MACHINE-TO-MACHINE ACCESS

1Can I get an access token
to access the API

Use OAuth 2.0 to obtain an
access token, representing

the client's authority to
access the API directly.

Examples include
scheduled cron jobs,

GitHub actions,
configuration tools, …

Machine-to-machine access in action

The request to obtain an access token

1
2
3
4
5
6

POST /oauth/token
Host: sts.restograde.com

grant_type=client_credentials
&client_id=2JqcsqEpZfYNHxDazVMMkPT6oU6C7ZZS
&client_secret=xEJRXoe…Vd_BjB

1

Indicates the client credentials flow
The client exchanging the code
The client needs to authenticate to the STS

The response from the Security Token Service

1
2
3
4
5

{
"access_token": "eyJhbGciO…encDDLQ",
"token_type": "Bearer",
"expires_in": 3600,

}

2

The access token to access APIs

The expiration time of the access token

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

• The client is another application that needs to access APIs
• The client is accessing the API directly, on its own behalf
• There is no user involved in the Client Credentials flow

• This is an OAuth 2.0-only flow, not an OpenID Connect flow, so identity tokens are not used

• The Client Credentials flow fits within OAuth 2.0 as an authorization framework
• The access token issued by the STS represents the client's authority
• APIs already know how to handle access tokens, so little needs to change

• The Client Credentials flow only works with confidential clients
• Requesting access tokens requires authentication with a secret kept by the client
• Confidential clients need to run in a secure environment (server-side systems)

Introduction to Oauth 2.0 and OIDC

ACCESS TOKEN TYPES

A self-contained access token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZC
I6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBR
VVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc
3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZ
jIwMzY2YzYiLCJhdWQiOlsiaHR0cHM6Ly9hcGkucmV
zdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZ
GUuZXUuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI
6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhe
nAiOiJPTEtObjM4OVNVSW11ZkV4Z1JHMVJpbExTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZ
W1haWwgb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOS
bCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-u8h11e
lcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8Ql
TWOURPembVKZOhNi8kN-1j0pyc0uzve7Jib5vcxmkP
wqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNM
TFzGJCT9ipCcNXaVGdksojYGqQzezjpzzzwrtPEkiy
FLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK
0WH47AwFrRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0
rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

Token introspection

TOKEN INTROSPECTION FOR REFERENCE TOKENS

3Resolve the reference token
into a set of claims

4 Claims associated
with access token

2 Request with
access token

6 Response1Frontend has obtained an access
token through an OAuth 2.0 flow

5 Authorization
decision

TOKEN INTROSPECTION

• The fields returned are all marked as optional, except for active
• The active field indicates if a token is still valid or not
• The other fields are only present if a token is valid and provide context information
• The API can typically rely on a few specific values to be present

• These include iss, client_id, and sub if a user is involved

• Ultimately, the STS is in control over what is returned during introspection
• The returned information can include custom fields
• Depending on who's asking, more or less information may be included

• The spec also allows token introspection for self-contained tokens (RFC 7662)
• Introspecting JWTs can be used to detect revocation before the token expires

A self-contained access token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZC
I6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBR
VVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc
3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZ
jIwMzY2YzYiLCJhdWQiOlsiaHR0cHM6Ly9hcGkucmV
zdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZ
GUuZXUuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI
6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhe
nAiOiJPTEtObjM4OVNVSW11ZkV4Z1JHMVJpbExTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZ
W1haWwgb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOS
bCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-u8h11e
lcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8Ql
TWOURPembVKZOhNi8kN-1j0pyc0uzve7Jib5vcxmkP
wqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNM
TFzGJCT9ipCcNXaVGdksojYGqQzezjpzzzwrtPEkiy
FLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK
0WH47AwFrRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0
rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

Header with
token metadata

Payload with a
set of claims

Signature protecting the
header and payload

VERIFYING SELF-CONTAINED ACCESS TOKENS

• The API is typically configured with a trusted STS
• The STS will provide access tokens, which will be used to make authorization decisions
• With the URL of the STS, the API can bootstrap its token verification mechanism

• Self-contained tokens are signed by the STS, ensuring their integrity
• The API must verify the integrity of a self-contained access token before using the data
• Verification is typically done by checking the signature with a public key of the STS

• All of these details are typically implemented in middleware
• Barebones JWT libraries can handle most of these details
• Many languages offer resource server libraries, which deal with access tokens specifically

? A

B

Which token type do you prefer?

Reference tokens

Self-contained tokens

? A

B

Which token type has better
performance properties?

Reference tokens

Self-contained tokens

? A

B

Which token type has better
revocation properties?

Reference tokens

Self-contained tokens

1 Request with
access token

2 Token introspectionA Get new access token
with refresh token

Required every time the
access token expires

Required for every
access by the client

Revoking access tokens makes
them invalid immediately

REFERENCE TOKENSSELF-CONTAINED TOKENS

1 Request with
access token

A Get new access token
with refresh token

Required every time the
access token expires

Revoking refresh
tokens terminates

access on next refresh

Access tokens
cannot be revoked
before they expire

TRADE-OFFS BETWEEN ACCESS TOKEN TYPES

• Self-contained tokens can be independently verified by the API
• The STS is not involved until the access token expires and the client gets a new token
• Access tokens typically become invalid when they expire
• Access can be terminated by revoking the client's refresh token

• Reference tokens require token introspection between the API and the STS
• The STS is always involved, both for token introspection and renewing access tokens
• Access tokens can be revoked by the STS, making them invalid immediately
• Caching introspection responses by the API contradicts the security properties

• Caching is acceptable for handling bursts of requests, but only for 10 – 20 seconds

• The most important trade-off is about security vs performance
• Reference tokens have better security properties, but they come at a cost

PRACTICAL GUIDELINES ON ACCESS TOKEN TYPES

• How short can you make your access token's lifetime?
• Short lifetimes reduce the window of abuse and force the client to contact the STS
• Frontend applications are more sensitive, so should have shorter token lifetimes

• 5 - 10 minutes is quite common

• How important is revocation for your application?
• If a small potential window of abuse is acceptible, short token lifetimes are a good option
• If no abuse is acceptible, reference tokens offer the most control

• Revocation sounds great on paper, but can you implement it?
• Manual revocation processes will be ineffective with token lifetimes of 5 – 10 minutes
• Automatic revocation with anomaly-detection systems would be effective

ACCESS TOKEN TYPES

• The STS decides on the security properties of access tokens
• Clients only send access tokens, so they are agnostic of the token type and its properties
• The API will need to understand how to process different token types

• In practice, self-contained JWT tokens are common for distributed scenarios
• Running token introspection between different parties is often difficult
• Keep token lifetimes as short as possible

• Reference tokens are often used for internal systems
• On-premise token introspection is easier to implement
• Can also be implemented with an API gateway that translates tokens

APIS ARE RESPONSIBLE FOR ENFORCING AUTHORIZATION

• OAuth 2.0 offers a way to transport user / client information to the API
• The API relies on this information to make authorization decisions
• Complex systems should avoid overloading access tokens and use a policy service instead

• APIs are responsible for verifying the validity of incoming tokens
• Verify the validity of the incoming access token (signature or introspection)
• Enforce restrictions on the sender of the token if applicable
• Verify the properties of the access token (issuer, audience, …)

• Libraries / middleware can handle most of these responsibilities
• Make sure your library / middleware / framework handles tokens correctly

ENFORCING AUTHORIZATION WITH ACCESS TOKENS

scope=openid email profile read:reviews

A mechanism provided by
OAuth 2.0 to define the scope

of an access token

The value is a space-delimited
string with scope values

OAuth 2.0 does not define any
scope values, but OIDC has a

set of reserved scopes

Applications can define
custom scopes

PRACTICAL GUIDELINES FOR DEFINING SCOPES

• Unless you are Google, you probably do not need hundreds of scopes
• People sometimes run into length limits for the scope parameter, which is a bad smell
• If clients need access to every API in the system, then you don't need scopes

• Scopes enforce compartmentalization, but do not replace existing authorization systems

• Guidelines to define scopes
• Start by identifying logical groupings in the APIs

• E.g., reviews and restaurants
• Determine if different access levels are needed

• E.g., restaurants is used by a single client
• E.g., read:reviews is for third-party clients

• Isolate extremely sensitive permissions
• E.g., delete:reviews is only possible after consent

MAKING SPECIFIC AUTHORIZATION DECISIONS

The sub points to the subject, which
is typically the user on whose behalf

the request is being made

MAKING SPECIFIC AUTHORIZATION DECISIONS

• User-related access tokens carry a sub claim
• The sub is a unique identifier for a particular user within the issuer
• With the user's identifier, the API can make user-specific authorization decisions

• E.g., checking object-level permissions

• The value of the sub is guaranteed to be unique and immutable for an issuer
• Typically, the sub value is a randomly generated identifier
• The issuer will also ensure that the sub value cannot be reused by other accounts

• The sub only applies to a specific issuer, so no uniqueness across issuers
• For most APIs, this does not represent a problem since only one issuer is trusted
• For APIs serving multiple issuers, the issuer and the sub value need to be combined

ADDING AUTHORIZATION INFORMATION TO ACCESS TOKENS

• Access tokens represent an authorization given to a client
• They are intended to replace other constructs (e.g., username / password)
• Access tokens granting authority on behalf of a user carry information about the user

• Access tokens are not supposed to carry API-specific authorization information
• The OAuth 2.0 spec does not explicitly state this and custom claims can be added
• Practical implementations often start adding custom claims to support authorization

• Adding authorization information to access tokens raises some issues
• How many permissions will be added and what about access token size?
• What is the token lifetime and what about stale permissions?
• Will you ever be able to change your permission system?

COMMON SCENARIOS USING CUSTOM ACCESS TOKEN CLAIMS

• Adding additional user-specific claims to support authorization decisions
• E.g., customerID or tenantID are common in multi-tenant scenarios
• Unlikely to change in the future and fully within the spirit of access tokens

• Adding user-specific permissions in a separate permissions claim
• Requires the STS to be aware of every API's permissions
• Less in the spirit of access tokens, since permissions are not about the user's identity

• Adding user roles to access tokens in a separate roles claim
• Very common due to existing RBAC systems
• Unlikely to cause major issues, since roles are not API-specific and belong to a user

DELEGATION IN OAUTH 2.0

2 Obtain access token 1 (AT1)

1 Authorize and use the
client application

3 Access API with AT1 4 Access API with AT1

A NAÏVE APPROACH TO DELEGATION

The audience of AT1 does
not match API2

API1 API2

The scopes of AT1 are
associated with API1

API2 would need to relax
its security requirements

to make this work

AT1 is intended to be used
by the client, not by API1

2 Obtain access token 1 (AT1)

1 Authorize and use the
client application

3 Access API with AT1

API1 API2

4
I want to access API2

on behalf of the client,
but I have AT1

6
Issue AT2 authorizing API1
to access API2 on behalf of the
client (and the user)

7 Access API with AT2

8 Response9 Response

5 Check the policy of allowed delegations
and decide if this is allowed

THE CONCEPT OF PROPER DELEGATION

TWO COMMON APPROACHES

• Impersonation hides the delegation aspect, but relies on correct tokens
• Instead of forwarding tokens with the wrong properties, API1 obtains a new token
• The new token makes API1 the client, thus providing correct information to API2
• API2 does not know that the request is on behalf of a client that called API1

• Delegation propagates the relevant information, preserving proper semantics
• The newly issued token will inform API2 that the call is from API1 on behalf of the client
• This token allows API2 to make a fully informed authorization decision

• The STS is responsible for deciding which delegation is allowed
• Policies involve the different actors, the granted and requested scopes, …

DELEGATION IN OAUTH 2.0

• RFC 8693 defines the mechanisms of a Token Exchange mechanism
• The document focuses on the interactions, not the semantics of a token exchange
• The semantics and the implementation details are custom for each STS

• Use cases that can be implemented with a token exchange mechanism
• Calling additional APIs on behalf of the original client with the proper semantics
• Obtaining a user impersonation token as an admin user
• Translating external identity tokens into internal tokens

• Examples of systems that currently support these concepts
• Keycloak supports a token exchange based on RFC 8693 for these use cases
• Microsoft supports "On Behalf Of" flows for API delegation, but not RFC8693

! All these delegation concepts require a
massive amount of work to get working …

BUILD A SOLID SERVICE ARCHITECTURE FIRST

• Advanced delegation concepts require a solid foundation
• Implementing delegation requires each API to authenticate as a client
• Doing all of this at once is very unlikely to succeed

• Start by implementing restrictions between services
• mTLS is the preferred mechanism to enforce access policies between services

• Authorization decisions here are made based on API identities, not user request properties
• Supported by numerous frameworks and libraries, including Istio's service mesh

• Successfully implementing this gives you a first understanding of interaction patterns

• Once available, mTLS can be re-used as a client authentication mechanism
• Implement delegation step-by-step, learning more about the practicalities along the way

TAKEAWAYS

REFERENCES

The RFC discussing OAuth 2.0 security best current practices (essential reading!)

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

An article discussing patterns that translates between token types in a reverse proxy setup

https://thenewstack.io/securely-scaling-the-myriad-apis-in-real-world-backend-platforms/

Offensive exercises on OAuth 2.0 flows

https://portswigger.net/web-security/all-labs#oauth-authentication

A series of articles on various OAuth 2.0 topics on my website

https://pragmaticwebsecurity.com/articles/tags/oauth.html

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://thenewstack.io/securely-scaling-the-myriad-apis-in-real-world-backend-platforms/
https://portswigger.net/web-security/all-labs
https://pragmaticwebsecurity.com/articles/tags/oauth.html

CHECK OUT MY ONLINE COURSE ON OAUTH 2.0 AND OIDC

https://courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

OAUTH 2.0 AND OPENID CONNECT

• OAuth 2.0 allows a user to delegate access to a client application
• Avoids the need for sharing credentials with the client application
• Defines an authorization framework to allow APIs to make authorization decisions
• OAuth 2.0 is the de facto standard for implementing distributed authorization scenarios

• OpenID Connect allows a client to delegate authentication to a central provider
• OIDC is the de facto standard for building modern Single Sign-On systems
• OIDC uses OAuth 2.0 flows with specific configuration settings
• OAuth 2.0 and OIDC are typically used together, but can be used separately as well

• How the user authenticates to the central provider is not specified
• OAuth 2.0 and OIDC define the interactions between the different components

