
Please live tweet this talk

For more see https://garymcgraw.com

1

Avoiding the Top Ten
Software Security Flaws

GARY MCGRAW, PH.D.
https://garymcgraw.com

JUNE 14, 2023@cigitalgem@sigmoid.social

Technology
 Northern Virginia-Based Cigital to Synopsys (500 people)
 Invented the field of software security (12 books)
 alpha-geek who gives 20 talks a year
 Light saber
Music
 Carnegie Hall at 10 and 16. Suzuki.
 The Bitter Liberals
 Where’s Aubrey
 Funny faces while playing the violin
Life
 Clarke County on the river near Berryville,
 Living in the country
 Fiction reader, Art collector, Craft cocktail maker, Cook
 Solstice parties

2

where I’m coming from

The nine organizations that spearheaded the IEEE CSD

Since the initial report

Building codes for IoT, Power Systems, Medical Devices

Security Design Analysis example WearFit

We need more talk about flaws and more examples of real flaws. If you are an
architect, get involved!

3

work from the IEEE CSD

4

what is a flaw?

Two kinds of software defect

Sometimes fixing the architecture (at Google for example) can eradicate jillions of
FLAWS (XXS made much harder)

The easiest flaw in the world: “FORGOT TO AUTHENTICATE USER”

5

two kinds of security defect

IMPLEMENTATION BUGS
• Buffer overflow

– String format
– One-stage attacks

• Race conditions
– TOCTOU (time of check to

time of use)
• Unsafe environment variables
• Unsafe system calls

– System()

• Untrusted input problems

ARCHITECTURE FLAWS
• Misuse of cryptography
• Compartmentalization

problems in design
• Privileged block protection

failure (DoPrivilege())
• Catastrophic security failure

(fragility)
• Type safety confusion error
• Insecure auditing
• Broken or illogical access

control (RBAC over tiers)
• Method over-riding problems

(subclass issues)
• Signing too much code

50% 50%

Dividing things into two piles is never very clean. This is a range of defects.

6

on defects: the bugs and flaws continuum

BUGS FLAWS

n Customized static
rules (Fidelity)

n Commercial SCA tools: Fortify,
Ounce Labs, Coverity

n Architectural risk analysis

gets() attacker in the middle

n Rules-based architectural analysis:
IriusRisk

We’ve been talking about bugs versus flaws since 1999. But not enough progress has
been made. You can see this in BSIMM10 results. http://bsimm.com

The most common approach is the “bunch of smart guys in a room” approach.
Sporadic and inconsistent results.

BUT WAIT, THERE”S MORE à DevOps is a shiny thing that may delay progress in
architecture analysis even further.

As you rush off to adopt DevOps methods (even DevSecOps), don’t forget the FLAWS

Irius Risk exists to build automation in finding, tracking, and fixing flaws

7

bugs versus flaws is a thing in software security

• DevOps demands that we automate
defect detection in the SDLC

• Automating bug finding is straightforward
– Lots of great commercial technologies
– Fixing is still a challenge

• Automating flaw finding has barely begun
– Architectural risk analysis and threat modelling are

still way too hard
– Tooling that automates RA and provides consistency

in results is just emerging (e.g., IriusRisk, SecuriCAD)

• BSIMM10 shows that we’re (still) not
paying enough attention to flaws
– Only 12.5% of firms have a process

The top three touchpoints are:
1. Code review with a tool
2. Architectural risk analysis
3. Pen testing
====
WHO DOES PEN TESTING? OK, WHO DOES ARCHITECTURE RISK ANALYSIS?

8

software security touchpoints circa 2006

1. Code review (with a tool)
2. Architectural risk analysis
3. Penetration testing

One of these things is not like the other. You can automate dependency checking and
known attack knowledge.
===
Story of VISA and ARA in 1997

9

Three steps to architectural risk analysis (ara)

• Known Attack Analysis
• Apply checklist of known attacks
• Risk-based judgement of fitness

• System-specific attack analysis
• Find attacks based on how the

system works
• Expose invalid assumptions

• Dependency analysis
• Explore dependencies on

frameworks and containers
• How solid is the foundation?

Known
Attack

Analysis

System-specific
Attack Analysis

Dependency
Analysis

Instead of simply listing ten flaws, we decided to show how to avoid flaws through
better design.

I will try to include an example from Machine Learning security and my work at BIML
for each flaw.

10

Avoiding the top ten
software security flaws

11

1) earn or give, but
never assume trust

ML** WHERE DID THOSE DATA COME FROM?
===
60% of machine learning risks are related to data issues. Public data can be biased
and sometimes even intentionally poisoned.
MACHINE LEARNING SYSTEMS don’t have a good answer to this set of risks yet

WHO IS CALLING YOUR API??
===
Most early android escalation of privilege (oh, sorry, “jailbreaking”) flaws followed
policy #1. System services assumed the information or messages they’d get were
from authorized sources.
===
Delivery people being allowed inside. I even see this happen on accident during
engagements when I’m in NYC. They have enough messengers there when I arrive
security tends to just show me through as I use a messenger bag.

12

earn or give, but never assume trust

üMake sure all data
from an
untrusted client are
validated

üAssume data are
compromised

§ Avoid authorization,
access control, policy
enforcement, and use
of sensitive data in
client code

13

2) use an authentication
mechanism that can’t
be bypassed

DID YOU DISABLE YOUR TEST HARNESS? (blowing JTAG fuses on chip)
===
Old days story. Authentication worked fine, but database required GODpriv. So
become GOD…

ML** In online situations, machine learning systems can be moved in a direction
possibly unintended or unanticipated by designers

===
I had the source code for QA to assist with the work and found what looked like test
scripts. They were simply called disable-host.jsp and enable-host.jsp. These were like
2-3 line JSP files and all it appeared to do was make a configuration change on the
JVM. So I called disable-host.jsp in the QA environment (without authentication) and
I get a response “all calls to the host have been disabled”. I refresh the login page and
get an error message saying it’s down for maintenance. I call enable-host.jsp and then
the app. is magically working again. That’s the first fail which would fit nicely into
your authN slides: presence of a test script which any unauthenticated attacker can
call (by hitting a URL) and it brings down the app.
===

14

use an authentication mechanism that can’t
be bypassed

ü Prevent the user from
changing identity without
re-authentication, once
authenticated.

ü Consider the strength of
the authentication a user
has provided before
taking action

ü Make use of time outs

§ Do not stray past the big
three

• Something you are
• Something you have
• Something you know

§ Avoid shared resources
like IP numbers and MAC
addresses

§ Avoid predictable tokens

15

3) authorize after you
authenticate

Is being SOMEONE enough to do ANYTHING? Compartmentalize. Be stingy with
privilege no matter who someone is.
===
ML** Can a user extract enough information to build a copy of your machine? How
do you stop a malicious user from doing that?
===
Modern authorization systems may require stronger authentication to do more stuff
(check balance versus transfer cash). Require more authentication to move up the
PRIV chain.
===
How long should authorization last? Time it out.
===
Kerberos/PYKEK thing for “Authorize after Authenticate”. Oops, every enterprise
serious about security now has to rebuild their entire domain.

16

authorize after you authenticate

üPerform
authorization as an
explicit check

üRe-use common
infrastructure for
conducting
authorization
checks

§ Authorization depends
on a given set of
privileges, and on the
context of the request

§ Failing to revoke
authorization can
result in authenticated
users exercising out-
of-date authorizations

17

4) strictly separate data and
control instructions, and never
process control instructions
from untrusted sources

The C sea of bits is a huge problem. Is it a pointer? A password? An integer? Who
knows. TYPE SAFETY IS GOOD.
===
Non-executable stacks are good
===
SQL injection story

18

strictly separate data and control instructions, and never
process control instructions from untrusted sources

ü Utilize hardware
capabilities to enforce
separation of code and
data

ü Know and use appropriate
compiler/linker security
flags

ü Expose methods or
endpoints that consume
structured types

§ Co-mingling data and
control instructions in a
single entity is bad

§ Beware of injection-prone
APIs
• XSS, SQL injection,

shell injection

§ Watch out for (eval)

19

5) define an approach
that ensures all data are
explicitly validated

Data validation is super low-end, bottom line security
===
EVERYBODY SCREWS THIS UP
===
ML** know that data are more important than ever when it comes to ML. How do
you avoid bias? How do you spot poisoning?
===
String functions in C were a notorious issue many years ago, but a SYMPTOM OF A
FLAW
===
How big is the list of possible bad inputs?? (infinity)

20

define an approach that ensures all data are
explicitly validated

ü Ensure that comprehensive
data validation actually
takes place

ü Make security review of the
validation scheme possible

ü Use a centralized validation
mechanism and canonical
data forms (avoid strings)

§ Watch out for assumptions
about data

§ Avoid blacklisting, use
whitelisting

21

6) use cryptography
correctly

ML** Turns out that the order in which you choose training examples really matters.
So cryptographic randomness is a strength and a necessity.

SECURITY IS NOT CRYPTOGRAPHY

Show of hands: who has used crypto mechanisms in their code pile?
===
Textbook RSA. We teach it as an intro construction to RSA for most students but it
doesn’t meet the appropriate cryptographic security properties.
===
CRYPTO IS HARD

22

use cryptography correctly

ü Use standard
algorithms and libraries

ü Centralize and re-use

ü Design for crypto agility

ü Get help from real
experts

§ Getting crypto right is
VERY hard

§ Do not roll your own

§ Watch out for key
management issues

§ Avoid non-random
“randomness”

23

7) identify sensitive data
and how they should be
handled

GDPR has made the PII thing more obvious than ever. Does your system collect or
CREATE sensitive data?
===
ML** When you train on confidential or sensitive information, it ends up IN your
machine learning representation. Retrieving secrets is a well known attack on ML.
GTP-3 and SSN completion attack.
===
Data can change its stripes according to context: People with AIDS list = critical for
medicine, and really useful for blackmailers

24

identify sensitive data and how they should
be handled

ü Know where your
sensitive data are

ü Classify your data into
categories

ü Consider data controls
ü File, memory, database

protection

ü Plan for change over
time

§ Do not forget that data
sensitivity is often context
sensitive

§ Confidentiality is not data
protection

§ Watch out for trust
boundaries

25

8) always consider the
users

Network security people say: Users are the worst! And you know who the most
dangerous users are? Users with compilers.
===
Security decisions are hard to make. And they make a huge difference. Ever chmod
something 777 just to get it to run? That.
===
ML** sometimes users can get more out of your ML system than you may think.
Extraction attacks. Cloning attacks.

26

always consider the users

ü Think about: deployment,
configuration, use, update

ü Know that security is an
emergent property of the
system

ü Consider user culture,
experience, biases, …

ü Make things secure by
default

§ Security is not a feature!

§ Don’t impose too much security

§ Don’t assume the users care
about security

§ Don’t let the users make
security decisions

27

9) understand how
integrating external
components changes your
attack surface

Anybody working on massively distributed or cloud architectures? LOL.
===
ML** Many ML models are open source and are used without integrity checks.
===
Who made that component? Who is keeping it up to date from a security
perspective? How about that API? That micro-service?
===
Death by 1000 micro-service cuts
===
ABOUT THAT OPEN SOURCE…

28

understand how integrating external
components changes your attack surface

ü Test your components for
security

ü Include external
components and
dependencies in review

ü Isolate components

ü Keep an eye out for
public security information
about components

§ Composition is dangerous

§ Security risk can be inherited

§ Open source is not secure

§ Don’t trust until you have
applied and reviewed controls

§ Watch out for extra functionality

29

10) be flexible when
considering future
changes to objects and
actors

Things change. Software exists because things change. It is easier to update
software than to ship an entirely new product (in theory).
===
PLAN FOR CHANGE

30

be flexible when considering future
changes to objects and actors

ü Design for change

ü Consider security updates

ü Make use of code signing
and code protection

ü Allow isolation and
toggling

ü Have a plan for “secret
compromise” recovery

§ Watch out for fragile and/or
brittle security

§ Be careful with code signing
and system
administration/operation

§ Keeping secrets is hard

§ Crypto breaks

One of these things is not like the other. You can automate dependency checking and
known attack knowledge.
===
Story of VISA and ARA in 1997

31

build a process to look for flaws (like ARA)

• Known Attack Analysis
• Apply checklist of known attacks
• Risk-based judgement of fitness

• System-specific attack analysis
• Find attacks based on how the

system works
• Expose invalid assumptions

• Dependency analysis
• Explore dependencies on

frameworks and containers
• How solid is the foundation?

Known
Attack

Analysis

System-specific
Attack Analysis

Dependency
Analysis

Full disclosure: I chair the Technical Advisory Board of IriusRisk

32

IriusRisk is automating ARA

Architectural Security Rule

If data flow has tag ‘HTTP’ and trust zone
== Internet
and data == PII
then create threat and countermeasure in
model

1. Rules engine
parses diagram

z

2. Rules generate
threats &
countermeasures

3. Countermeasure uploaded to Jira

33

where to learn
more

34

This is the future…

• Machine learning is showing up
everywhere

• Secure your own AI/ML using the
BIML-78 risks as a guide

35

build security in

• Writings, Blogs, Music
https://garymcgraw.com

• BIML: Security of
Machine Learning
https://berryvilleiml.com

• Send e-mail:
gem@garymcgraw.com

@cigitalgem@sigmoid.social

https://garymcgraw.com/
https://garymcgraw.com/
mailto:gem@cigital.com

