E

OAUTH 2.0 AND OPENID CONNECT
ARCHITECTURES

https://Pragmatic Web Security.com

OpenlID Connect

SECURITY
TOKEN

l Authenticate the user for me? SERVICE

CLIENT

¢

BACKEND

Email Address

L |Emai| Address J

Password Forgot password?

‘ Password

By signing in, | agree to the Zoom's Privacy Statement and Terms
of Service.

Stay signed in ©

Or sign in with

SSO Apple Google Facebook

OpenlD Connect is an authentication

protocol, supporting SSO and federation

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.0

l Authenticate the user for me?

Help me out here, l

? Can | access an API please? o r]
is this access token valid?

OAuth 2.0

o

CLIENT API

¢

BACKEND

Request with an access token API API

! o

OAuth 2.0 API

Zoom wants access to your
Google Account

? philippe@pragmaticwebsecurity.com

When you allow this access, Zoom will be able to

i View and edit events on all your calendars.
Learn more

Make sure you trust Zoom

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Zoom'’s Privacy Policy and Terms of Service.

Cancel Continue

OAuth 2.0 offers an authorization framework

to support complex applications

TERMINOLOGY

This session

User

API

Security Token Service (STS)

Client

OAuth 2.0

Resource Owner

Resource Server

Authorization Server

Client

OpenlD Connect

End-User

OpenlD Provider

Relying Party

| am Dr. Philippe De Ryck

@ Fragmatic Heh Securty Founder of Pragmatic Web Security

Security for developers

) 4 ExngeHs Google Developer Expert

AMBASSADOR Auth0 Ambassador

R o] G R A M

:= SecAppDev SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pdr.online

USING OPENID CONNECT FOR AUTHENTICATION

USER

THE CONCEPT OF OPENID CONNECT

e | am Philippe with password FluffyDog17!
e | want to tell application X who | am

SECURITY
TOKEN
SERVICE

a Who are you? Please authenticate to me!

e Good. Now go back to application X
and give them this temporary value

e The identity token representing

Exchange temporary value for a token 0 the authenticated user

Authenticate the user
with the identity token

0 Call endpoint with temporary value
a | want to authenticate (click the login button)

>

G The STS handles that. Go there to confirm your identity BACKEND
@ Welcome back Philippe!

eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCIsImtpZCI6IKS5U
VkIPVFUzTXpCQk9FVXd0emhCUTBWRO1rUTBRVVU1UVRZeFFV
VXTPVU5FUVVVeE5qRX1INdyJ9.eyJuaWNrbmFtZSI6InBoaWx
pcHBlIiwibmFtZSI6InBoaWxpcHBLQHBYYWdtYXRpY3d1lYnN
1Y3VyaXR5LmNvbSIsInBpY3R1cmUiO0iJodHRwczovL3MuzZ3]
hdmFOYXIuY29tL2F2YXRhci9mNDBKNjRhNGIXNjc40TUwODA
2MmMU2NjR1ZTZhZTU3NT9zPTQ4MCZyPXBnImQ9aHRACHM LMOE
IMKY WMkZj ZG4uYXV@aDAuY29tJTIGYXZhdGFycyUyRnBoLnB
uZyIsInVwZGFOZWRTYXQi0iIyMDIwLTA2LTASVDAOGOFE40jA
OLjkwM1loiLCJlbWFpbCI6InBoaWxpcHBLQHBYYWdtYXRpY3d
LYnN1Y3VyaXR5LmNvbSIsImVtYWlsX3Z1lcmimaWVkIjp@cnV
1LCIpc3MiOiJodHRwczovL3NAcy5yZXNOb2dyYWR1LmNvbS8
iLCJzdWIi0iJhdXROMHW1ZWIS5MTZjMjU4YmMRINTBiZjIwMzY
2YzYiLCJhdWQi0iJGTj k4MONFWWA4ANG1kVWczTkt0S0Ohqd2Z
OQUW1RMIOMiIsImlhdCIGMTUSMTY3N]jISMCwiZXhwIjoxNTk
XNzEyMjkwfQ.m60Br25jY8MOwIpCAjv3tRYF7IMR11ydzaP1
m6qJwsX74Sr5WUh49IK3iwaK72U6r2KXAp3_0ys9aabdoSc6
EkiYo7sho2W_fbLrUz8ocHFcTdHemuM@zoDQ6 LVgobDNiwt 1
eht8iNnIf9ghlRa-
TBtuLOTIRXkSHsCuJHKIWEG7zVHW111q34XcLtkg4mnjWK1M
P5dNZoqIB_0Gek-EGO5nUuoYwK7IqaZIGFLgc4EaKofe l-
MIqqDAwiD3etAKILSu7Phejk6zHwWUEQLlt3Yz LbP5ZHNPK5hn
Sph80BPL7VMdDUWhjMd11eW21cRq5CQNIKAIDbVLDdWgem09
Kp_A

"nickname": "philippe",

"name": "philippe@pragmaticwebsecurity.com",
"picture": "https://s.gravatar.com/....png",
"updated_at": "2020-06-09T04:18:04.903Z7",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,

"iss": "https://sts.restograde.com/",

"sub": "auth@|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,

"exp'": 1591712290

The decoded JWT payload

1A
2 "nickname": "philippe",
3 "name": "philippe@pragmaticwebsecurity.com",
i i 4 "picture": "https://s.gravatar.com/....png",
f f he STS '
Yseraccount information from the 3 5 | "updated_at": "2020-06-09T04:18:04.9032Z",
§) "email": "philippe@pragmaticwebsecurity.com",
7 "email_verified": true,
The issuer of the identity token (STS) §—e "iss": "https://sts.restograde.com/",
The user's unique ID within the STS S——= "sub": "auth@|5eb916c258bdb50bf20366c6",
The audience of the identity token (client) to—= "aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
e . : . 11 "iat": 1591676290,
Lifetime information about the identity token 5 + exp": 1591712290

=
w
“

The backend's internal user database

1 alice auth0|8c34361ealc8bff697e3a81e
2 philippe auth0|5eb916c258bdb50bf20366¢6

The identity token payload

N |

O© 00O O Ul & WN -

N
W N R

{

"nickname": "philippe",

"name": "philippe@pragmaticwebsecurity.com"
“"picture": "https://s.gravatar.com/....png"

"updated_at": '"2020-06-09T04:18:04.903Z2",
"email": "philippe@pragmaticwebsecurity.com",
"email_verified": true,

""iss":
"'sub":
Ilaudll :
"iat":
IIeXpII :

"https://sts.restograde.com/",

The session is The sub value is used to

populated with the find the authenticated
information about the user in the Virtual
authenticated user Foodie database

The sub claim is guaranteed to be

"autho|5eb916c258bdb50bT20366c6", ®
"FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
1591676410,
1591712410

unique and immutable

USER

e | am Philippe with password FluffyDog17!
e | want to tell application X who | am

SECURITY
TOKEN
SERVICE

e Who are you? Please authenticate to me!

e Good. Now go back to application X
and give them this temporary value

e The identity token representing

Exchange temporary value for a token 0 the authenticated user

Authenticate the user
with the identity token

0 Call endpoint with temporary value
a | want to authenticate (click the login button)

>

e The STS handles that. Go there to confirm your identity BACKEND
@ Welcome back Philippe!

USER

e | am Philippe with password FluffyDog17!

e | want to tell my company's application who | am

a Who are you? Please authenticate to me!

e Good. Now go back to application X
and give them this temporary value

Exchange temporary value for a token e e

a Call endpoint with temporary value
a | want to authenticate (click the login button)

>

a Azure AD handles that. Go there to confirm your identity BACKEND
m Welcome back Philippe!

Your company's
Azure AD

The identity token representing
the authenticated user

Authenticate the user
with the identity token

Company applications
using SSO with Azure AD

USER

e | am Philippe with password FluffyDog17!
e | want to tell Netlify who | am

a Who are you? Please authenticate to me!

e Good. Now go back to application X
and give them this temporary value

Exchange temporary value for a token e

a Call endpoint with temporary value
a | want to authenticate with GitHub

a Go to GitHub to confirm your identity
m Welcome back Philippe!

GitHub

The identity token representing
the authenticated user

Authenticate the user
with the identity token

Netlify, supporting social
login with GitHub

OpenlID Connect has nothing to do with

API access or authorization

USER

THE OIDC AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!
6 | want to tell application X who | am

o Who are you? Please authenticate to me!

6 Good. Now go back to application X
and give them this temporary value

Exchange temporary value for a token 0 0

G Call endpoint with temporary value
0 | want to authenticate (click the login button)

e The STS handles that. Go there to confirm your identity
@ Welcome back Philippe!

SECURITY
TOKEN
SERVICE

The identity token representing
the authenticated user

Authenticate the user
with the identity token

BACKEND

o o The authorization request (a redirect to the STS)

1 https://sts.restograde.com/authorize

2 ?response_type=code e Indicates the authorization code flow

3 &scope=openid profile email e We want an ID token with email/profile info
4 &client_1d=FN983CEYgx4mdUg3NKNKHjwfNALS5Fb42 The client requesting authentication

5 &redirect_uri=https://restograde.com/callback e——— Where the STS should send the code

6 &nonce=66QK3qgqWhxQD_LOZAuqritZi5Sy6 e Security measure to preserve flow integrity

THE OIDC AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17! Q
o | want to tell application X who | am OQ
o Who are you? Please authenticate to me! sﬁ%lg;‘w
e Good. Now go back to application X SERVICE
and give them this temporary value A
E Exchange temporary value for a token ° 0 I:: ;ﬂ:::irt\zi::r:: ;:::esenting

USER

Authenticate the user

Y @ with the identity token
0 Call endpoint with temporary value

° | want to authenticate (click the login button) % ‘
- >

ke o The STS handles that. Go there to confirm your identity BACKEND

\) @ Welcome back Philippe!

&

e 0 The redirect back to the backend application

1 https://restograde.com/callback

2 ?code=ySVyktgNkEKIyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY e——— The temporary authorization code

USER

THE OIDC AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17!
e | want to tell application X who | am

&

A 4

o Who are you? Please authenticate to me!

o Good. Now go back to application X
and give them this temporary value

Exchange temporary value for a token °

o Call endpoint with temporary value
0 | want to authenticate (click the login button)

>
rd

o The STS handles that. Go there to confirm your identity
@ Welcome back Philippe!

¥
2,

TOKEN
SERVICE

A

o The identity token representing
the authenticated user

J @ Authenticate the user
with the identity token

¢

BACKEND

© 7he request to exchange the authorization code

O oo NJ Ul &~ W DN BB

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code e Indicates the code exchange request
&client_1d=FN983CEYgx4mdUg3NKNKHjwfNALS5Fb42 The client exchanging the code
&client_secret=60DRv0g..0VOSWI e The client needs to authenticate to the STS

The redirect URI used before
The code received in step 9

&redirect_uri=https://restograde.com/callback
&code=ySVyktgNkEKJyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY

THE OIDC AUTHORIZATION CODE FLOW

o | am Philippe with password FluffyDog17! Q
e | want to tell application X who | am - oﬁ
o Who are you? Please authenticate to me! sﬁ%{é’;‘w
e Good. Now go back to application X SERVICE
and give them this temporary value N
E Exchange temporary value for a token 0 e I::;:::::Zi::::: ;:::esenting

USER

& @ Authenticate the user
with the identity token

o Call endpoint with temporary value
0 | want to authenticate (click the login button) %
0 The STS handles that. Go there to confirm your identity BACKEND

&) @ Welcome back Philippe!

0 The response from the Security Token Service

1o
2 "id_token": "eyJhbGciO...dubTY9w", e The identity token representing the authenticated user
3}

THE OIDC AUTHORIZATION CODE FLOW

e | am Philippe with password FluffyDog17! oﬁ

e | want to tell application X who | am Q

A 4

° Who are you? Please authenticate to me! s-Er%l;'(erv
e Good. Now go back to application X SERVICE
and give them this temporary value A
The identity token representing
Exch |
E xchange temporary value for a token ° e S G P IR e

USER

Authenticate the user
with the identity token

k4
e Call endpoint with temporary value

0 | want to authenticate (click the login button) %

o The STS handles that. Go there to confirm your identity BACKEND

\ / @ Welcome back Philippe!

|:| User authentication with OpenID Connect

OIDC AND THE IDENTITY TOKEN

* OIDC allows the client (i.e., the backend app) to delegate authentication
* OIDC relies on OAuth 2.0 to run a flow with the Security Token Service
* The de facto standard to implement Single Sign-On in modern applications

* The client runs an OIDC flow to obtain an identity token
* The client uses scopes to indicate the required information (openid, profile, email, ...)
* The identity token contains information about the user's authentication
* The iss claim identifies the STS and the sub claim identifies the user

* Once the user is authenticated, the client maintains an authenticated session
* The client is responsible for keeping track of the authenticated user
e OIDCis only intended to support authenticating users, not

SaaS applications are often asked to support

a customer's STS with OIDC or SAML

How DO YOU SUPPORT MORE THAN ONE STS?

An on-prem
OIDC provider

Customer's
Auzre AD

BACKEND

G-Suite login SAML

IDENTITY BROKERING WITH OIDC

SECURITY
TOKEN
SERVICE

BACKEND

The client relies Many STS implementations offer identity
on a single STS brokering as a core feature and handle all
low-level implementation details

USING OAUTH 2.0 FOR API ACCESS

USER

THE CONCEPT OF OAUTH 2.0

| am Philippe with password FluffyDog17!

Allow application X access on my behalf

€

SECURITY
TOKEN
SERVICE

Who are you? Please authenticate to me!

Good. Now go back to application X
and give them this temporary value

Exchange temporary value for a token 0 e

Call endpoint with temporary value

| want you to access an APl on my behalf

€

Sure, let's go ask the STS for a token BACKEND

The access token representing
the authority to access the API

Access APl with
access token

o

API

INTEGRATING OAUTH 2.0 IN EXISTING APPLICATIONS

Existing legacy application
that needs to interact with
newly-added APIs

The backend acts as an OAuth
2.0 client and uses access token
to access the API

API

USING OAUTH 2.0 WITH MOBILE APPS / WEB FRONTENDS

USER API

Mobile applications and web
frontends can use OAuth 2.0 to
contact the API directly

ALLOWING THIRD-PARTY ACCESS WITH OAUTH 2.0

API USER

Use OAuth 2.0 to obtain an access token, giving
the third-party application the authorityto p—e
access the API on behalf of the user

/

VIRTUAL
FOODIE

ALLOWING THIRD-PARTY ACCESS WITH OAUTH 2.0

0 Yes, let's do it!

N e | am Philippe with password FluffyDog17!
e Get us an access token
Restograde
<€ STS
a Who are you? Please authenticate to me! SE%[:(IZ:Y
e Good. Are you sure you want to give s
VirtualFoodie access to your review data?
. . The access token representing
Sure thing. Here's the temporary authorization code
E Q & P y m the authority to access the API
USER Exchange temporary value for a token @ Restograde
API
e Call endpoint with temporary value Access APl with ﬁ
Q | want you to read my reviews at Restograde access token
dWas:
<€
e Sure, let's go ask the STS for a token VIRTUAL 3" party API
) FOODIE application

ACCESS TOKENS

* Access tokens represent the authority of a client to access specific resources
e Typically, the access token represents the authority to act on behalf of the user
* The user has the ability to delegate partial permissions to a client

* An access token associated with the user will contain user-specific details
* The sub claim will hold the user's identifier, supporting authorization decisions by the API
e Additional claims can contain further information about the user

* Access tokens should only be used for their specific purpose
* They are issued by the STS and used by the client
* They are consumed by the API

USER

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!
e | am Philippe with password FluffyDog17!
e Get us an access token

SECURITY
TOKEN
SERVICE

0 Who are you? Please authenticate to me!

e Good. Are you sure you want to give
VirtualFoodie access to your review data?

e Sure thing. Here's the temporary authorization code @

Exchange temporary value for a token @

e Call endpoint with temporary value

Q | want you to read my reviews at Restograde

Access APl with
access token

e Sure, let's go ask the STS for a token

VIRTUAL
FOODIE

The access token representing
the authority to access the API

3
>®

Q e The authorization request (a redirect to the STS)

1 https://sts.restograde.com/authorize

2 ?response_type=code e Indicates the authorization code flow

3 &scope=reviews:read e We want read permissions

4 &client_1d=FN983CEYgx4mdUg3NKNKHjwfNALS5Fb42 The client requesting authentication

5 &redirect_uri=https://restograde.com/callback e——— Where the STS should send the code

6 &.. PKCE parameters omitted for brevity .. e Security measure to preserve flow integrity

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!
)
° | am Philippe with password FluffyDog17! OQ

0 Get us an access token

o Who are you? Please authenticate to me! S.Er%l"(';';‘”
o Good. Are you sure you want to give SERVICE
VirtualFoodie access to your review data? A

The access token representing

0 Sure thing. Here's the temporary authorization code Q the suthiortty to access the APl

USER Exchange temporary value for a token @

o Call endpoint with temporary value —b Access APLIth ﬁ
0 | want you to read my reviews at Restograde [S0 access token .
N o Sure, let's go ask the STS for a token VIRTUAL API

\) FOODIE

e 0 The redirect back to the backend application

1 https://restograde.com/callback
2 ?code=ySVyktgNkEKIyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY e——— The temporary authorization code

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!

o | am Philippe with password FluffyDog17! Q
° Get us an access token OQ
o Who are you? Please authenticate to me! si%‘:é';‘w
o Good. Are you sure you want to give EhE
VirtualFoodie access to your review data?)

The access token representing

o Sure thing. Here's the temporary authorization code Q thia authoeiy bb acosss the AR

USER Exchange temporary value for a token @
k4
o Call endpoint with temporary value —h AR AT Sth ﬁ
0 | want you to read my reviews at Restograde [&0 access token K Q
€ sure, let's go ask the STS for a token VIRTUAL API

\) FOODIE

© 7he request to exchange the authorization code

O oo NJ Ul &~ W DN BB

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code e Indicates the code exchange request
&client_1d=FN983CEYgx4mdUg3NKNKHjwfNALS5Fb42 The client exchanging the code
&client_secret=60DRv0g..0VOSWI e The client needs to authenticate to the STS

The redirect URI used before
The code received in step 9

&redirect_uri=https://restograde.com/callback
&code=ySVyktgNkEKJyyIjOKCVwCurN1GoRDcaLYEbW2j5WxZY

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!

o | am Philippe with password FluffyDog17! Q
° Get us an access token OQ
o Who are you? Please authenticate to me! S-Er%l:(';:v
° Good. Are you sure you want to give Ehi
VirtualFoodie access to your review data? A

The access token representing

° Sure thing. Here's the temporary authorization code Q the suthiortty to access the APl

USER Exchange temporary value for a token @

o Call endpoint with temporary value

A @ Access APl with 6
0 | want you to read my reviews at Restograde S access token K

h .
o Sure, let's go ask the STS for a token VIRTUAL API
\) FOODIE

0 The response from the Security Token Service

1 {

u ~ W N

}

"access_token": "eyJhbGciO...dubTY9w", e

"token_type": "Bearer",

The access token with the authority to call the API

"expires_in": 3600, e

The expiration time of the access token

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!

e | am Philippe with password FluffyDog17! Q
e Get us an access token Oﬁ

A 4

USER

o Who are you? Please authenticate to me! Si%l'l(lél;‘rv
I Good. Are you sure you want to give SERVICE
VirtualFoodie access to your review data? A

Q The access token representing

Sure thing. Here's the temporary authorization code
o e el POtary the authority to access the API

Exchange temporary value for a token @

o Call endpoint with temporary value —) ActisE AP th ﬁ
L)
o | want you to read my reviews at Restograde [access token . Q
€ sure, let's go ask the STS for a token VIRTUAL API
FOODIE

@ The request to the API using the access token

1 GET /reviews
2 Host: api.restograde.com
3 Authorization: Bearer eyJhbGciO...du6TY9w e The access token from the OAuth 2.0 flow

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

0 Yes, let's do it!

o | am Philippe with password FluffyDog17! Q
° Get us an access token Oﬁ

A 4

o Who are you? Please authenticate to me! S.Er%l"(';';‘w
o Good. Are you sure you want to give SERVICE
VirtualFoodie access to your review data? A

0 Sure thing. Here's the temporary authorization code Q The access token representing

E the authority to access the API

USER Exchange temporary value for a token @

o Call endpoint with temporary value

&) Access APl with ﬁ
0 | want you to read my reviews at Restograde [2 access token i Q
o Sure, let's go ask the STS for a token VIRTUAL API

\) FOODIE

|:| Getting OAuth 2.0 access tokens

What happens when the access token expires?

THE REFRESH TOKEN FLOW

SECURITY
TOKEN
SERVICE

Request new access token
with refresh token e e Access token
and client credentials

e Request with
new access token

a Request with Q
access token :

a Token expired API

e Response

VIRTUAL
FOODIE

USER

OAUTH 2.0 REFRESH TOKENS

e | am Philippe with password FluffyDog17!
e Allow application X access on my behalf

SECURITY
TOKEN
SERVICE

The access token representing the authority to

Exchange temporary value for a token 0 o access the API, and a refresh token to get a
fresh access token in the future

< e Who are you? Please authenticate to me!
e Good. Now go back to application X
and give them this temporary value
e Call endpoint with temporary value
0 | want you to access an APl on my behalf
<€

Access APl with ﬁ
access token
g T3

Q Sure, let's go ask the STS for a token BACKEND API

Channels | Add or Remove Channels |

5/5 channels connected GED GED GED GED aED
PhilippeDeRyck
% infosec.exchange Q :
Mastodon Profile
= secappdev Q :
=6 Linkedin Page *
Refresh Connection] Refresh tokens are often
SecAppDev . .
R Ch |
50 Twitter Profile emove Channel ® epr|C|t|ry‘ revocable by
the user.
% Philippe De Ryck Q .
LinkedIn Profile ®
h PhilippeDeRyck Q :
Twitter Profile ‘

SUMMARIZING ACCESS TOKENS AND REFRESH TOKENS

e Access tokens are more exposed than refresh tokens
* The guideline for access tokens is to keep them short-lived
* When an access token expires, the refresh token can be used to get a fresh token

* Refresh tokens are consumed by the STS
* The STS issues them to the client and the client uses them with the STS
e Refresh tokens are as sensitive as credentials, so they should be handled securely

* The lifetime of refresh tokens is at the discretion of the STS
* For backend clients, refresh tokens can be valid for months, or even eternally
* For mobile clients, refresh tokens are stored securely and often long-lived
* For web clients, refresh tokens should have a lifetime of a few hours

® 0 @« Theinsecurityof ODAh20 X =

4 Lot [# youtuba.com/wat

» YouTube

THE INSECURITY OF OAUTH 2.0
IN FRONTENDS

DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

NDC { Security }

The insecurity of OAuth 2.0 in frontends - Philippe de Ryck - NDC Security 2023

@ 2o
S7K sulacnbers

| B 2 B DI

https://www.youtube.com/watch?v=0pFN6gmct8c

USING OAUTH 2.0 WITHOUT USERS

USING OAUTH 2.0 FOR MACHINE-TO-MACHINE ACCESS

Can | get an access token
to access the API

Examples include
scheduled cron jobs,
GitHub actions,

configuration tools, ...

Use OAuth 2.0 to obtain an
access token, representing
the client's authority to
access the API directly.

SECURITY
TOKEN
SERVICE

0 a The access token representing
the authority to access the API

CLIENT

Access APl with
access token

o

API

D Machine-to-machine access in action

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

SECURITY
TOKEN
SERVICE

Can | get an access token o The access token representing
to access the API the authority to access the API

Access APl with Q
access token > QQ

CLIENT API

€ 7he request to obtain an access token

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=client_credentials e Indicates the client credentials flow

5 &client_id=2JqcsqEpZfYNHxDazVMMKPT60UG6C7ZZS The client exchanging the code

6 &client_secret=xEJRXoe..Vd_BjB e The client needs to authenticate to the STS

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

¥
2,

TOKEN
SERVICE

A

Can | get an access token o o The access token representing
to access the API the authority to access the API

A 4

o Access APl with Q
access token N

CLIENT API

Q The response from the Security Token Service

1o

2 "access_token": "eyJhbGciO..encDDLQ", . The access token to access APIs

3 "token_type": "Bearer",

4 "expires_in": 3600, e The expiration time of the access token
5}

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

¥
2,

TOKEN
SERVICE

A

Can | get an access token o The access token representing
to access the API the authority to access the API

A 4
Access APl with
‘ o access token N Og

CLIENT API

THE OAUTH 2.0 CLIENT CREDENTIALS FLOW

* The client is another application that needs to access APlIs
* The client is accessing the APl directly, on its own behalf

* There is no user involved in the Client Credentials flow
* This is an OAuth 2.0-only flow, not an OpenlD Connect flow, so identity tokens are not used

* The Client Credentials flow fits within OAuth 2.0 as an authorization framework
* The access token issued by the STS represents the client's authority
* APIs already know how to handle access tokens, so little needs to change

* The Client Credentials flow only works with confidential clients
* Requesting access tokens requires authentication with a secret kept by the client
e Confidential clients need to run in a secure environment (server-side systems)

Introduction to Oauth 2.0 and OIDC

ACCESS TOKEN TYPES

eyJhbGci01JSUzIINiIsInR5cCI6IkpXVCIsImtpZC
I6IKk5UVKIPVFUzTXpCQk9FVXd0emhCUTBWROA1rUTBR
VVU1UVRZeFFVVX1PVU5FUVVVeE5gRXINdyJ9.eyJpc
3Mi1i0iJodHRwczovL3NOcy5yZXNOb2dyYWRTLmMNvbS8
iLCIzdWIi0iJhdXROMHW1ZWISMTZjMjU4YmMRINTB1Z
jIwMzY2YZzY1iLCJhdWQi01lsiaHROcHM6LY9hcGkucmV
zdGI9ncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3JhZ
GUUZXUuYXV@aDAuY29tL3VzZXIpbmZvI1@sImlhdCI
6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCJIhe
NA101iJPTEtObjM40VNVSW11ZkV4Z1IHMVIpbEXTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHBYyb2ZpbGUgZ
W1lhaWwgb2ZmbGluZV9hY2N1c3MifQ.XzJOXtTX0GOS
bCFvp4yZGIzh7XhMmOmI2XxtjwWd1l0Dz_siI-u8hlle
lcr8LwX6-hL20Q0W0eStzBzmm1FM_tS7MxuKKkYx8Q1l
TWOURPembVKZOhNi8kN-1j@pyc@Quzve7Jib5vcxmkP
wgpcVDFACgP85_0ONYe4zXHKxCAS5_8V0On@5cRCDSKNM
TFzGJCT9ipCcNXaVGdksojYGgQzezjpzzzwrtPEKiy
FLFtDPZA1OM1eF30FAOCBKOUKuUNjJ_cSBbUsalIwfvK
OWH47AwF rRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0d
rsqg3zrZj1PnoqPD4mb0Xds20xafCr9wR4WTQ

vSvhNDeQLqrzRbvA2eeYE2PthB1lcBimS

A reference token

vSvhNDeQLqrzRbvA2eeYE2PthB1lcBimS

SECURITY
TOKEN
SERVICE

Token introspection

9
&

API

TOKEN INTROSPECTION FOR REFERENCE TOKENS

SECURITY
TOKEN
SERVICE

Claims associated

Resolve the reference token e
with access token

into a set of claims

Authorization
decision

@ e Request with

access token

—
FRONTEND / (@ Response

Frontend has obtained an access 0
token through an OAuth 2.0 flow

TOKEN INTROSPECTION

* The fields returned are all marked as optional, except for active
* The active field indicates if a token is still valid or not
* The other fields are only present if a token is valid and provide context information

* The API can typically rely on a few specific values to be present
* These include iss, client id, and sub if a user is involved

e Ultimately, the STS is in control over what is returned during introspection
* The returned information can include custom fields
* Depending on who's asking, more or less information may be included

* The spec also allows token introspection for self-contained tokens (RFC 7662)
* Introspecting JWTs can be used to detect revocation before the token expires

eyJhbGci01JSUzIINiIsInR5cCI6IkpXVCIsImtpZC
I6IKk5UVKIPVFUzTXpCQk9FVXd0emhCUTBWROA1rUTBR
VVU1UVRZeFFVVX1PVU5FUVVVeE5gRXINdyJ9.eyJpc
3Mi1i0iJodHRwczovL3NOcy5yZXNOb2dyYWRTLmMNvbS8
iLCIzdWIi0iJhdXROMHW1ZWISMTZjMjU4YmMRINTB1Z
jIwMzY2YZzY1iLCJhdWQi01lsiaHROcHM6LY9hcGkucmV
zdGI9ncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3JhZ
GUUZXUuYXV@aDAuY29tL3VzZXIpbmZvI1@sImlhdCI
6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCJIhe
NA101iJPTEtObjM40VNVSW11ZkV4Z1IHMVIpbEXTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHBYyb2ZpbGUgZ
W1lhaWwgb2ZmbGluZV9hY2N1c3MifQ.XzJOXtTX0GOS
bCFvp4yZGIzh7XhMmOmI2XxtjwWd1l0Dz_siI-u8hlle
lcr8LwX6-hL20Q0W0eStzBzmm1FM_tS7MxuKKkYx8Q1l
TWOURPembVKZOhNi8kN-1j@pyc@Quzve7Jib5vcxmkP
wgpcVDFACgP85_0ONYe4zXHKxCAS5_8V0On@5cRCDSKNM
TFzGJCT9ipCcNXaVGdksojYGgQzezjpzzzwrtPEKiy
FLFtDPZA1OM1eF30FAOCBKOUKuUNjJ_cSBbUsalIwfvK
OWH47AwF rRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0d
rsqg3zrZj1PnoqPD4mb0Xds20xafCr9wR4WTQ

vSvhNDeQLqrzRbvA2eeYE2PthB1lcBimS

eyJhbGci0iJSUzITNiIsInR5cCI6IkpXVCIsImtp
ZCI6IKSUVKJPVFUzTXpCQk9FVXdO0emhCUTBWRO1r
UTBRVVU1TUVRZeFFVVX1PVU5FUVVVeE5qRX1NdyJ9
.eyJpc3MiOiJodHRwczovL3NOcy5yZXNOb2dyYWR
1LmNvbS8iLCJzdWIiOiJhdXROMHW1ZWI5SMTZjMjU
4YmRiNTBiZjIwMzY2YzYilLCJhdWQiOlsiaHROcHM
6Ly9hcGkucmVzdGOncmFkZS5jb20ilLCJodHRwczo
vL3J1c3RvZ3JhZGUuZXUuYXVBaDAuY29tL3VzZXJ
pbmZvI10sImlhdCI6MTU40Tc3NTA3IMiwiZXhwIjo
XNTg50DYXNDcyLCJhenAiOiJPTEtObjM40VNVSW1
1ZkVA4Z1JHMVJpbEXTZ2RZeHdFcCIsInNjb3B1lIjo
ib3BlbmlkIHBYyb2ZpbGUgZW1haWwgb2ZmbGluZV9
hY2N1c3MifQ.XzJOXtTX0OGOSbCFvp4yZGJzh7XhM
mOmI2XxtjWd1lODz_siI-u8h11elcr8LwX6-
hL20Q0W0eStzBzmm1FM_tS7MxuKkYx8Q1lTWOURPe
mbVKZOhNi8kN-
1j0pycOuzve7Jib5vexmkPwgpcVDFACgP85_ONYe
4zXHKxCA5_8VOnB5cRCDSKNMTFzGJCT9ipCcNXaV
GdksojYGgQzezjpzzzwrtPEkiyFLFtDPZAl10Ml1eF
30FAOCBKOUKuUNjJ_cSBbUsaIwfvKOWH47AwFrRn_
TxL4S1P3j3b1GgBm8tAqXysY84VZuo
rSg3zrZj1PnogPD4mb0Xds20xafCr9wR4WTQ

Header with
token metadata

Payload with a
set of claims

h

Signature protecting the
header and payload

eyJhbGci0iJSUzITNiIsInR5cCI6IkpXVCIsImtp
ZCI6IKSUVKJPVFUzTXpCQk9FVXdO0emhCUTBWRO1r
UTBRVVU1TUVRZeFFVVX1PVU5FUVVVeE5qRX1NdyJ9
.eyJpc3MiOiJodHRwczovL3NOcy5yZXNOb2dyYWR
1LmNvbS8iLCJzdWIiOiJhdXROMHW1ZWI5SMTZjMjU
4YmRiNTBiZjIwMzY2YzYilLCJhdWQiOlsiaHROcHM
6Ly9hcGkucmVzdGOncmFkZS5jb20ilLCJodHRwczo
vL3J1c3RvZ3JhZGUuZXUuYXVOaDAuY29tL3VzZXJ
pbmZvI10sImlhdCI6MTU40Tc3NTA3IMiwiZXhwIjo
XNTg50DYXNDcyLCJhenAi0iJPTEtObjM40VNVSW1
1ZkVA4Z1JHMVJpbEXTZ2RZeHdFcCIsInNjb3B1lIjo
ib3BlbmlkIHBYyb2ZpbGUgZW1haWwgb2ZmbGluZV9
hY2N1c3MifQ.XzJOXtTX0OGOSbCFvp4yZGJzh7XhM
mOmI2XxtjWd1lODz_siI-u8h11elcr8LwX6-
hL26Q0WBeStzBzmm1FM_tS7MxuKkYx8Q1TWOURPe
mbVKZOhNi8kN-
1j0pycOuzve7Jib5vexmkPwgpcVDFACgP85_ONYe
4zXHKxCA5_8VOnB5cRCDSKNMTFzGJCT9ipCcNXaV
GdksojYGgQzezjpzzzwrtPEkiyFLFtDPZAl10Ml1eF
30FAOCBKOUKuUNjJ_cSBbUsaIwfvKOWH47AwFrRn_
TxL4ST1P3j3b1GgBm8tAqXysY84VZuo
rSg3zrZj1PnogPD4mb0Xds20xafCr9wR4WTQ

HEADER: ALGORITHM & TOKEN TYPE

"alg"”: "RS256",
Iltypll : "JWT“ ,
"kid":

"NTVBOTU3MzBBOEUwWNzhBQBVGMkQOQUUS5QTYXxQUUYOUNEQUUXNjEyMw"
}

PAYLOAD: DATA

{

"iss": "https://sts.restograde.com/",
"sub": "auth@|5eb916c258bdb50bf20366c6",
Ilaudll: [

"https://api.restograde.com",
"https://restograde.eu.auth@.com/userinfo”
1,
"iat": 1589775072,
"exp": 1589861472,
"azp": "OLKNn389SUImufExgRGTRilLSgdYxwEp",
"scope": "openid profile email offline_access"”

VERIFYING SELF-CONTAINED ACCESS TOKENS

* The APl is typically configured with a trusted STS
* The STS will provide access tokens, which will be used to make authorization decisions
* With the URL of the STS, the API can bootstrap its token verification mechanism

* Self-contained tokens are signed by the STS, ensuring their integrity
* The APl must verify the integrity of a self-contained access token before using the data
 Verification is typically done by checking the signature with a public key of the STS

 All of these details are typically implemented in middleware
* Barebones JWT libraries can handle most of these details
* Many languages offer resource server libraries, which deal with access tokens specifically

Which token type do you prefer?

Q Reference tokens

e Self-contained tokens

Which token type has better

performance properties?

Q Reference tokens

e Self-contained tokens

Which token type has better

revocation properties?

Q Reference tokens

e Self-contained tokens

SELF-CONTAINED TOKENS REFERENCE TOKENS

SECURITY Revoking refresh
TOKEN

SERVICE /@ tokens terminates
access on next refresh

SECURITY
TOKEN
SERVICE

Revoking access tokens makes
e— them invalid immediately

Required every time the Required every time the Required for every
access token expires access token expires access by the client
1 Access tokens 1 1
cannot be revoked : :
° Get new access token . ° Get new access token a Token introspection
with refresh token before they expire with refresh token
v \4
m a Request with @ @ a Request with
Q access token Q Q access token
|\ —— —

FRONTEND API FRONTEND

TRADE-OFFS BETWEEN ACCESS TOKEN TYPES

* Self-contained tokens can be independently verified by the API
* The STS is not involved until the access token expires and the client gets a new token
* Access tokens typically become invalid when they expire
e Access can be terminated by revoking the client's refresh token

* Reference tokens require token introspection between the APl and the STS
* The STS is always involved, both for token introspection and renewing access tokens
e Access tokens can be revoked by the STS, making them invalid immediately
* Caching introspection responses by the API contradicts the security properties
e Caching is acceptable for handling bursts of requests, but only for 10 — 20 seconds

* The most important trade-off is about security vs performance
e Reference tokens have better security properties, but they come at a cost

PRACTICAL GUIDELINES ON ACCESS TOKEN TYPES

* How short can you make your access token's lifetime?
e Short lifetimes reduce the window of abuse and force the client to contact the STS

* Frontend applications are more sensitive, so should have shorter token lifetimes
* 5-10 minutes is quite common

* How important is revocation for your application?
* |f a small potential window of abuse is acceptible, short token lifetimes are a good option
* |If no abuse is acceptible, reference tokens offer the most control

e Revocation sounds great on paper, but can you implement it?
* Manual revocation processes will be ineffective with token lifetimes of 5—10 minutes
* Automatic revocation with anomaly-detection systems would be effective

ACCESS TOKEN TYPES

* The STS decides on the security properties of access tokens
* Clients only send access tokens, so they are agnostic of the token type and its properties
* The APl will need to understand how to process different token types

* In practice, self-contained JWT tokens are common for distributed scenarios
* Running token introspection between different parties is often difficult
* Keep token lifetimes as short as possible

* Reference tokens are often used for internal systems
* On-premise token introspection is easier to implement
* Can also be implemented with an API gateway that translates tokens

APIS ARE RESPONSIBLE FOR ENFORCING AUTHORIZATION

* OAuth 2.0 offers a way to transport user / client information to the API
* The API relies on this information to make authorization decisions
* Complex systems should avoid overloading access tokens and use a policy service instead

* APIs are responsible for verifying the validity of incoming tokens
 Verify the validity of the incoming access token (signature or introspection)
* Enforce restrictions on the sender of the token if applicable
 Verify the properties of the access token (issuer, audience, ...)

* Libraries / middleware can handle most of these responsibilities
* Make sure your library / middleware / framework handles tokens correctly

ENFORCING AUTHORIZATION WITH ACCESS TOKENS

The value is a space-delimited Applications can define
string with scope values custom scopes

l l

scope=openid email profile read:reviews

| |

A mechanism provided by OAuth 2.0 does not define any
OAuth 2.0 to define the scope scope values, but OIDC has a
of an access token set of reserved scopes

Gmail API, v1

Scopes

https://mail.google.com/

https://www.googleapis.com/auth/gmail.addons.current.action.compose

https://www.googleapis.com/auth/gmail.addons.current. message.action

https://www.googleapis.com/auth/gmail.addons.current. message.metadata

https://www.googleapis.com/auth/gmail.addons.current. message.readonly

https://www.googleapis.com/auth/gmail.compose
https://www.googleapis.com/auth/gmail.insert
https://www.googleapis.com/auth/gmail.labels

https://www.googleapis.com/auth/gmail.metadata

https://www.googleapis.com/auth/gmail.modify
https://www.googleapis.com/auth/gmail.readonly
https://www.googleapis.com/auth/gmail.send
https://www.googleapis.com/auth/gmail.settings.basic

https://www.googleapis.com/auth/gmail.settings.sharing

Google Analytics API, v3

Scopes

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/analytics.edit
https://www.googleapis.com/auth/analytics. manage.users
https://www.googleapis.com/auth/analytics.manage.users.readonly

https://www.googleapis.com/auth/analytics.provision

https://www.googleapis.com/auth/analytics.readonly

https://www.googleapis.com/auth/analytics.user.deletion

Read, compose, send, and permanently delete all your
email from Gmail

Manage drafts and send emails when you interact with
the add-on

View your email messages when you interact with the
add-on

View your email message metadata when the add-on is
running

View your email messages when the add-on is running
Manage drafts and send emails

Insert mail into your mailbox

Manage mailbox labels

View your email message metadata such as labels and
headers, but not the email body

View and modify but not delete your email
View your email messages and settings
Send email on your behalf

Manage your basic mail settings

Manage your sensitive mail settings, including who can
manage your mail

View and manage your Google Analytics data

Edit Google Analytics management entities

Manage Google Analytics Account users by email address
View Google Analytics user permissions

Create a new Google Analytics account along with its default
property and view

View your Google Analytics data

Manage Google Analytics user deletion requests

Google Sheets API, v4

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive.file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

Google Sign-In

Scopes

profile
email

openid

Google Site Verification API, v1

Scopes

https://www.googleapis.com/auth/siteverification

https://www.googleapis.com/auth/siteverification.verify_only

Google Slides API, v1

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive.file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/presentations
https://www.googleapis.com/auth/presentations.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files
See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

View your basic profile info
View your email address

Authenticate using OpenlID Connect

Manage the list of sites and domains you control

Manage your new site verifications with Google

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files

View and manage your Google Slides presentations

View your Google Slides presentations

See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

GitHub

Available scopes

Name

(no scope)

repo

repo:status

repo_deployment

public_repo

repo:invite

security_events

admin: repo_hook

write:repo_hook
read: repo_hook

admin:org

write:org

read:org

Description

Grants read-only access to public information (includes public user
profile info, public repository info, and gists)

Grants full access to private and public repositories. That includes
read/write access to code, commit statuses, repository and organization
projects, invitations, collaborators, adding team memberships,
deployment statuses, and repository webhooks for public and private
repositories and organizations. Also grants ability to manage user
projects.

Grants read/write access to public and private repository commit
statuses. This scope is only necessary to grant other users or services
access to private repository commit statuses without granting access to
the code.

Grants access to deployment statuses for public and private repositories.
This scope is only necessary to grant other users or services access to
deployment statuses, without granting access to the code.

Limits access to public repositories. That includes read/write access to
code, commit statuses, repository projects, collaborators, and
deployment statuses for public repositories and organizations. Also
required for starring public repositories.

Grants accept/decline abilities for invitations to collaborate on a
repository. This scope is only necessary to grant other users or services
access to invites without granting access to the code.

Grants read and write access to security events in the code scanning API.

Grants read, write, ping, and delete access to repository hooks in public
and private repositories. The repo and public_repo scopes grants full

access to repositories, including repository hooks. Use the
admin: repo_hook scope to limit access to only repository hooks.

Grants read, write, and ping access to hooks in public or private
repositories.

Grants read and ping access to hooks in public or private repositories.
Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

admin:org

write:org

read:org

admin:public_key

write:public_key

read:public_key

admin:org_hook

gist

notifications

user

read:user

user:email

user:follow
delete_repo

write:discussion

read:discussion

write:packages

read:packages

delete:packages

Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

Fully manage public keys.

Create, list, and view details for public keys.

List and view details for public keys.

Grants read, write, ping, and delete access to organization hooks. Note:
OAuth tokens will only be able to perform these actions on organization
hooks which were created by the OAuth App. Personal access tokens will
only be able to perform these actions on organization hooks created by a
user.

Grants write access to gists.

Grants:

* read access to a user's notifications

* mark as read access to threads

* watch and unwatch access to a repository, and

* read, write, and delete access to thread subscriptions.

Grants read/write access to profile info only. Note that this scope
includes user:email and user:follow .

Grants access to read a user's profile data.

Grants read access to a user's email addresses.
Grants access to follow or unfollow other users.
Grants access to delete adminable repositories.

Allows read and write access for team discussions.

Allows read access for team discussions.

Grants access to upload or publish a package in GitHub Packages. For
more information, see "Publishing a package" in the GitHub Help
documentation.

Grants access to download or install packages from GitHub Packages.
For more information, see "Installing a package" in the GitHub Help
documentation.

Grants access to delete packages from GitHub Packages. For more
information, see "Deleting packages" in the GitHub Help documentation.

PRACTICAL GUIDELINES FOR DEFINING SCOPES

e Unless you are Google, you probably do not need hundreds of scopes
* People sometimes run into length limits for the scope parameter, which is a bad smell

* |f clients need access to every API in the system, then you don't need scopes
* Scopes enforce compartmentalization, but do not replace existing authorization systems

* Guidelines to define scopes

 Start by identifying logical groupings in the APlIs permission Description
* E.g., reviews and restaurants

 Determine if different access levels are needed
e E.g., restaurants is used by a single client write:reviews Write reviews
* E.g., read:reviews is for third-party clients

* |solate extremely sensitive permissions
e E.g., delete:reviews is only possible after consent restaurants Manage restaurant information

read:reviews Read reviews

delete:reviews Delete reviews

MAKING SPECIFIC AUTHORIZATION DECISIONS

PAYLOAD: DATA

{
"iss": "https://sts.restograde.com/",
"sub": "auth@|5eb916c258bdb56bf20366¢c6", @
"aud": |

"https://api.restograde.com”,
"https://restograde.eu.auth@.com/userinfo”
1,
"iat": 1589775072,
"exp": 1589861472,
"azp": "OLKNNn389SUImufExgRG1RilLSgdYxwEp",

"scope": "openid profile email offline_access"

The sub points to the subject, which
is typically the user on whose behalf
the request is being made

MAKING SPECIFIC AUTHORIZATION DECISIONS

* User-related access tokens carry a sub claim
* The sub is a unique identifier for a particular user within the issuer

* With the user's identifier, the APl can make user-specific authorization decisions
* E.g., checking object-level permissions

* The value of the sub is guaranteed to be unique and immutable for an issuer
* Typically, the sub value is a randomly generated identifier
e The issuer will also ensure that the sub value cannot be reused by other accounts

* The sub only applies to a specific issuer, SO no uniqueness across issuers
* For most APIs, this does not represent a problem since only one issuer is trusted
* For APIs serving multiple issuers, the issuer and the sub value need to be combined

ADDING AUTHORIZATION INFORMATION TO ACCESS TOKENS

* Access tokens represent an authorization given to a client
* They are intended to replace other constructs (e.g., username / password)
* Access tokens granting authority on behalf of a user carry information about the user

* Access tokens are not supposed to carry API-specific authorization information
* The OAuth 2.0 spec does not explicitly state this and custom claims can be added
* Practical implementations often start adding custom claims to support authorization

* Adding authorization information to access tokens raises some issues
* How many permissions will be added and what about access token size?
 What is the token lifetime and what about stale permissions?

* Will you ever be able to change your permission system?

COMMON SCENARIOS USING CUSTOM ACCESS TOKEN CLAIMS

* Adding additional user-specific claims to support authorization decisions
* E.g., customerlD or tenantID are common in multi-tenant scenarios
* Unlikely to change in the future and fully within the spirit of access tokens

* Adding user-specific permissions in a separate permissions claim
* Requires the STS to be aware of every API's permissions
e Less in the spirit of access tokens, since permissions are not about the user's identity

* Adding user roles to access tokens in a separate roles claim
* Very common due to existing RBAC systems
* Unlikely to cause major issues, since roles are not API-specific and belong to a user

DELEGATION IN OAUTH 2.0

A NAIVE APPROACH TO DELEGATION

(]

USER

e Authorize and use the
client application

Q Obtain access token 1 (AT1)

CLIENT ‘

SECURITY
TOKEN
SERVICE

API2 would need to relax
its security requirements

The scopes of AT1 are to make this work

AT1 is intended to be used
by the client, not by API1

associated with API1 1

|

€ Access API with AT1 Q © Access API with AT1 o
| M &

API I API

API1 The audience of AT1 does API2

not match API2

(]

USER

‘ € Access API with AT1

CLIENT

THE CONCEPT OF PROPER DELEGATION

Authorize and use the
client application

o Obtain access token 1 (AT1)

| want to access API2
on behalf of the client,
but | have AT1

o Response

SECURITY
TOKEN
SERVICE

API

API1

and decide if this is allowed

Issue AT2 authorizing API1

e to access API2 on behalf of the

client (and the user)

»/Q 0 Access APl with AT2

0 Response

e Check the policy of allowed delegations

3
M

API2

TWO COMMON APPROACHES

* Impersonation hides the delegation aspect, but relies on correct tokens
* Instead of forwarding tokens with the wrong properties, API1 obtains a new token
* The new token makes API1 the client, thus providing correct information to API2
* API2 does not know that the request is on behalf of a client that called API1

* Delegation propagates the relevant information, preserving proper semantics
* The newly issued token will inform API2 that the call is from API1 on behalf of the client
* This token allows API2 to make a fully informed authorization decision

* The STS is responsible for deciding which delegation is allowed
* Policies involve the different actors, the granted and requested scopes, ...

DELEGATION IN OAUTH 2.0

* RFC 8693 defines the mechanisms of a Token Exchange mechanism
* The document focuses on the interactions, not the semantics of a token exchange
* The semantics and the implementation details are custom for each STS

* Use cases that can be implemented with a token exchange mechanism
* Calling additional APIs on behalf of the original client with the proper semantics
e Obtaining a user impersonation token as an admin user
e Translating external identity tokens into internal tokens

* Examples of systems that currently support these concepts

* Keycloak supports a token exchange based on RFC 8693 for these use cases
* Microsoft supports "On Behalf Of" flows for API delegation, but not RFC8693

All these delegation concepts require a

massive amount of work to get working ...

BUILD A SOLID SERVICE ARCHITECTURE FIRST

* Advanced delegation concepts require a solid foundation
* Implementing delegation requires each API to authenticate as a client
* Doing all of this at once is very unlikely to succeed

e Start by implementing restrictions between services

* mTLS is the preferred mechanism to enforce access policies between services
e Authorization decisions here are made based on APl identities, not user request properties
e Supported by numerous frameworks and libraries, including Istio's service mesh

* Successfully implementing this gives you a first understanding of interaction patterns

* Once available, mTLS can be re-used as a client authentication mechanism
* Implement delegation step-by-step, learning more about the practicalities along the way

TAKEAWAYS

REFERENCES

The RFC discussing OAuth 2.0 security best current practices (essential reading!)

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

An article discussing patterns that translates between token types in a reverse proxy setup

https://thenewstack.io/securely-scaling-the-myriad-apis-in-real-world-backend-platforms/

A series of articles on various OAuth 2.0 topics on my website

https://pragmaticwebsecurity.com/articles/tags/oauth.html

Offensive exercises on OAuth 2.0 flows

https://portswigger.net/web-security/all-labs#oauth-authentication

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://thenewstack.io/securely-scaling-the-myriad-apis-in-real-world-backend-platforms/
https://portswigger.net/web-security/all-labs
https://pragmaticwebsecurity.com/articles/tags/oauth.html

CHECK OUT MY ONLINE COURSE ON OAUTH 2.0 AND OIDC

® @ | Mastering OAUh 2.0 and Oper X

s
m <

4 C @& [@& courses.pragmaticwebsecurity.comybundles/masterng-oauth-cide a | @ 4

@ Pragmatic Web Security SIGN IN GET STARTED NOW

Mastering OAuth 2.0 and OpenID
Connect

Your shortcut towards understanding OAuth 2.0 and
OpenID Connect

OAuth 2.0 and OpenID Connect are crucial for securing web applications, mobile
applications, APIs, and microservices. Unfortunately, getting a good grip on the purpose
and use cases for these technologies is insanely difficult. As a result, many
implementations use incorrect configurations or contain security vulnerabilities.

Let me tell you how I felt when | started digging into OAuth 2.0 and OpenID Connect a
few years ago. | had a hard time understanding what OAuth 2.0 and OpenID Connect
were supposed to solve. The terminology made it difficult to understand what the spec
was even talking about. And the flows! Each use case had a different flow, and the
differences between the flows are often tiny details.

https://courses.pragmaticwebsecurity.com/bundles/mastering-oauth-oidc

OAUTH 2.0 AND OPENID CONNECT

* OAuth 2.0 allows a user to delegate access to a client application
* Avoids the need for sharing credentials with the client application
* Defines an authorization framework to allow APIs to make authorization decisions
* OAuth 2.0 is the de facto standard for implementing distributed authorization scenarios

* OpenlD Connect allows a client to delegate authentication to a central provider
e OIDC is the de facto standard for building modern Single Sign-On systems
* OIDC uses OAuth 2.0 flows with specific configuration settings
* OAuth 2.0 and OIDC are typically used together, but can be used separately as well

* How the user authenticates to the central provider is not specified
* OAuth 2.0 and OIDC define the interactions between the different components

