NMANICODE

SECURE CODING EDUCATION

The Abridged History of Application Security

f..
o :..»3[3?#@101 -0 -

O = —O0D 0~

010@1110110

2 PﬁﬁWhll.‘ll.-.r
FEaSL2E5E
—Q Tlnoqiﬂ‘rﬂ_

u‘Umﬁ@&VGQIJQOIIn
uJQmépxﬂﬂﬂ
3= .)700102 Q=00

wm%uﬂww&

- lDOIOOh.Il.U.I. -y
3 s SE S 00]. o
e e e L BT o
..;‘U‘An.gna.qgﬂn

250, we B 5

sCaeweeR885C 052 9R a0z

SRS B P G O gy =

‘ﬁRMﬁWU1h:QThKUO1:I

2~ .110010001101 T

e g — ——— a xlﬂl
T «.uﬂ.0.0W
o= 10 - O se
L, N B
) e - R i - 12y
| B | -IAUD-I < 2 lﬂu
.}I.Onuﬁiumugw.@.o.l.l.l.u.ll

= — D) D e O) i G
e tUIWOl.@@ﬂD.Dh.Q ORI

.33@%3011Q]

|10|1 GIL
Otnn%...mnv ODMW .IHU.AW ol
» Y
PSR Re0-0
“ﬁxfllnng$0hxfdo¢y

C=00—DO«
== lﬁ&?lﬁ

Sy S ..10@5..@86..8!0081

by -3« »ulllwﬂlﬂﬂﬁll

=, JQﬂ\QanDO]]]
N g Ji,mlqnﬂao-lmn

— 0 @.ﬂ_ﬂm > 2=
ElﬁJﬁ&ﬂQXEIOWIOOO
PNy iphmrl ;A"Uﬁ11l

O~ 00O~ B0 —OF
o e 3 B e 2 et T oS

NMANICODE

tion Security

ICa

SECURE CODING EDUCATION

istory of Appl

mﬂﬂw@}iﬁ
dged

i

The Abr

. 1.,1..-.:::.10...
o TN A A+ = A
v T Sy a PR D ~ 0 Q -0 O

o 5 O A S oD O~

(5 o DO T B

HE T e P —

ol Yy — o "=

..h.dnwlﬁy OB = T
: S

7k SRS

e ol

2zops RS @8 heesaase
L= OBE = =
:fnmIOO.nwﬂﬁ:nw“.IGUOb!@nvi

S g asen - (")
g e) e A=
e 3 DI ®
=) i) e ey,

o 1|l0-| -Ol. ¥ S w.. -
R e RS H B
oy s i)

-

W STl BPT P
2 (T O A= =
.L,HOO%.W R e = ol
S
[N IW“%W«MU&U.I]%NIUUUIO =3

SO SO — O — — OO,
S - 5 -~ 5 - =
l\'., S . %0 O, >
Ny a5 e
== .~
3 & =
e ge o
gy f
D gt e
e
T O O
- lUO‘lO.O]]'IO-Il.-IIO_

g P . - o
- iR BIRRRTE) QS an
}n:UTOU.b.IlOW 1...0 3
O i e 5O DO — O —
Ml e = Rekapbed = L= K = & 1 = At
D e KT e O B fD E Cr

S o= 3 =
LowaoR88RREER R8BSR

RS B P O o S -

a Lot Better

>0 = OO O -
s b
S e Do o0

e U = S it

SIS O D e O

- = - -
") e — o = - 3
(= . -
—OO@reO ofB O ———O&~—
—_0 -0 O O O R O
5 Qo SORB RO RO TR

- 11Wﬂ4.ﬂb0bn.¢0%|h g 00]

|
]

Things are Getting

\. T».W . nx
.f ,4I..1,!Qa..0..m., .._wl.o
o & TR ,b.m‘b.l‘..w.‘ﬂ

=i el 0 O 651
w,A.lH.CnU‘OnU‘OO.”)\Il

oo Rrtine Dewes o

TFEOo—~00 =
O ﬂ,ﬂwﬂ.ﬂoﬂmm,

© o

p R T) DOﬂI 2
-0 —oop eooo—0 C
2.% - =) A

CFE=RERegRabmeb~000
—00O~00~0¢
R - N Yooy Dy o W o P g

Jim Manico o0

jim@manicode.com

LOCO MOCO
twitter.com/manicode

Former OWASP Global Board Member
Co-Founder of LocoMocoSec

Founder/CEO of Manicode Security

25+ years of software development experience

Author of "lron-Clad Java, Building Secure Web
Applications” from McGraw-Hill/Oracle-Press
OWASP Project Leader

= OWASP ASVS Standard

= OWASP Cheat Sheet Series

= OWASP Java Encoder / HTML Sanitizer

= OWASP Top 10 Proactive Controls

InfoSec Dark Ages

October 1967 Task Force

February 1970 R-609 Published

October 1975 R-609 Declasified

O O IS MESSED UP!
Al

© 2022 Manicode Secure Coding Education 5

Security Testing History

1938 First pentesting
tool the Bombe

1965

William Matthews
from MIT finds
security bug in

Multics CTSS

1979 LINT early
static analysis tool
released, but
weak on security

1972 "The Anderson Report”

1974 Air Force
security testing
begins

1995 Security
Administrator

Tool for Analyzing
Networks tool released

1998 Dawn of
SQL injection Jeff
Forristal; Nessus
Project released

released

1999 Microsoft engineers
coin the term Cross Site
Scripting, Gary McGraw starts
selling secure code review
services for John Viega and
Brad Arkin, ITS4 first publicly
available static analysis tool

2009 DevOps starts at Etsy

2010 OWASP ZAP Released, SPDX SBOM

2013 OWASP Defect Dojo
Project Begins, DevSecOps

2015 OWASP Dependency
Check Released

2020 Threat Modeling
Manifesto

2001 OWASP Founded, OWASP
Webgoat rele‘ase‘d |

2003 Metasploit released

I

n |

2006 OWASP Testing Guide &
SQLMap, released

2023

= Security Testing Integrated Into GitHub
= DevSecOps with SAST, DAST, SCA and |IAST

" Pentesting/AppSec Services Still Expensive (not
enough professionals out there)

= OWASP MTSG being used for compliance by some of
the largest software companies on the planet

HTTP/S History

1994 Netscape creates
initial version of HTTPS

1999 TLS 1.0 released

A

2006 TLS 1.1
released

2008 TLS 1.2
released

2011 Forward secrecy
live in modern browsers

2010 Chrome starts to
HSTS preload some sites

2009 SSl Labs

2015 Lets Encrypt starts!
Usable Cryto Era Begins! MS's.

2016 Overt %2 the web HTTPS;
Chrome 51 defaults to HTTP/2
and only allows TLS

2017 CAA becomes
mandatory, Google says
goodbye to HPKP

2018 Let’s Encrypt
offers wildcard; TLS
1.3 live in FireFox and
Chrome; CT required
for new certs

released to public as 2021 PK| Consortium
a way to verify
security configuration Formed from the ashes
. of the Certificate
of HTTPS websites Authority Security
Council, Chrome 91
2013 TLS 1.2 live in defaults to HTTPS
modern browsers
.
2015 2022

© 2022 Manicode Secure Coding Education 8

‘0' | Chromium Blog 2021
News and developments from the open source browser project C h O m e 9 O

Defaults

to HTTPS

A safer default for navigation: HTTPS
Tuesday, March 23, 2021

Starting in version 90, Chrome’s address bar will use https:// by default,

June 2023

mhttps://transparencyreport.google.com/

=97% or more pages loaded by Chrome on MacOS are
HTTP/S

*March 14, 2015 43% or more pages loaded by
Chrome on MacOS is HTTP/S

https://transparencyreport.google.com/

SSL Report: manicode.com (198.199.114.91)

Assessed on: Wed, 26 Oct 2022 17:55:56 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Certificate

l Protocol Support

Key Exchange

Cipher Strength

0 20 40 60 80 100

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

This site works only in browsers with SNI support.

Password History

1961 First password
based system created
at MIT’s CTSS led by

Fernando Corbata.

1966 MIT PhD

candidate Allan Scherr

requests print out of

master password file in

CTSS and becomes the

first password hacker

1970s Crypt(3
Unix uses old N

WW2 (unix up to 6th edition)

1978 Crypt(3)
released in Unix
now DES based
(7th edition);
first stretching,
salting and
password policy

released in
VI-209 code from

A

1960

1965 1970 1975

M-209B, cryptography collection of the Swiss Army
headquarters. Photographed by Rama, Wikimedia Commons,

licensed under CeCILL v2 an

1980 19

d CC-BY-SA-2.0-FR

1991 MD5 message-digest
algorithm - 128-bit hash value

1994 FreeBSD MD5 2007 PHP apps start using
based crypt(3) with 1000 | phpass for password storage,

- ypt published

2015 Argon2id wins
password hashing
competition
https://password-
hashing.net/

2016 Dr. Akhawe
from Dropbox
publishes password
storage strategy

2019 PHP 7.3
natively supports
Argon2id

v

2015 2022

© 2022 Manicode Secure Coding Education 12

https://password-hashing.net/
https://password-hashing.net/

How Dropbox securely stores
your passwords

Devdatta Akhawe | September 21, 2016 ¥y El Mo

It's universally acknowledged that it's a bad idea to store plain-text
passwords. If a database containing plain-text passwords is compromised,
user accounts are in immediate danger. For this reason, as early as 1976, the
industry standardized on storing passwords using secure, one-way hashing
mechanisms (starting with Unix Crypt). Unfortunately, while this prevents
the direct reading of passwords in case of a compromise, all hashing
mechanisms necessarily allow attackers to brute force the hash offline, by
going through lists of possible passwords, hashing them, and comparing the
result. In this context, secure hashing functions like SHA have a critical flaw
for password hashing: they are designed to be fast. A modern commodity
CPU can generate millions of SHA256 hashes per second. Specialized GPU

2023

=sArgonZ2id supported everywhere

sOWASP Cheatsheet has very surgical advice
on the use of ArgonZ2id

Rather than a simple work factor like other algorithms, Argon2id has three different parameters that can be configured.
Argon2id should use one of the following configuration settings as a base minimum which includes the minimum memory
size (m), the minimum number of iterations (t) and the degree of parallelism (p).

e m=37 MiB, t=1, p=1

* m=15 MiB, t=2, p=1

Both of these configuration settings are equivalent in the defense they provide. The only difference is a trade off between
CPU and RAM usage.

Jim Manico
@manicode

&

| don’t like berypt and that's a fact
Argon2id is where it's at

72 byte limit can kiss my ass

Low ram usage? No thanks I'll pass

© 2022 Manicode Secure Coding Education 15

Jeremi M. Gosney
@jmgosney

Replying to @manicode

Argon's a KDF and that's no cap

If you're doing real time auth

You need berypt in your app

Memory hardness has no meat, it's all fat
For resistance to acceleration

Cache hardness is where it's at

Jeremi Gosney - st

Principal Software Architect
Austin, Texas, United States - Contact info

S
[S—
‘o
Lals
J
0=
| O
L
Ll
Lo

. Phobos Group

Jim Manico @manicode - 1d

Argon2id won the password competition

For password storage you need a little revision
berypt truncates and that’s a fact

it’s a shitty limit and is easier to attack

Argon2id has better password cracking resistance
I'm here to help, here is a reference

e https://cheatsheetseries.owasp.org/cheatsheets/Pass
word Storage Cheat Sheet.html

© 2022 Manicode Secure Coding Education 18

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Jeremi M. Gosney @ mgosney - 1d
Replying to @manicode

Which one of us is the cracker?
It seems you've forgot.

And a Hashcat developer?

| think you are not.

And the password competition?
| was a judge for that too.

With all these credentials

who is OWASP to argue?

© 2022 Manicode Secure coding Education 19

Jim Manico
@manicode

&

The other judges outvoted you
And 1+1 still equals 2

VICTORY

© 2022 Manicode Secure Coding Education 22

You can talké about PHP
But it natively supports Argon2id

OWASP Project History

2009 OWASP Top Ten RC1; XSS Prevention
Cheatsheet and Open SAMM work begins

e XSS Prevention Cheatsheet

2006 OWASP
Testing Guide;
OWASP CLASP
OWASP Reform;
OWASP ESAPI

* Open SAMM work begins

2010 OWASP Mobile
Project; Start of ZAP;
OWASP Mod Security
Core Ruleset

2015 OWASP Dependency Check
Starts; Security Shepherd and Juice
Shop Starts; SKF

» Security Shepherd Starts

e SKF

OWASP Reform
OWASP ESAPI

Start of ZAP

2001 OWASP Founded OWASP Mod 2014 OWASP
OWASP CLASP Security Core Juice Shop Begins 2018 OWASP IoT Top Ten
OWASP Testing Ruleset
2002 First OWASP 2022 50+
Developers Guide 2008 OWASP 2012 OWASP Defect cheatsheets
2003 First OWASP ASVS work starts Dojo Begins + flagship
Top Ten
4 I I i l I i I ‘ I I I I I I I >
2000 2005 2010 2015 2022

© 2022 Manicode Secure Coding Education 24

Flagship Projects 0

4

e OWASP Amass

« OWASP Application Security Verification Standard
« OWASP AppSensor

e OWASP Cheat Sheet Series

« OWASP Cloud-Native Application Security Top 10
« OWASP CSRFGuard

« OWASP CycloneDX

« OWASP Defectdojo

« OWASP Dependency-Check

 OWASP Dependency-Track

e OWASP Juice Shop

« OWASP Mobile Security Testing Guide

« OWASP ModSecurity Core Rule Set

« OWASP OWTF

e OWASP SAMM

» OWASP Security Knowledge Framework
 OWASP Security Shepherd

 OWASP Top 10 Low-Code/No-Code Security Risks
e OWASP Top Ten

» OWASP Web Security Testing Guide

« OWASP ZAP o~

o 2004 The Content Restrictions 2012 CSP 1.0 published
XSS H ISto ry Standard was proposed by Robert
Hansen which became Content
Security Policy

2009 OWASP

2006 OWASP
Reform projec
starts

but most of all, samy is my hero
<div id=mycode

2002
HTTPONly style="BACKGROUND: uri('java ki
supported
In IE6 LEneeee e scripteval(document.all. mycod
samy is my hero . . 2022
1999 Microsoft | e'expr)) expr— var Trusted
i i 2005 i in fi .
EUEtj el coin serdieliiel B=String. fromCharCode(34);va pes
Site Scripting r Chrome,
React

Trusted Types help prevent Cross-Site AR AR~
Scripting

TL,DR

We've created a new experimental API that aims to prevent DOM-Based Cross Site Scripting in modern web

applications.

By Krzysztof Kotowicz
Software Engineer in the Information Security Engineering team at Google

e e e -

0 We're currently working on the specification and implementation details for this API. We'll keep this post updated

—-— 1 —

G () Cﬁ https://developer.mozilla.org/en-US/docs/Web/API/HTML_Sanitizer_API

EVEERSE W =B EWESY 1IWVYY WUy dliuaviIY 11 JV\-‘I NIl I\IJ VH'JPV S IVIARA T Y GATLINA THIGAIN IV J\I\-‘I Ao A A AN K}
[t —_—

/|/] mdn web docs References Guides MDN Plus

References Web APIs HTML Sanitizer API

Seidise TapiEs HTML Sanitizer API

HTML Sanitizer API

v Interfaces A Experimental: This is an experimental technology

Sanitizer Check the Browser compatibility table carefully before using this in production.

@ Secure context: This feature is available only in secure contexts (HTTPS), in

some or all supporting_browsers.

The HTML Sanitizer API allow developers to take untrusted strings of HTML and

2023

sAutoEscaping templates the norm

=CSP3 with strict-dynamic is easier to deploy and
IS live in all major browsers

=Trusted Types available in many frameworks

=Being a bit of a punk on Twitter helps encourage
Apple to deliver CSP3 in Safari

Jim Manico
@manicode

| believe that Safari’s lack of CSP3 support and similar
W3C standards is a reason to boycott and stop using it.

| now see Safari as a browser that primarily impedes the
secure web.

Edge, Chrome and FireFox all support CSP3 well.

Why not Safari? I'm open to counter opinions.

4:34 PM - Aug 25, 2021 - Twitter for iPhone

« Philippe De Ryck @PhilippeDeRyck - Aug 25, 2021
¥ That holds for a lot of people, but the market share is not insignificant.
@usefathom has Safari at 8% for my site this year.

I'm a happy @brave user on computers, but use Safari on mobile...

Browser Uniques
Chrome 74%
Firefox 10%
Safari 8%
Edge 6%
Mozilla 1%

© 2022 Manicode Secure Coding Education 31

A% Jim Manico @manicode - 8/26/21

| am trying not to harass John he is good people and | believe this is
above his pay-grade.

G] {9 ¥ s g 1l

~ John Wilander ®= @johnwilander - 8/26/21

%= Don’t worry. | want to see CSP3 in WebKit asap and always forward
good faith feedback to the team. If you want to talk directly to the
person in charge, he’s @othermacie;.

O 2) ¥ 10 wr

© 2022 Manicode Secure Coding Education 32

John Wilander (He/Him) - 1st
Manager WebKit Security & Privacy and hacker fiction novelist
San Francisco Bay Area - Contact info

© 2022 Manicode Secure Coding Education 33

Lukas Weichselbaum - 2nd
Senior Staff Information Security Engineer at Google
Zurich, Switzerland - Contact info

About

PEOPLE >

Lukas Weichselbaum

Lukas Weichselbaum is a Staff Information Security Engineer at GoogleiwiW
of industry experience who frequently speaks at international infosec and devéloper
conferences.

He's passionate about securing Web applications from common Web vulnerabilities

and leads the Google-wide CSP adoption effort. Lukas also co-authored the CSP3 W3C
specification and launched CSP Evaluator, a tool for developers and security experts to
check if a Content Security Policy serves as a strong mitigation against XSS attacks.

Before joining Google, Lukas worked as a Security Consultant and graduated from
Vienna University of Technology in Austria where he researched dynamic analysis of
Android malware and founded Andrubis - one of the very first large scale malware

analysis platforms for Android applications.

© 2022 Manicode Secure Coding Education 35

= Lukas Weichselbaum @welx - 8/26/21
A@‘ Would you accept pull requests? (&
| Q 3 T ¥ 5 T

John Wilander ™ @johnwilander- 8/26/21

Absolutely! WebKit is open source and it’s not just Apple building web
platform features for it. E.g. Igalia and Sony do tons of work. We
haven’t expressed opposition to CSP3 beyond 1) sad it isn’t backwards
compatible with CSP2, and 2) CSP too complex for devs in general.

L) 2 T 3 ¥ o &

=)

Lukas Weichselbaum @welx - 8/26/21

Thanks John! Was this opposition about 'strict-dynamic' or CSP3 in
general?

In our experience, 'strict-dynamic' makes deployment of an effective
CSP easier/possible and is also backward compatible. Support in Safari
could even simplify the policy as we could drop fallbacks.

O 1 (o i,

~ John Wilander ®= @johnwilander - 8/26/21

% We’ve said we would like CSP to be split up. At least fork off ‘script-

policy’ and give it recognizable directives like ‘same-origin’ and ‘same-
site’. Along those lines. A dev reading the CSP spec for the first time is
unlikely to deem it approachable.

O 3 0 ¥4 W

Lukas Weichselbaum @welx - 8/26/21

Thanks for explaining. | definitely agree that it would be good if we
could have a simpler version of CSP in the future. | also agree that it
would make sense to fork off the scripting part.

Regarding strict-dynamic PRs, | need to talk with some folks, but will

reach out again (&
QO) Q w

" Jim Manico
@manicode

A important correction on this topic: Kate Cheney from
Apple is implementing CSP3 in WebKit. See for instance:
trac.webkit.org/changeset/2831... - “CSP: Implement
'strict-dynamic' source expression" landed in the open
source tree about a month ago from Kate! How awesome!

& Liran Tal | Node4Shell & @liran_tal -10/25/21

Let the browser war begin! “¢

Just kidding, it's already started.
Here's @manicode's take: twitter.com/snyksec/status...

8:44 AM - 10/26/21 - Twitter for Mac

: ii Replying to @manicode

John Wilander ™ @johnwilander-3/14/22

“WebKit in Safari 15.4 improves support for Content Security Policy

Level 3 (...) New support for 'strict-dynamic', 'unsafe-hashes', and
‘report-sample' source expressions give developers more flexibility.”
webkit.org/blog/12445/new... Happy to deliver you this message, my

friend!

UA Styles

User Styles Least
powerful

Author Styles

Inline styles

Animations
limportant Author Styles

limportant Inline styles

limportant User Styles
Most
limportant UA Styles powerful

Transitions

without Cascade Layers

webkit.org
New WebKit Features in Safari 15.4

Q 1 1 8 ¥ 2

UA Styles
User Styles
Author Styles — Layer A
Author Styles - Layer B
Author Styles - Layer C
Author Styles - unlayered
Inline styles
Animations
limportant Author Styles - unlayered
limportant Author Styles ~ Layer C
limportant Author Styles - Layer B
fimportant Author Styles — Layer A
limportant Inline styles
limportant User Styles
limportant UA Styles

Transitions

with Cascade Layers

~ Jim Manico
, @manicode

Replying to @johnwilander

John, this truly makes me beam with joy. Thank you and
your team for their hard work in delivering this critical
security standard in Safari!

1:43 AM - 3/15/22 - Twitter for Mac

CSP 3 EVERYWHERE

N4

We work in a special focus area of the Google security team aimed at
improving product security by targeted proactive projects to mitigate
whole classes of bugs.

Katherine Cheney - 3rd
Software Engineer at Apple

2023

= AutoEscaping templates the norm

= CSP with strict-dynamic is easier to deploy and
live In all major browsers

= Trusted Types has made its way into frameworks

= DOMPurify becomes a web standard and is
appearing natively in browsers

AppSec is Global 230+ OWASP Chapters Worldwide

Map

Thailand

L,

Keyboard shortcuts | Map data ©2022 | Terms of Use

Members Groups Countries

& OWASP® Foundation 111,621 233 70

© 2022 Manicode Secure Coding Education 45

-~ =
-

AR

ANCIENT ALIENS ARE S'ILAlING TIME 4

The Future of AppSec

2023

= Al is alive

" Federal Information Security Modernization Act of 2022

= NIST 800-63 and 800-53

= Usable Crypto Everywhere

= Microservice Security does not need to sacrifice performance
= GDPR/CCPA

= SBOM and Supply Chain Focus (logdshell)

= Threat Modeling is maturing and becoming automated (Top10)
= RUST for the Linux Kernel

= Open Policy Agent

= DevSecOps

= SemGrep and CodeQL

x -y % L Ry = . ;
Igoo.lolp .JT)DOOIIO]ID]]IUOIOOMM -

AFW!“]@EH‘”DU%’LRViﬁB]O = =0
A2

LolQUO...IOQIO.I.I G o CEr et 1

mu mmm%MNWMﬁNMdeWFJJUfDlUnIHOIiI;l-tl

oquﬂ\fha.u DQQO]r £
0 —— > 0%1?@@090\00&.50 Ui)([=1-as

10]]00&]0010@«11101100010

_ﬁ ——C) — —
O e S o
mutairamaWnuapauxuﬁum-nnlo),Ip

=)

ﬁ0n¥£U0.7I1‘1

3 1@11000100

Pt o i L~ o

S = : BB o e O = O O
,er@Oﬂﬂ%$é@Qﬂﬂﬁ ﬁM%:

u.,,lnnw%lxln.!!n_"_lqmm.nwﬂ.l
ﬁtwb.ﬂ@&nmn&.nr S e s-LToimarnen

%Eﬂuﬂd' 3 = .W. - > .‘... e RIS = ..Ml. Sy

h.O.UWI \fOlﬂ”ﬂW\llOUfOUyﬂlJOﬂ.-l<On. T
R~ %o g LB et e O B 0.0 — GO O OO
nﬂ%ﬁuﬂg.@iﬂ?o.ﬂ]foo‘-gnl.m o =
W%@W OBl B OO -
e
=

I -ufn%nﬂ.x»ﬁmmnmmmmw SEPO s O

mm..hl..ﬂw-u. lqmnb]%.r\lu S0 C

Elmvgl Oll.\]no-l.l\.oo.lnao-l|0|d. pr u“

Ly llll.lxvl}.),

— e .IT, - anl‘l —_
u u...o (ﬁr UU (=3 @a qu"ﬁUarLGlrrJTM.r

]

B~ o B i
TS, SR B
- -C P
L d ‘0 &
WannOOl.WI.IOl:!ogdmgm.DOll]Oll0‘0010

O = O — — =0 O OO Q&

- ¢ ﬂfﬂuoﬁ.l.lnmbl - 1..010010.0011%9
mﬂﬂdllo..P-

O =
ﬁ@f@@uﬁli@ﬂiﬁbmm o oo e

b-
&
0]%0181“0%%..090.&0@0 —o
OOIQ,OoOIIO.IAP S EE 00O D D0 e O 00 O
s o
vES v A o M .\I;Jﬁ,\?l&d.l.l@?.l.f\.rﬁ oSS B

S g, uu.,,,=', e 2 S ul G

—)

P‘ ...0.?00”»._

néﬂy]amwﬁﬁmkﬂ]@bii;igl]00

'ﬂ-l. oMo D Oy Dﬂy.rvlﬂf T

emﬂn:w 1[110001001001413?

— ~o

e N o g e el e e O e (™5

= QQUHITOT}DLA.JHQQY,{ e

SECURE CODING EDUCATION

Future of AppSec is You

The

Have a great conference!

