
Access control unveiled:
Challenges & best practices

Maarten Decat

Co-founder & CEO

maarten@elimity.com

www.elimity.com 1

mailto:maarten@elimity.com
https://elimity.com/

The topics of this presentation

Access control
&

Identity & Access Management

2

Outline

1. Introduction
a. What is access control?
b. What is IAM?

2. Deeper dive into access control
3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

What is access control?

▪ As with any security: confidentiality, integrity, availability

▪ Layer in between (malicious) users and the protected system
▪ Part of the Trusted Computing Base

4

Access control is the part of a system that constrains
the actions that are performed in a system

based on access control rules.

What is access control?

5

1. Not easy to get right,
e.g., what about windows?

2. Difference between access
rules and mechanism

3. Different mechanisms have
different properties

4. Different mechanisms support
different rules

Access control in the physical world

6

7

Access control in software

What is IAM?

Identity & Access Management (IAM)
encompasses all processes used by an organization

to ensure that everyone can access the data they need
and only the data that they need.

8

What is IAM?

9

IoT
devices

Customers

Cloud services

Partners

SaaS
apps

Employees

Home
office

Corporate
network

Personal devicesMobile devices

THE IT LANDSCAPE HAS CHANGED

10

IoT
devices

Customers

Cloud services

Partners

SaaS
apps

Employees

Home
office

Corporate
network

Personal devicesMobile devices

THE IT LANDSCAPE HAS CHANGED

11

IoT
devices

Customers

Cloud services

Partners

SaaS
apps

Employees

Home
office

Corporate
network

Personal devicesMobile devices

WHAT STILL CONNECTS ALL THE PIECES:

IDENTITY

THE IT LANDSCAPE HAS CHANGED

12

94%
of organizations have had an

identity-related security breach

TAKING CONTROL OVER

WHO CAN ACCESS
WHICH DATA & APPLICATIONS

IS ESSENTIAL FOR
CYBER SECURITY

ISO 27001 A.9 Access Control

NIST 800-53 Control family: Access Control

CIS CONTROLS 14. Controlled Access Based on the Need
to Know

ISO27001 NIST GDPRSOC2 NIS SOX CIS

13

Side note: Security is not the only driver for IAM

1. CYBERSECURITY 2. COMPLIANCE 3. OPERATIONAL
EFFICIENCY

Minimize the chances of credential theft

Minimize the impact of credential theft
(enforce least privilege)

Comply to standards and regulations

Avoid unneeded access (e.g., GDPR)

Show that you are in control (audit trails)

Improve time-to-work

Decrease burden on helpdesk

Automate provisioning

Automate password resets

14

Access control & IAM

Even though access control is important, it is #1 on OWASP Top 10.

Even though almost every hack starts with stolen credentials, many
organizations are still not in control of their users and accesses.

The rest of this presentation: go deeper into access control and
go deeper into IAM to give you the tools to
better protect the data in your application

and help your customers protect their data in your application.

15

Outline

1. Introduction
2. Deeper dive into access control

a. What is access control?
b. Challenges
c. Access control models
d. How to implement

3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

Outline

1. Introduction
2. Deeper dive into access control

a. What is access control?
b. Challenges
c. Access control models
d. How to implement

3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

What is access control?

▪ As with any security: confidentiality, integrity, availability

▪ Layer in between (malicious) users and the protected system
▪ Part of the Trusted Computing Base

18

Access control is the part of a system that constrains
the actions that are performed in a system

based on access control rules.

10,000m point of view

19

User
Subject
Principal

Guard

Protected
resource
(Object)

Action

But there is more to it

20

Access
control

Authori-
zation

Authen-
tication

Audit

But there is more to it

21

Access
control

User
behavior
analytics

Authori-
zation

Authen-
tication

Audit

…

Secure
audit

Federated
authN

...

Access
control
models

Policy-based
access
control

Performance
tactics

…

Multi-factor
authN

Passwords

5000m point of view

22

Authentication

Subject

Guard

Resource

Action

Writes out
security logs

Performs
authorization

Audit security logs, revert
and punish if needed

Audit security logs, revert
and punish if needed

For the rest of this presentation

23

Subject

Guard

Resource

Action

“Access control” = “authorization”

Outline

1. Introduction
2. Deeper dive into access control

a. What is access control?
b. Challenges
c. Access control models
d. How to implement

3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

Models, policies and mechanisms

25

▪ Guard is responsible for mediating access
▪ Authorize specific actions
▪ Mechanism that enforces specific security rules

▪ Rules, policies, models and mechanisms
▪ Access rules: the logical access rules, independent of representation
▪ Mechanism: low-level implementation of controls
▪ Model: (formal) representation of how rules can be expressed

▪ Access control seems straightforward… but is it?

Example access control model:
A user is permitted to read/comment/write a file if any of the
following holds:

1. he/she is the owner of the file,

2. he/she has explicitly been given this permission or higher,

3. he/she is part of a mail group that has explicit been given
this permission or higher,

4. the file has been shared with the whole organization of the
user that created it, and the user is part of that organization
and the default permission for the organization is this
permission or higher,

5. the file has been link-shared for that permission and the
he/she has opened the file using that link.

26

Examples access control model:

27

Examples access control model:

28
Source: https://help.sap.com/docs/btp/sap-business-technology-platform/authorization-basics

The result: #1 in OWASP Top 10

29

"A01:2021-Broken Access Control moves up from the fifth position to the category with the most serious web
application security risk; the contributed data indicates that on average, 3.81% of applications tested had one
or more Common Weakness Enumerations (CWEs) with more than 318k occurrences of CWEs in this risk
category. The 34 CWEs mapped to Broken Access Control had more occurrences in applications than any
other category." Source: https://owasp.org/Top10/

OWASP Top 10: A01 Broken Access Control
Common access control vulnerabilities include:

1. Violation of the principle of least privilege or deny by default, where access should only be granted
for particular capabilities, roles, or users, but is available to anyone.

2. Bypassing access control checks by modifying the URL (parameter tampering or force browsing),
internal application state, or the HTML page, or by using an attack tool modifying API requests.

3. Permitting viewing or editing someone else's account, by providing its unique identifier (insecure
direct object references)

4. Accessing API with missing access controls for POST, PUT and DELETE.

5. Elevation of privilege. Acting as a user without being logged in or acting as an admin when logged in as
a user.

6. Metadata manipulation, such as replaying or tampering with a JSON Web Token (JWT) access control
token, or a cookie or hidden field manipulated to elevate privileges or abusing JWT invalidation.

30

How to prevent:

1. Only rely on trusted server-side code or server-less API, where the attacker cannot modify the
access control check or metadata.

2. Except for public resources, deny by default.

3. Implement access control mechanisms once and re-use them throughout the application.

4. Model access controls should enforce record ownership rather than accepting that the user can
create, read, update, or delete any record.

5. Unique application business limit requirements should be enforced by domain models.

6. Rate limit API and controller access to minimize the harm from automated attack tooling.

7. Stateful session identifiers should be invalidated on the server after logout.

=> No silver bullets: apply decent engineering, high-quality testing, KISS

OWASP Top 10: A01 Broken Access Control

31

Outline

1. Introduction
2. Deeper dive into access control

a. What is access control?
b. Challenges
c. Access control models
d. How to implement

3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

The basics: the access control matrix

33

Permissions

[Lampson1971]

Resources

Subjects

34

Extensions of the access control matrix:

Who can assign permissions?

Who can assign permissions?

35

In general, two approaches:

1. Mandatory access control (MAC)
▪ By central authority

2. Discretionary access control (DAC)
▪ By subjects themselves

Mandatory access control (MAC)

36

▪ Permissions are assigned by a central authority according to a
central policy
▪ Good fit within organizations and systems with a strong need for

central controls
▪ Low flexibility and high management overhead

▪ Mandatory Access Control in use
▪ Often linked to multi-level security systems -> see later on

• E.g. Government-regulated secrecy systems, military applications
▪ Modern operating systems, to separate applications and processes

• E.g. Windows’ Mandatory Integrity Control, SELinux, TrustedBSD
▪ The essence of every IAM security strategy

Discretionary access control (DAC)

37

▪ Permissions are set at the discretion of the subjects, e.g.,
the resource owner
▪ Highly flexible policy, where permissions can be transferred
▪ Lack of central control makes revocation or changes difficult

▪ Discretionary access control in use
▪ Controlling access to files

• E.g., Windows Access Control Lists (ACL), UNIX file handles, Teams,
Google Drive, ...

▪ Controlling the sharing of personal information
• E.g., Social networks

Recap: MAC vs DAC

38

▪ Two dual approaches
▪ In practice: combine both

▪ Provide some form of discretionary self-management within the
constraints of mandatory access rules

• For example, delegate administration of team resources to an administrator
▪ Options:

• Trust subjects to enforce mandatory policy
• Audit mandatory policy
• Enforce mandatory policy

▪ My experience:
▪ DAC in an enterprise context gives many CISOs a headache. Just think of the file

shares at Stad Antwerpen

39

Extensions of the access control matrix:

How are permissions assigned?

Existing models

40

▪ Identity-based access control
▪ Multi-level access control
▪ Role-based access control (RBAC)
▪ Attribute-based access control (ABAC)

Identity-based access control

41

▪ Assign permissions to individual subjects and resources
▪ This is actually again the Access Control Matrix

File A File B

Jane Read
Write

John Read Read
Write

Identity-based access control

42

Possible implementations: store 1 big matrix (not efficient) or:

Subjects Resources

A

BA.read
B.read
B.write

A.read
A.write

Access Control Lists
Subjects Resources

A

B
John:read
John:write

Jane:read
Jane:write

Capability Lists

John:read

43

● Advantage: flexibility
● Disadvantage: Large management effort

○ E.g., “all nurses can read patient files” -> repeat for all nurses
○ E.g., “patients can read their own patient files” -> repeat for all patients

● Used in practice
○ E.g., Google Drive

Identity-based access control

Multi-level access control

▪ Sometimes also called Lattice-Based Access Control

▪ Strict control over information flow
▪ Resources are assigned security classifications
▪ Subjects (and their programs) are assigned security clearances
▪ These labels are organized in a lattice

▪ Two well-known rule sets:
▪ Bell-LaPadula (confidentiality)

▪ Biba (integrity)

44

{A} {B}

{}

{A,B}Top Secret

Secret

Confidential

Unclassified

 w
rite

 read

Multi-level access control

45

▪ Model of Bell-LaPadula:
▪ No read up
▪ No write down (“✰-property”) Confidentiality

read, write

Unclassified
read, write

 write

 re
ad

Secret

 w
rite

 re
ad

 write

Multi-level access control

46

▪ Model of Biba:
▪ No write up
▪ No read down

Integrity

read, write

Unclassified
read, write

 readSecret

Multi-level access control

47

▪ You want both Bell-LaPadula and Biba
▪ However, this is not workable in practice
▪ => Refinement: Information flow control, taint tracking

var low, high

if check(high) then

 low := declassify(high)
Low

input

High
input

Low
input

High
output

Multi-level access control in the wild
▪ Core security feature of Windows Vista and newer

▪ Complementary to discretionary access control
▪ Control access to securable objects based on integrity level
▪ Define the minimum integrity level required to access an object

▪ Isolate potentially untrustworthy contexts within the OS
▪ Used by Google Chrome and Adobe Reader

48

Not just an academic exercise...

49

Role-based access control (RBAC)

50

AssetsRoles

read

write

read

write

read

write

read

write

Manager

Helpdesk
operator

Users

Role-based access control (RBAC)

▪ Permissions assigned to roles, roles adopted by users
▪ Goal: reduce large number of permissions to limited number of

roles
▪ Fits well onto the organizational structure of an enterprise

▪ Immense research field
▪ Originated in research in 1992, NIST standard in 2004
▪ Role hierarchies, role mining, administrative models, delegation,

constraints, least privilege, static separation of duty through
meta-rules, ...

▪ For app engineering: just group users in roles, don't make it
too fancy :)

51

Outline

1. Introduction
2. Deeper dive into access control

a. What is access control?
b. Challenges
c. Access control models
d. How to implement

3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

Application-level access control

53

▪ Rules reason about the concepts in your application

▪ Add guard to code of your application
▪ The properties that you want:

▪ Full mediation
▪ Tamper proof
▪ Verifiable

Option 1: encode guard and rules in app code

54

public Document getDoc(docId) {
 Doc doc = db.getDoc(docId);
 if (! (“manager” in user.roles
 && doc.owner == user
 && 8h00 < now() < 17h00)) {
 return null;
 } else {
 return doc;
 }
}

+ straightforward
+ you can encode almost
 anything
- no separation of concerns
- no modularity
 => hard for reviews
- what if rules change?

- update application code
- updates all over the place

Option 2: modularize

55

public Document getDoc(docId) {
 Doc doc = db.getDoc(docId);
 if (! (“manager” in user.roles
 && doc.owner == user
 && 8h00 < now() < 17h00)) {
 return null;
 } else {
 return doc;
 }
}

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}
…
public boolean authz(
 user, action, resource) {
 if (!(“manager” in user.roles

 && …)) {
 return true;
 } else {
 return false;
 }
}

Option 2: modularize

56

+ more modularity: access
 control logic in 1 place
- no separation of concerns
± what if rules change?

- update application code
+ updates in one place

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}
…
public boolean authz(
 user, action, resource) {
 if (!(“manager” in user.roles

 && …)) {
 return true;
 } else {
 return false;
 }
}

Option 2: modularize – Java Spring Security

57

In the controller:
@PreAuthorize("hasPermission(#doc, ‘view')")
public void getDocument(Document doc);

In the PermissionEvaluator:
boolean hasPermission(Authentication a,
 Object resource, String permission) {
 User user = SecurityUtil.getUserCredential();
 if(permission == “view” and ...) {
 return true;
 } else {
 return false;
 }
}

https://docs.spring.io/spring-security/site/docs/3.0.x/reference/el-access.html

@authz(user, “read”, result)
public Document getDoc(docId) {

 return db.getDoc(docId);

}

…

public boolean authz(

 subject, action, resource) {

 if (! (“manager” in user.roles and …)) {

 return true;

 } else {

 return false;

 }}

Option 3: policy-based access control

58

@authz(user, “read”, result)
public Document getDoc(docId) {

 return db.getDoc(docId);

}

Policy
Decision

Point

Policy

Option 3: policy-based access control

59

▪ Decouple access control rules from application code
▪ Express access control rules in a format independent of your

programming language
▪ In application code: ask the generic question “can this subject

perform this action on this resource”?
▪ Policy evaluated by specialized component called the Policy

Decision Point
▪ If policy is stored in a file or a database: change policy at run-time

Reference architecture

60

Application

Policy Enforcement Point

Obligation
Service

Policy
Decision

Point

Policy
Administr.

Point

Policy
Information

Point Subjects,
Resources,

Environment

1

2

4

30 0

Reference architecture

61

Application

Policy Enforcement Point

Obligation
Service

Policy
Decision

Point

Policy
Administr.

Point

Policy
Information

Point Subjects,
Resources,

Environment

1

2

4

30 0

isAuthorized(
subject.id -> “John Smith”,

action.id -> “view”,
resource.id -> “doc123”)

fetchAttribute(“subject”, “treating”, “John Smith”)
fetchAttribute(“environment”, “current_time”)

log(“John Smith
accessed doc123”)

when resource.type == “patient_data”:
permit if “physician” in subject.roles and

resource.owner in subject.treating performing
log(subject.id + “accessed ” + resource.id)

Permit

Advantages of PBAC

62

+ More modularity: access control logic in 1 place

+ Separation of concerns: policies can be written by non-developer

+ What if rules change?
+ no updates in application code
+ updates in a single place

+ Enables your access control policies to easily evolve with your
 organization

+ Access rules are software artifacts => automated refinement, monitoring,
 validation, ...

PBAC in the wild: Amazon EC2

63
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

64
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

PBAC in the wild: Amazon EC2

PBAC in the wild: Amazon EC2

65

Policy languages

66

● A large number of domain-specific policy languages proposed in
literature
○ E.g., SPL, Ponder, XACML, Cassandra, SecPAL, …

● Standard: XACML
○ Standardized by OASIS
○ v1.0 ratified in 2003, v3.0 in 2013
○ Attribute-based, tree-structured, obligations
○ XML format
○ Death by committee

● Platform-specific languages
○ E.g., Amazon AWS

● Hot new kid on the block: OPA

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Policy languages: XACML

67

<Rule RuleId=“roles" Effect="Deny">
 <Description>Boo, physicians.</Description>
 <Condition>
 <Apply FunctionId="string-is-in">
 <AttributeValue DataType="string">physician</AttributeValue>
 <SubjectAttributeDesignator AttributeId="subject:roles" DataType="string"/>
 </Apply>
 </Condition>
</Rule>

<Rule RuleId=“treating" Effect="Permit">
 <Description>Treating</Description>
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <ResourceAttributeDesignator AttributeId="resource:owner" DataType="string"/>
 </Apply>
 <SubjectAttributeDesignator AttributeId="subject:treating" DataType="string"/>
 </Apply>
 </Condition>
</Rule>

<Rule RuleId=“time" Effect="Deny">
 <Description>Time</Description>
 <Condition>
 <Apply FunctionId="not">
 <Apply FunctionId="dateTime-less-than-or-equal">
 <Apply FunctionId="dateTime-one-and-only">
 <EnvironmentAttributeDesignator AttributeId="environment:currentDateTime"

DataType="dateTime"/>
 </Apply>
 <Apply FunctionId="dateTime-add-dayTimeDuration">
 <Apply FunctionId="dateTime-one-and-only">
 <ResourceAttributeDesignator AttributeId="resource:created"

DataType="dateTime"/>
 </Apply>
 <AttributeValue DataType="dayTimeDuration">P5D</AttributeValue>
 </Apply>
 </Apply>
 </Apply>
 </Condition>
</Rule>

<Policy PolicyId=“dynamic-separation-of-duty"
 RuleCombiningAlgId=“deny-overrides">
 <Description>Dynamic separation of duty</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="string-equal">
 <AttributeValue DataType="string">doc123</AttributeValue>
 <ResourceAttributeDesignator AttributeId="resource:id" DataType="string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <Rule RuleId="deny" Effect=“Deny">
 <Description>Deny if viewed other doc</Description>
 <Condition>
 <Apply FunctionId="string-is-in">
 <AttributeValue DataType="string">doc456</AttributeValue>
 <SubjectAttributeDesignator AttributeId="subject:history" DataType="string"/>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId=“default-permit" Effect=“Permit"> </Rule>
 <Obligations>
 <Obligation ObligationId="append-attribute" FulfillOn="Permit">
 <AttributeAssignment AttributeId="value" DataType="string">
 <SubjectAttributeDesignator AttributeId="resource:id" DataType="string"/>
 </AttributeAssignment>
 <AttributeAssignment AttributeId="attribute-id"
DataType="string">subject:history</AttributeAssignment>
 </Obligation>
 </Obligations>
</Policy>

New kid on the block: Open Policy Agent (OPA)

68
Source: https://www.slideshare.net/TorinSandall/open-policy-agent-128970409?from_search=0

New kid on the block: Open Policy Agent (OPA)

69
Source: https://www.slideshare.net/TorinSandall/open-policy-agent-128970409?from_search=0

New kid on the block: Open Policy Agent (OPA)

70
Source: https://www.slideshare.net/LibbySchulze/cloud-native-policy-enforcement-with-open-policy-agent

New kid on the block: Open Policy Agent (OPA)

71
Source: https://www.slideshare.net/LibbySchulze/cloud-native-policy-enforcement-with-open-policy-agent

Advantages of PBAC

72

+ More modularity: access control logic in 1 place

+ Separation of concerns: policies can be written by
non-developer

+ What if rules change?
+ no updates in application code
+ updates in a single place

+ Enables your access control policies to easily evolve with your
 organization

+ Enables centralizing policies, explicitly managing policies
 across your organization, refining business policies, …

Ideally

Not all rainbows and unicorns

73

▪ Very interesting technology, great vision to work towards
▪ But, policy-based access control is (still) very hard in practice:

▪ Different way of coding
▪ Policy languages are not self-explanatory
▪ Requires your customers to have processes for managing policies within their org
▪ The trusted computing base of your application grows significantly
▪ Plus, from research experience: inherently hard to decouple authorization logic

from an application because these rules should still say something about this
application

My recommendation: definitely modularize authorization in your application
code (option 2), but only apply PBAC if you really need the flexibility, e.g., OPA in
microservices or you're building the next AWS.

Access control: summary

● Access control is a key part of protecting the data in your application

● Advice to avoid access control vulnerabilities:

○ Full mediation + deny by default

○ Modularize access control in your code

○ Know the different access control models in research, but keep the access control model
of your application as simple as possible (KISS)

74

Outline

1. Introduction
2. Deeper dive into access control
3. Deeper dive into IAM

a. The 4 disciplines of IAM
b. RBAC & ABAC

4. How to IAM and access control
relate?

5. Conclusion

What is IAM?

Identity & Access Management (IAM)
encompasses all processes used by an organization

to ensure that everyone can access the data they need
and only the data that they need.

76

What is IAM?

77

The 4 disciplines of IAM

1. Authentication 2. IGA
Identity governance &
administration

3. PAM
Privileged access
management

Minimize the chances of
credential theft

SSO, MFA, provisioning, ...

Manage the lifecycle of the
identities of your employees
and their accesses

Joiner/mover/leaver

Access requests & approvals

Access reviews & revocations

Govern the highly-privileged
accounts (admins) in your IT
systems

Password vaulting

Password rotation

Session management &
monitoring

4. CIAM
Consumer IAM

IAM for external identities
(customers)

Mainly relevant if you are a
software provider

Main challenge is scale

Most technical discipline Most complex discipline,
goes far beyond IT

Requires your admins to
change their way of working
= like herding cats

Limited security impact

78

The 4 disciplines of IAM

1. Authentication 2. IGA
Identity governance &
administration

3. PAM
Privileged access
management

Minimize the chances of
credential theft

SSO, MFA, provisioning, ...

Manage the lifecycle of the
identities of your employees
and their accesses

Joiner/mover/leaver

Access requests & approvals

Access reviews & revocations

Govern the highly-privileged
accounts (admins) in your IT
systems

Password vaulting

Password rotation

Session management &
monitoring

4. CIAM
Consumer IAM

IAM for external identities
(customers)

Mainly relevant if you are a
software provider

Main challenge is scale

Most technical discipline Most complex discipline,
goes far beyond IT

Requires your admins to
change their way of working
= like herding cats

Limited security impact

79

The 4 disciplines of IAM - IGA

80Source: Omada IdentityPROCESS+, Version 2.0

The 4 disciplines of IAM - IGA

81Source: Insights on Governance, Risk and Compliance:
Identity and access management - Beyond compliance, EY, May 2013

Role-based access control (RBAC)

82

AssetsRoles

read

write

read

write

read

write

read

write

Manager

Helpdesk
operator

Users

IT

Ro
le

s
Bu

si
ne

ss

ro
le

s BR1.

Pe
op

le

BR2
BR3

BR4
BR5

BR7

BR8
BR9

BR10

BR6

ITR1.
ITR2

ITR3

R1
ITR2

ITR3

ITR1
ITR2

ITR3
ITR4

Appl. 1 Appl. 2 Appl. 3 83

The problem with RBAC

84

The problem with RBAC

Manager

Helpdesk
operator

Developer

Secretary

Accountant

Manager of
R&D dept

Manager of
finance deptManager of

sales dept
Secretary with

color print

Secretary with-
out color print

owns_docA

owns_docB
owns_docC

owns_docD

owns_docE
owns_docF

owns_docG

owns_doc...

Secretary of finance
dept with color print

owns docE

Secretary of sales
dept with color print

owns docE

Helpdesk operator
assigned to
Customer A

Helpdesk operator
assigned to
Customer B

Helpdesk operator
assigned to
Customer C

Helpdesk operator
assigned to
Customer D

Secretary of finance
dept with color print

owns docD

Secretary of sales
dept with color print

owns docD

Secretary of sales
dept without color
print owns docD

Secretary of sales
dept without color

print owns docE Secretary of finance
dept without color

print owns docE
Secretary of sales
dept without color
print owns docB

Secretary of finance
dept without color
print owns docD

Secretary of sales
dept with color print

owns docB

Secretary of finance
dept without color
print owns docB

Secretary of sales
dept with color print

owns docA
Secretary of sales
dept without color
print owns docA

Secretary of finance
dept without color
print owns docA

Secretary of sales
dept without color
print owns docC

Secretary of finance
dept with color print

owns docA

Secretary of sales
dept with color print

owns docC

Secretary of finance
dept without color
print owns docC

Secretary of finance
dept with color print

owns docC

Secretary of finance
dept with color print

owns docB

...

85

Role-based access control (RBAC)

86

▪ Major disadvantage: role explosion
▪ Reasons:

▪ Roles cannot express ownership
• Requires roles like “owns_docA”, “owns_docB”, etc

▪ Reality is too fine-grained
• Often small differences between different persons in the same job, leading to yet another role (e.g.,

“secretary_with_colorprint”)
▪ Cross-product of multiple hierarchies

• E.g., “sales_manager_for_belgium_with_colorprint_owns_docA”

▪ As a result:
▪ Hard to get right, moving target

▪ Large overhead at any decently-sized company

Attribute-based Access Control (ABAC)

87

Subject

Identity

Location

Department

Resource

Type

Date

Conf. label

Action Action Type

Environment

Device Type

Timestamp

System state

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

Amount

Attribute-based Access Control (ABAC)

88

permit if
“manager" in subject.roles and subject.department == “auditing”

and subject.location == “Brussels” and action == “inspect”
and resource.type == “financial report”

and resource.year == environment.current_year
and 8h00 < environment.time < 17h00

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

Attribute-based Access Control (ABAC)

89

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

1. fine-grained access control
2. context-aware access control

3. dynamic access control

Attribute-based Access Control (ABAC)

▪ Access decisions are made based on attributes
▪ Attributes are key-value properties of the subject, the

resource, the action or the environment
▪ Results into dynamic and context-aware access control

▪ Attributes can express many different access control
concepts
▪ Permissions, roles, groups, departments, time, location,

ownership, domain-specific ownership, ...
▪ Together with PBAC, this is sometimes regarded as the

holy grail of access control. However...

90

Not all rainbows
and unicorns

91

92
Source: [NIST2014]

Not all rainbows and unicorns

93
Trust chain for Access Control Lists

Source: [NIST2014]

Not all rainbows and unicorns

94Trust chain for ABAC
Source: [NIST2014]

“Enterprise ABAC carries with it significant
development, implementation, and operations costs

as well as a paradigm shift in the way
enterprise objects are shared and protected.” -- NIST

95

Not all rainbows and unicorns

New kid on the block: Open Policy Agent (OPA)

96
Source: https://www.slideshare.net/LibbySchulze/cloud-native-policy-enforcement-with-open-policy-agent

Outline

1. Introduction
2. Deeper dive into access control
3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

The 4 disciplines of IAM

1. Authentication 2. IGA
Identity governance &
administration

3. PAM
Privileged access
management

Minimize the chances of
credential theft

SSO, MFA, provisioning, ...

Manage the lifecycle of the
identities of your employees
and their accesses

Joiner/mover/leaver

Access requests & approvals

Access reviews & revocations

Govern the highly-privileged
accounts (admins) in your IT
systems

Password vaulting

Password rotation

Session management &
monitoring

4. CIAM
Consumer IAM

IAM for external identities
(customers)

Mainly relevant if you are a
software provider

Main challenge is scale

Most technical discipline Most complex discipline,
goes far beyond IT

Requires your admins to
change their way of working
= like herding cats

Limited security impact

98

The 4 disciplines of IAM

1. Authentication 2. IGA
Identity governance &
administration

3. PAM
Privileged access
management

Minimize the chances of
credential theft

SSO, MFA, provisioning, ...

Manage the lifecycle of the
identities of your employees
and their accesses

Joiner/mover/leaver

Access requests & approvals

Access reviews & revocations

Govern the highly-privileged
accounts (admins) in your IT
systems

Password vaulting

Password rotation

Session management &
monitoring

4. CIAM
Consumer IAM

IAM for external identities
(customers)

Mainly relevant if you are a
software provider

Main challenge is scale

Most technical discipline Most complex discipline,
goes far beyond IT

Requires your admins to
change their way of working
= like herding cats

Limited security impact

99

How does this relate to access control?

1. Authentication 2. IGA
Identity governance &
administration

Minimize the chances of
credential theft

SSO, MFA, provisioning, ...

Manage the lifecycle of the
identities of your employees
and their accesses

Joiner/mover/leaver

Access requests & approvals

Access reviews & revocations

Most technical discipline Most complex discipline,
goes far beyond IT

If we know that this is
crucial to our customer's
security, let's make sure to
help them the best we can
do!

100

Authentication: managing the chaos

101Source: okta.com

For applications:

✅ Support SSO: AD or OIDC

IGA: managing the chaos

102
Source: https://www.slideshare.net/proferyk/identity-access-management-for-securing-devops

For applications:

✅ Support external user
mgmt: AD or SCIM

Provisioning:
● AD integration if on prem
● SCIM if SaaS

SCIM = Id Mgmt + REST
● REST is just an architectural pattern

● SCIM defines endpoints for identity mgmt:
○ Standard definitions for User and Group

○ All expressed in JSON

○ Standard operations

■ Create, read, update, delete, search, partial update, bulk

○ Extensibility

103

Example: Slack SCIM API

104

Example: request to retrieve user
GET /scim/v2/Users/23a35c27-23d3-4c03-b4c5-6443c09e7173 HTTP/1.1
User-Agent: Okta SCIM Client 1.0.0
Authorization: <Authorization credentials>

105

Example: request to retrieve user
HTTP/1.1 200 OK
Date: Tue, 10 Sep 2019 03:46:53 GMT
Content-Type: text/json;charset=UTF-8

{
 "schemas": ["urn:ietf:params:scim:schemas:core:2.0:User"],
 "id": "23a35c27-23d3-4c03-b4c5-6443c09e7173",
 "userName": "test.user@okta.local",
 "name": { "givenName": "Test", ... },
 "active": true,
 "emails": [{ "primary": true, "value": "test.user@okta.local", "type": "work", ... }],
 "groups": [],
 "meta": {
 "resourceType": "User"
 }
}

106

Self-describing
payload

Single-valued attributes
Many different data types

Complex attributes

● Many access control models don't fit in lists of
groups
○ E.g., ownership, roles vs profiles, ...
○ Leading to many implicit assumptions behind the

API
○ Leading to strange behavior
○ Leading to large overhead to write these types of

integrations
● SCIM v2: extensible schema's for core objects,

new types of objects, fully customizable, but...
○ Do the clients properly support this? Can IGA suites work with this?
○ Note that SCIM proxies are actually offered commercially these days, SCIM is here to stay

● I would still recommend adding a SCIM API to your application, still the best that
we can do
○ The result will also be better if you have kept your access control model simple

Sound nice in theory, but...

107

Outline

1. Introduction
2. Deeper dive into access control
3. Deeper dive into IAM
4. How to IAM and access control

relate?
5. Conclusion

Conclusion
● Access control: essential part of an application's security

● IAM: essential part of an organisation's security

● However: both remain challenging and no silver bullets

● The goal of this presentation: give you structured insights in what access
control and IAM are, so you are better prepared to handle these topics in
practice

● Common thread: don't over-complicate things :-)

109

Thank you

Maarten Decat

Helping companies get in control of who can access what

maarten@elimity.com +32 472 599 055 x

Personal 30min
follow-up:

https://calendly.com/maarten-decat/30min

IDPro: community of identity experts with
vast body of knowledge

For more guides, visit:
www.elimity.com/resources

How to prove
that you are in control

How to build the perfect risk
cockpit for Active Directory

More reading

110

mailto:maarten@elimity.com
https://www.linkedin.com/in/maartendecat/
https://idpro.org/
http://www.elimity.com/resources

