
14/06/2023

1

Attacks against machine learning

pipelines

Davy Preuveneers, davy.preuveneers@kuleuven.be

SecAppDev 2023 – June 14, 2023 – Leuven, BE

About me

• Davy Preuveneers

• Research manager, DistriNet, KU Leuven

• Expertise:
• Identity and access management

• Biometric and behaviometric authentication

• Machine learning for security and privacy

• Adversarial machine learning

https://distrinet.cs.kuleuven.be/people/DavyPreuveneers

2

1

2

mailto:davy.preuveneers@kuleuven.be
https://distrinet.cs.kuleuven.be/people/DavyPreuveneers

14/06/2023

2

Lecture objectives

i. Increase awareness on the security and privacy threats and challenges of AI and
ML enabled applications

ii. Gain insights on important ICT security concepts, building blocks and best
practices to develop secure AI-centric applications

iii. Enhance understanding on attacks and defences in various application
architectures and case studies

3

Outlook & Overview

i. Introduction

ii. Security and privacy posture of an ML pipeline

iii. Adversarial machine learning

4

3

4

14/06/2023

3

5

Introduction

Growing adoption of AI in various applications

Artificial Intelligence (AI) and Machine Learning (ML) add value and
complexity to contemporary software systems and applications

6

• Education

• Social media

• Games

• Entertainment

• Security

• …

• Transport

• Healthcare

• Finance

• E-commerce

• Automotive

• Robotics

5

6

14/06/2023

4

Growing adoption of AI in various applications

June 7, 2021 © 2021 Davy Preuveneers, DistriNet, KU Leuven 7

SMART TRANSPORT:
Self-driving vehicles, travel arrangements,
delay predictions, customer support, …

Growing adoption of AI in various applications

8

Self-driving cars:

• Cameras and sensors

• Data and software

AI and Machine Learning:

• Lane and object detection

• Traffic sign recognition

• Planning and control

• …

(Re)train ML model

Deploy/upgrade
ML model

M

M

Run ML model

Data

Upload data
(e.g. rare objects)

7

8

14/06/2023

5

Growing adoption of AI in various applications

10

Attacking the AI-based decision
making of self-driving cars:

• Take direct control of AI and car
by exploiting software/hardware

• Provide malicious inputs to
sensors and cameras

• Manipulate training data

• Steal the AI model

• …

Sitawarin et al. DARTS: Deceiving Autonomous Cars with
Toxic Signs, 2018, https://arxiv.org/abs/1802.06430

http://adversarial-learning.princeton.edu/darts/

Growing adoption of AI in various applications

June 7, 2021 © 2021 Davy Preuveneers, DistriNet, KU Leuven 11

SMART HEALTHCARE:
Faster and better diagnosis, new medicines,
actionable insights for patients, …

10

11

https://arxiv.org/abs/1802.06430
http://adversarial-learning.princeton.edu/darts/

14/06/2023

6

12

“The team used CT scans of about 500 patients with large
lung nodules to develop an AI algorithm using radiomics.
The technique can extract vital information from medical
images not easily spotted by the human eye.”

“The results showed the AI model could identify each
nodule’s risk of cancer with an AUC of 0.87.”

“According to these initial results, our model appears to
identify cancerous large lung nodules accurately”

https://www.theguardian.com/society/2023/apr/30/artifi
cial-intelligence-tool-identify-cancer-ai

13

Injecting and removing cancerous
pulmonary lung nodules with generative
adversarial networks

Why? Insurance fraud, political motives, job theft, …

Yisroel Mirsky, Tom Mahler, Ilan Shelef, and Yuval Elovici.
CT-GAN: Malicious Tampering of 3D Medical Imagery
using Deep Learning. 28th USENIX Security Symposium
(USENIX Security 19)

https://www.usenix.org/system/files/sec19-mirsky_0.pdf

https://github.com/ymirsky/CT-GAN

12

13

https://www.theguardian.com/society/2023/apr/30/artificial-intelligence-tool-identify-cancer-ai
https://www.theguardian.com/society/2023/apr/30/artificial-intelligence-tool-identify-cancer-ai
https://github.com/ymirsky/CT-GAN
https://github.com/ymirsky/CT-GAN

14/06/2023

7

Growing adoption of AI in various applications

June 7, 2021 © 2021 Davy Preuveneers, DistriNet, KU Leuven 14

SECURITY:
Enhanced security services and threat detection:
biometrics, malware, network intrusion, phishing

15

“In April, hackers successfully breached the
networks of a Canadian gas pipeline. Once
in, they were able to increase valve
pressure, disable alarms, and make
emergency shutdowns.”

“Using AI, energy companies can detect
and monitor threats in their operating
technologies. Insights can also be shared
across companies, helping educate
organizations about emerging attacks and
how to thwart them. AI can also process
the huge swaths of data that energy
companies have and generate valuable
outcomes for cybersecurity.”

https://www.utilitydive.com/news/canada-
pipeline-hack-ai-artificial-intelligence-
cybersecurity/651481/

14

15

https://www.utilitydive.com/news/canada-pipeline-hack-ai-artificial-intelligence-cybersecurity/651481/
https://www.utilitydive.com/news/canada-pipeline-hack-ai-artificial-intelligence-cybersecurity/651481/
https://www.utilitydive.com/news/canada-pipeline-hack-ai-artificial-intelligence-cybersecurity/651481/

14/06/2023

8

16

“Chaudhry recounted the incident last month
on the sidelines of the annual RSA
cybersecurity conference in San Francisco,
where concerns about the revolution in
artificial intelligence dominated the
conversation.

Criminals have been early adopters, with
Zscaler citing AI as a factor in the 47 percent
surge in phishing attacks it saw last year.
Crooks are automating more personalized texts
and scripted voice recordings while dodging
alarms by going through such unmonitored
channels as encrypted WhatsApp messages on
personal cellphones.”

https://www.washingtonpost.com/technology/
2023/05/11/hacking-ai-cybersecurity-future/

17

FaceNet, Schroff et al. (Google), 2015
• Deep neural network to extract features from an

image of a person’s face

• Outputs embedding, a vector of 128 numbers which
represent the most important features of a face

• https://arxiv.org/abs/1503.03832

https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/

16

17

https://www.washingtonpost.com/technology/2023/05/11/hacking-ai-cybersecurity-future/
https://www.washingtonpost.com/technology/2023/05/11/hacking-ai-cybersecurity-future/
https://arxiv.org/abs/1503.03832
https://arsfutura.com/magazine/face-recognition-with-facenet-and-mtcnn/

14/06/2023

9

18

“Face unlock is more widely available on
smartphones nowadays, but many of us seem to
forget that Android has always had a barebones —
albeit easily fooled — equivalent of the feature for
years. Android Smart Lock's Trusted face was
added in 2014 and has been accessible to users on
all Android devices until recently. Now, it's
completely gone from stock and OEM devices,
running Android 10 or below.”

“It didn't use any biometric data for security,
instead just relying on your face to unlock your
device. A photo could easily fool it.”

https://www.androidpolice.com/2019/09/04/trust
ed-face-smart-unlock-method-has-been-removed-
from-android-devices/

20

Security and privacy posture of an ML pipeline

18

20

https://github.com/ymirsky/CT-GAN
https://github.com/ymirsky/CT-GAN
https://github.com/ymirsky/CT-GAN

14/06/2023

10

AI-centric applications

• Example applications
• Mobile: e.g. biometric authentication, keyboard word prediction, ...

• Desktop: e.g. email spam filters, games, browsers, …

• Online service: e.g. online translations, voice and smart home assistants, …

• Training/testing vs. production
• Local architecture

• Distributed architecture

21

Cloud

Fog

Edge

AI-centric applications

• Jupyter Notebook: Browser-based interface to Python and ML code
• Local (e.g. laptop): $ jupyter notebook

• Remote (e.g. GPU server): $ jupyter notebook --no-browser --port=8080

22

21

22

14/06/2023

11

AI-centric applications

• Jupyter Notebook: Browser-based interface to Python and ML code
• Local (e.g. laptop): $ jupyter notebook

• Remote (e.g. GPU server): $ jupyter notebook --no-browser --port=8080

• Security based on tokens:
• http://localhost:8080/?token=7153d0758dbd9ed3b346301558491b10f6c78f

bc7a73f307

• Secure connection to remote server via ssh tunnelling (of port 8080)

• What if the token is leaked?
• Other user may run arbitrary code …

23

Characteristics of an ML pipeline

Artificial Intelligence (AI) and Machine Learning (ML) add value and
complexity to contemporary software systems and applications

From DevOps

to MLOps

24

Application, Training and Test Code

AI and ML Models

Data, Predictions and Metrics

23

24

14/06/2023

12

Characteristics of an ML pipeline

Artificial Intelligence (AI) and Machine Learning (ML) add value and
complexity to contemporary software systems and applications

25

Data Acquisition
and Quality

Model Design

Train / Test

Deploy Monitor Results

Update

Data Acquisition
and Quality

Stakeholders, assets and attack surface

26

Organization
Users

Adversary

Web application
or online service

• Malware / Ransomware

• Phishing

• Brute force password attacks

• Man-in-the-middle attacks

• Cross-site scripting

• Denial of Service attacks

• SQL injection attacks

• Backdoors

• Data exfiltration

• …

25

26

14/06/2023

13

Stakeholders, assets and attack surface

Attack surface:
• All the points in the system where an adversary can launch attack

• Data, application logic and infrastructure (cloud and on-premise)

• Security building blocks that protect data, application logic and infrastructure

27

Risks
Threats and

Vulnerabilities
Resources
and Assets

Counter-
measures

Monitor

Attack surface of AI-centric applications

28

27

28

14/06/2023

14

Attack surface of AI-centric applications

• Software exploits: abuse vulnerable ML library due to software bugs

• Unauthorized access: leverage software or service end-points (e.g.
training, upgrade production model) without permission

• Tracking: observe the use of the ML application to learn or expose
interests of user

29

Application, Training and Test Code

Attack surface of AI-centric applications

• Arbitrary code execution in recent Tensorflow :
• Deserializing a Keras model from YAML format, implementation uses

yaml.unsafe_load, arbitrary code execution on the input

• CVE-2021-37678 (13 august, 2021), CVSS Score: 9.3 – Critical Severity

• https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678

• Fixed in Tensorflow 2.6

• https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3
bdf164043b974818012

30

Application, Training and Test Code

29

30

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-37678
https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012
https://github.com/tensorflow/tensorflow/commit/23d6383eb6c14084a8fc3bdf164043b974818012

14/06/2023

15

Attack surface of AI-centric applications

• Steal model: replicate confidential model without authorization

• Infer membership: figure out if input sample was used during training

• Model inversion: reconstruct training data from model parameters

• Backdoor: enforce particular model behaviour for given trigger

• Transfer learning attack: fine-tuning and repurpose an already
trained but compromised model

31

AI and ML Models

Attack surface of AI-centric applications

• Model inversion: reconstruct training data from model parameters

32

AI and ML Models

Original face image (right) and restored one through model inversion (left)

Fredrikson et al., Model inversion attacks that exploit confidence information and basic
countermeasures, CCS, 2015

Face recognition classifier
producing labels and
probabilities

31

32

14/06/2023

16

Attack surface of AI-centric applications

• Data trustworthiness: integrity of compromised sensors or public datasets

• Unauthorized access: modification of data without permission

• Poison model: corrupt model by adding malicious training samples

• Hijack output: interpose between ML system and receiver of predictions

• Looped inputs/outputs: use own predictions to train model

33

Data, Predictions and Metrics

Attack surface of AI-centric applications

• Hijack output: interpose between ML system and receiver of predictions

34

Data, Predictions and Metrics

Machine Learning
Subsystem

Data

Software
Subsystem

New data

Prediction

Hijack output

• Lane and object
detection

• Traffic sign
recognition

• Sensors and
actuators

• Autonomous
driving

33

34

14/06/2023

17

Security by design

• 10 important security principles
1. Secure the weakest link

2. Practice defence in depth

3. Fail securely

4. Follow the principle of least privilege

5. Compartmentalize

Cfr. chapter 5 "Guiding Principles for Software Security" of Viega, John & McGraw, Gary. Building
Secure Software: How to Avoid Security Problems the Right Way. Boston, MA: Addison-Wesley, 2002

J.H. Saltzer and M.D. Schroeder, The protection of information in computer systems, In Proceedings
of the IEEE, 63(9):1278–1308, 1975

35

6. Keep it simple

7. Promote privacy

8. Remember that hiding secrets is hard

9. Be reluctant to trust

10. Use community resources

Security by design

• ML Example:
• MLaaS: Protect the underlying data and the ML system before protecting the

public APIs

36

1. Secure the weakest link

REST APIs ML System Data

Machine Learning as a Service

Malicious adversaries

Regular users

35

36

14/06/2023

18

Security by design

• ML Example:
• Implement authentication and access control and maintain records of queries

and responses to mitigate information leakage

37

2. Practice defence in depth

37

REST APIs ML System Data

Regular users
• Authentication
• Access control
• Logging

• Authentication
• Access control
• Logging

• Authentication
• Access control
• Logging

Security by design

• ML Example:

• Do not provide classification results when ML system has little confidence in
the predications to mitigate the creation of adversarial examples

38

3. Fail securely – Use secure defaults

ML System
and APIs

Prediction request

• Classification label
• Confidence value

37

38

14/06/2023

19

Security by design

• ML Example:
• Implement access control for the different steps in the lifecycle of the ML

system to limit data exposure to authorized entities as briefly as possible.

39

4. Follow the principle of least privilege

Training Code

ML Model

Training Data
read-only

read-write

Test Code

ML Model

Test Data
read-only

no access

Security by design

• ML Example:
• Separate the sensitive data flows between the different components of the

ML system to minimize information leakage in case of compromise.

40

5. Compartmentalize

Training Code

ML Model

Training Data

Test Code

ML Model

Test Data

Training Environment Test Environment Production Code

ML Model

Production Data

Production EnvironmentDevelopment Environment

39

40

14/06/2023

20

Security by design

• ML Example:
• When multiple ML algorithms and/or models are adequate (e.g. in terms of

accuracy and computational overhead), choose those algorithms or models
that are better understood as a way to not miss security threats.

Decision tree versus Deep neural network
41

6. Keep it simple

X>0 X<=0

Y=‘A’ Y!=‘A’ Y=‘B’Y=‘A’

Security by design

• ML Example:
• Implement differential privacy (random noise with a certain distribution), hide

confidence levels (cfr. membership inference attacks)

42

7. Promote privacy

Data with Label Target Model

Attack Model

Predict(Data)

Prediction (vector of probabilities)

Data Є training set?

Shokri et al., Membership inference attacks against machine learning models, IEEE S&P, 2017

Label

41

42

14/06/2023

21

Security by design

• ML Example:
• Do not assume that the configuration or the hyperparameters of an ML model

remain secret

Wang et al., Stealing Hyperparameters in Machine Learning, IEEE S&P, 2018 43

8. Remember that hiding secrets is hard – No security by obscurity

Algorithm to learn
hyperparameters

Hyperparameters

Training dataset
Algorithm to learn
model parameters

Algorithm to learn
model parameters

Security by design

• ML Example:

• In ML systems, many components depend on one another. Verify the data
collection, pre-processing, normalization, training, …

44

9. Be reluctant to trust – Never trust, always verify

Camera Face Authentication
Image

Mobile Device
Unlock

Trusted sensor? Trusted entity?

Data corrupted? Model corrupted? Decision corrupted?Spoofed face?

43

44

14/06/2023

22

Security by design

• ML Example:
• Validate the authenticity and quality of public datasets and ML models as they

may have been manipulated by malicious adversaries (cfr. Backdoor attacks)

45

10. Use community of resources

Data Label Data Label Data Label

versus

Datasets with corrupted data and/or labelsOriginal dataset

Data Label

Traditional countermeasures and best practices

• Identity and access control
• User, application and service accounts

• Roles and permissions

• Strong authentication

• Monitor for account and usage anomalies

• Management
• Principle of least privilege

• Secure deployment and configuration

• Monitoring, logging and auditing

• Backup and recovery
46

45

46

14/06/2023

23

Traditional countermeasures and best practices

• Network architecture
• Network isolation, virtual networks and segmentation
• Disable access to internet or external networks
• Deploy intrusion detection/prevention systems (IDS/IPS)
• Protect against data exfiltration
• Use end point detection and recovery (EDR)

• Data encryption in transit and at rest
• Datasets and model artefacts
• ML jobs (training, hyperparameter tuning, processing, …)
• Logs and backups
• Network traffic

47

Traditional countermeasures and best practices

• ML as a Service / ML in the cloud:

• Build a Secure Enterprise Machine Learning Platform on AWS
• https://docs.aws.amazon.com/whitepapers/latest/build-secure-enterprise-

ml-platform/build-secure-enterprise-ml-platform.html

• Azure security baseline for Azure Machine Learning
• https://docs.microsoft.com/en-

us/security/benchmark/azure/baselines/machine-learning-security-baseline

48

47

48

https://docs.aws.amazon.com/whitepapers/latest/build-secure-enterprise-ml-platform/build-secure-enterprise-ml-platform.html
https://docs.aws.amazon.com/whitepapers/latest/build-secure-enterprise-ml-platform/build-secure-enterprise-ml-platform.html
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/machine-learning-security-baseline
https://docs.microsoft.com/en-us/security/benchmark/azure/baselines/machine-learning-security-baseline

14/06/2023

24

Approach on securing an AI application

• Mitigating traditional vulnerabilities
• Educating users

• Policy enforcements

• Finding flaws with code reviews and bug bounties

• Mitigating AI vulnerabilities
• Traditional defences can be applied to protect against some AI attacks

• ML algorithms themselves have limitations that allow for attacks

• Strategies to make those attacks more difficult to execute

• Limit dependency on AI (e.g. availability of non-AI methods) to reduce impact

49

50

Adversarial machine learning

49

50

14/06/2023

25

Basic ML concepts and terminology

• Train ML model that generalizes to a dataset not seen before

• Independent and identically distributed (IID): All train and test
examples drawn independently from same distribution

• If distributions are different or if there are sampling dependencies,
then algorithm will not generalise after deployment

• Datasets are generated independent of the ML model

51

Distribution
Training Dataset

Distribution
Test Dataset

≈

Basic ML concepts and terminology

Loss or cost function J(θ, x, y) of model with parameters/weights θ:
• How good is model at making predictions?
• Slope of curve indicates how to update parameters for better prediction
• Gradient descent: use derivative for direction of greatest increase
• Minimize cost or loss when gradient is 0

• Gradient:
• Measures how much the output of a function changes if you change weights a little bit
• Partial derivative with respect to its weights
• ML or DL: measures the change in all weights with regard to the change in error

52

51

52

14/06/2023

26

Basic ML concepts and terminology

Loss or cost function J(θ, x, y) of model with parameters/weights θ:
• How good is model at making predictions?
• Slope of curve indicates how to update parameters for better prediction
• Gradient descent: use derivative for direction of greatest increase
• Minimize cost or loss when gradient is 0

53

J(θ)

θ

𝛻J θ < 0

𝛻J θ > 0

𝛻J θ = 0 minimum

Basic ML concepts and terminology

• Train ML model that generalizes to a dataset not seen before

• Kitten: ‘pointy’ ears and ‘longer’ tail
• Puppy: ‘floppy’ ears and ‘shorter’ tail

54

53

54

14/06/2023

27

Basic ML concepts and terminology

• Test ML model

• ML model may not generalize well

55

Basic ML concepts and terminology

• ML in adversarial setting: exploit IID assumption
• Attackers provide unusual inputs

Eykholt et al., Robust Physical-World Attacks on Deep Learning Models, CVPR, 2017,

https://arxiv.org/abs/1707.08945

Sitawarin et al. DARTS: Deceiving Autonomous Cars with Toxic Signs, 2018,

https://arxiv.org/abs/1802.06430

56

55

56

https://arxiv.org/abs/1707.08945
https://arxiv.org/abs/1802.06430

14/06/2023

28

Basic ML concepts and terminology

Norms and distances:
• Example: Vector x = (2, 3, 0)

• L0 norm: counts the total number of non-zero elements of a vector (not really a
norm due to scaling property)

• | 𝑥 |0 = 2
• L1 norm (Manhattan distance): sum of absolute values of the elements

• | 𝑥 |1 = 2 + 3 + |0| = 5
• L2 norm (Euclidean distance): square root of the sum of the squares of the

elements

• | 𝑥 |2 = |2|2 + |3|2 + |0|2 = 4 + 9 + 0 = 3.606
• L∞ norm: largest magnitude among each element of a vector

• | 𝑥 |∞ = max 2, 3,0 = 3

57

Adversarial machine learning

What is adversarial machine learning (AML)?

“AML explores the degree to which AI systems can be compromised
by contaminating training data, by modifying algorithms, or by
making subtle changes to an object that prevent it from being

correctly identified”

National Science and Technology Council 2016

58

57

58

14/06/2023

29

Adversarial machine learning

• AI attacks against AI-centric applications

59

Attack CIA triad

Evasion/perturbation attack Integrity (model)

Poisoning attack Integrity (data)

Model backdoors Integrity (model)

Membership inference Confidentiality (data)

Model stealing Confidentiality (model)

Model inversion Confidentiality (data)

Software dependency exploits Integrity, confidentiality and availability

Evasion attack: spam filter

• Example: Spam filters and evading detection:
• Use capitalization, non-Latin characters or spurious punctuation
• Misspell words
• Use synonyms
• Add non-spam words
• No text but graphical image
• Embed bogus HTML codes in text
• …

• Adversaries manipulate mail to produce false negatives

Dalvi et al., Adversarial Classification, 2004
60

59

60

14/06/2023

30

Evasion attack: spam filter

• Spam filtering setting:
• End-users train their spam filter on their own mailbox

• Using both spam and ham examples

• Number of tokens is fixed, e.g. 100000

• Most-infrequently seen tokens expire

• Threat model:
• Spammer’s objective is to evade detection
• Spammer has no access to classifier
• Spammer has knowledge about the algorithms used

61

Evasion attack: spam filter

62

• Spam classifier: linear classification model
• Feature vector x: tokens, words, character sequences

• Weighs w: viagra = 3.0, buy = 1.0, lecture = -2.0

• Spam if total score (weighted sum) is larger than threshold 3, else ham

• Mail: “buy viagra” => spam

• Perturbed mail: “buy viagra lecture” => ham

• Adversarial examples: “inputs to machine learning models that an
attacker has intentionally designed to cause the model to make a mistake”

Goodfellow et al., Attacking machine learning with adversarial examples, 2017

61

62

14/06/2023

31

Evasion attack: adversarial examples

• Maximizing perturbation with small changes
• Adversarial example: ෤𝑥 = 𝑥 + 𝜂 with small noise 𝜂 < 𝜖
• Dot product with weight vector w: 𝑤 T ෤𝑥 = 𝑤 T𝑥 + 𝑤 T𝜂
• Activation increases with 𝑤 T𝜂
• Perturbation is maximized if 𝜂 = 𝑠𝑖𝑔𝑛 (𝑤)
• Small changes in activation can grow linearly with increase in dimensions of w

63

Ham

Spam
𝑥

෤𝑥

𝜂

Evasion attack: adversarial examples

64

Szegedy et al., Intriguing properties of neural networks, ICLR, 2014, https://arxiv.org/abs/1312.6199

• Szegedy was the first to observe adversarial
examples in deep neural networks

• AlexNet CNN architecture

• Left: correctly predicted sample: “schoolbus”

• Middle: difference with correct image

• Right: misclassified image: “ostrich”

• Same perturbation can cause a different
network, trained on different subset of dataset,
to misclassify the same input.

63

64

https://arxiv.org/abs/1312.6199

14/06/2023

32

Evasion attack: adversarial examples

65

• Neural network vulnerable to adversarial examples:
• Adversarial noise maximizes classification error

• Difference between example and test sample indistinguishable to human eye

Goodfellow et al., Explaining and harvesting adversarial examples, ICLR, 2015

Evasion attack: adversarial examples

• Observation:
• Adversarial example is not neutral, but dependent on classifier

• Noise is not stochastic, but crafted to maximize classification error

• Transferability of adversarial examples: Other ML models and neural networks
with different architectures trained on subsets of same dataset often
misclassify adversarial example too

• Arms race:

66

Adversary:
• Analyse classifier
• Design attack

Defender:
• Analyse attack
• Design defense

65

66

14/06/2023

33

Evasion attack: adversarial examples

• Attacker’s goal:

67

• Change the class with or without a specific target class

Misclassification

• Do not change target class, but impact confidence of prediction

Confidence reduction

Evasion attack: adversarial examples

• Adversarial perturbation:

68

• Adversarial perturbation can be applied to only one input

Individual

• Adversarial perturbation can be applied to many inputs

Universal

67

68

14/06/2023

34

Evasion attack: adversarial examples

• Universal adversarial perturbation
• Fake glasses
• Physical adversarial example

• Attack a face recognition system
• Impersonation attack
• Identity theft

Sharif et al., Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, CCS
2016, https://dl.acm.org/doi/10.1145/2976749.2978392

https://github.com/mahmoods01/accessorize-to-a-crime

69

Evasion attack: adversarial examples

• Generating adversarial perturbation:

70

• Fast but less accurate (e.g. FGSM)

Single step

• More costly, requires multiple iterations (e.g. BIM, PGD, DeepFool)

Iterative methods

69

70

https://dl.acm.org/doi/10.1145/2976749.2978392
https://github.com/mahmoods01/accessorize-to-a-crime

14/06/2023

35

Evasion attack: threat model

Characteristics of an adversary:

71

• Adversary aims for (un)targeted misclassification (e.g. FN=evasion, FP=DoS attack)

Objectives

• Information the adversary can leverage or exploit to successfully launch the attack

Knowledge

• Adversary can craft adversarial examples

Capabilities

Evasion attack: threat model - knowledge

• White-box:
• Adversary has complete access to classifier F: X → Y

• Black-box:
• Adversary has oracle access to classifier F
• For given x, retrieve F(x)

• Grey-box:
• Black box + some other information
• E.g. learning algorithm, hyperparameters, defenses, …

72

White-box

Black-box

Grey-box

71

72

14/06/2023

36

Generate adversarial examples: white-box

• White-box:

• Scenario by adversary:
• Given: 𝑥 ∈ 𝑋

• Find: 𝜂

• min 𝜂 𝜂 such that F(෤𝑥) = F(𝑥 + 𝜂) ∈ S with S ⊆ Y

• Untargeted attack: S = Y – F(x)

• Targeted attack: { s }

73

White-box: Adversary has complete access to classifier F

Generate adversarial examples: white-box
(Fast Gradient Sign Method)

• White-box:

• Attack algorithm: Fast-Gradient Sign Method (FGSM)
• Step in the direction of the gradient of the loss function

• Training example x, y = (x, F x) and model parameters θ

• Loss function J(θ, x, y) for training example (x, y)

• Step in direction of gradient of loss function: η = ϵ sign(𝛻x J(θ, x, y))

• ϵ is smaller than precision of features (e.g. 8 bits for pixel)

• Adversarial example: ෤x = x + η = x + ϵ sign(𝛻x J(θ, x, y))

Goodfellow et al., Explaining and harvesting adversarial examples, ICLR, 2015

74

White-box: Adversary has complete access to classifier F

73

74

14/06/2023

37

Generate adversarial examples: white-box
(Fast Gradient Sign Method)

• White-box:

Goodfellow et al., Explaining and harvesting adversarial examples, ICLR, 2015

75

White-box: Adversary has complete access to classifier F

Generate adversarial examples: white-box
(Fast Gradient Sign Method)
• 3 and 7 from MNIST, binary classification with logistic regression

a) Weights logistic regression model

b) Sign of weights

c) Samples of dataset

d) Adversarial samples ϵ = 0.25

• Error rate:
c) 1.6 %

d) 99 %

76

75

76

14/06/2023

38

Generate adversarial examples: white-box
(Targeted FGSM)
• Targeted misclassification with FGSM: T-FSGM

• Compute gradient step as before

• Now in direction of negative gradient w.r.t. the target class ytarget
• Minimize loss, or maximize the probability of some specific target class

෤x = x − ϵ sign(𝛻x J(θ, x, 𝐲𝐭𝐚𝐫𝐠𝐞𝐭))

77

Generate adversarial examples: white-box
(Iterative FGSM or BIM)
• Iterative misclassification with FGSM: I-FSGM (or BIM)

• From single step to iterative variation of FGSM

• Iterate T steps

෤x0 = x

α =
ϵ

T

෤xt+1 = ෤xt + α sign(𝛻x J(θ, ෤xt, y))

78

77

78

14/06/2023

39

Generate adversarial examples: white-box
(Projected Gradient Descent)

• White-box:

• Attack algorithm: Projected Gradient Descent (PGD)
• B(x, ϵ) : An ϵ ball around x with norm Lp

• Proj B(x, ϵ) (y): project y into ball B(x, ϵ)

• Iterative process: xk+1 = Proj B(x, ϵ) (xk + ϵ sign(𝛻x J(θ, x, y)))
1. Start from random perturbation in the Lp ball around sample x

2. Take gradient step in the direction of greatest loss

3. Project perturbation back into Lp ball if necessary

4. Repeat 2–3 until convergence
79

White-box: Adversary has complete access to classifier F

L2 ball

x

ϵ

Generate adversarial examples: white-box

81

Attack

Random noise attack

Semantic attack

Fast Gradient Sign Method (FGSM)

Basic Iterative Method (BIM) or I-FGSM (Iterative FGSM)

Projected Gradient Descent (PGD)

DeepFool

Carlini & Wagner (C&W)

Jacobian-based Salience Map Attack (JSMA)

79

81

14/06/2023

40

Defense against adversarial examples

1. Adversarial examples detection
• Auxiliary detection model

• Statistical detection methods (e.g. principal component analysis)

• Prediction consistency methods (e.g. feature squeezing in fewer bits)

2. Gradient masking/obfuscation: break calculation of gradients
• Input transformations: crop, rescale, bit depth reduction, JPEG compression

• Defensive distillation

3. Robust optimization
• Adversarial training

• Certified defenses: robustness of model w.r.t. certain metric (e.g. lower bound
of minimal perturbation, upper bound to adversarial loss) 82

Defense against adversarial examples

• Detect: binary classifier or autoencoder to detect adversarial examples

• Pre-process: clean adversarial perturbations (e.g. denoising autoencoder)

Meng et al., MagNet: A Two-Pronged Defense against Adversarial Examples (CCS 2017),
https://dl.acm.org/doi/10.1145/3133956.3134057

83

Auxiliary detection model

Detect?

Pre-Process Classify

Skip

Example x

x is adversarial

No

Yes

x’x

x

Class y

82

83

https://dl.acm.org/doi/10.1145/3133956.3134057

14/06/2023

41

Defense against adversarial examples

• White-box:

• First network is trained with hard labels to get maximum accuracy, temperature T=40..50

F θ, x = softmax(
Z θ, x

T
)

• Evaluate first network on each sample in training set to produce soft labels (e.g. MNIST
dataset, 70% it is a ‘7’ and 30% it is a ‘1’)

• Second distillation network trains on soft labels with temperature T to predict the class
probabilities generated by the first network

• Evaluate with distillation network using temperature T = 1

Papernot et al., Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks,
S&P, 2016, https://arxiv.org/abs/1511.04508, https://secml.github.io/class3/ 84

Defensive distillation

Defense against adversarial examples

•

• Adversarial training as a regularizer
• Data augmentation with adversarial examples

• Trade-off: adversarial training more robust against adversarial attack, but
possibly a lower performance on normal examples

• Adversarial objective function based on FGSM

• ሚJ θ, x , y = α J θ, x, y + 1 − α J θ, x + ϵ sign 𝛻x J θ, x, y

Goodfellow et al., Explaining and harvesting adversarial examples, ICLR, 2015

85

Adversarial training

84

85

https://arxiv.org/abs/1511.04508
https://secml.github.io/class3/

14/06/2023

42

Arms race

• 10 defenses from different categories
• Secondary classification based methods

• Principal component analysis

• Distributional detection

• Normalization detection

• All detection methods were bypassed

Carlini and Wagner. Adversarial examples are not easily detected: Bypassing ten detection methods.
AISec 2017, https://arxiv.org/abs/1705.07263

86

Adversarial perturbation / evasion attack (test phase)

Arms race

• Unsupervised learning can detect unknown adversarial attacks
• CMU and KAIST found link between adversarial attacks and explainability

• Saliency maps

Ko et al., Unsupervised Detection of Adversarial Examples with Model Explanations. AdvML workshop
2021, https://arxiv.org/abs/2107.10480 87

Adversarial perturbation / evasion attack (test phase)

86

87

https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/2107.10480

14/06/2023

43

Generate adversarial examples: black-box

•

• Scenario by adversary: Attacking remotely hosted black-box models

• Query-based attacks: Query model and create adversarial examples by
using target model’s response
• Score-based attacks: output class probabilities (soft label)

• Decision-based attacks: output class (hard label)

• Transfer-based attacks (a.k.a. zero query attacks): Adversary trains own
local surrogate model and transfers adversarial to target model

88

Black-box: Adversary has oracle access to classifier F

Generate adversarial examples: black-box

•

• Boundary attack: decision-based attack
1. Start with input example that belongs to specific class

and corresponding target class to misclassify example as

2. Select random point on decision boundary between
original class and the target class

3. Generate small perturbation that can be added to the
starting point to move it closer to target class while still
remaining on decision boundary

4. If model misclassifies perturbed example, attack is
successful and process ends. Otherwise, select new
starting point and repeat 2-4 89

Black-box: Adversary has oracle access to classifier F

88

89

14/06/2023

44

Generate adversarial examples: black-box

•

• Boundary attack: decision-based attack
Brendel et al., Decision-based adversarial attacks: Reliable attacks against
black-box machine learning models (2017). https://arxiv.org/abs/1712.04248

• A lot of queries needed:
• Traditional defense: Access control and rate limiting

• Sybil attack: Detect suspicious queries?

• Defense: Stateful detection due to similar queries
Chen et al,. Stateful detection of black-box adversarial attacks (2020),
https://dl.acm.org/doi/abs/10.1145/3385003.3410925 90

Black-box: Adversary has oracle access to classifier F

Generate adversarial examples: black-box

•

• Transfer-based attack:

1. Adversary queries remote ML system for labels on inputs of its choice

2. Adversary uses labeled data to train a local substitute for remote ML system

Papernot et al., Practical Black-Box Attacks against Machine Learning, AsiaCCS, 2017,
https://arxiv.org/abs/1602.02697

91

Black-box: Adversary has oracle access to classifier F

Adversary

Remote ML
system

Local
substitute

90

91

https://arxiv.org/abs/1712.04248
https://dl.acm.org/doi/abs/10.1145/3385003.3410925
https://arxiv.org/abs/1602.02697

14/06/2023

45

Generate adversarial examples: black-box

•

• Transfer-based attack:

3. Adversary selects new synthetic inputs for remote queries based on local
substitute’s output sensitivity to input variations

4. Adversary uses local substitute to craft adversarial examples (transferability)

Papernot et al., Transferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples, 2016, https://arxiv.org/abs/1605.07277

92

Black-box: Adversary has oracle access to classifier F

Adversary

Remote ML
system

Local
substitute

Other ML threats and mitigations

• Description: contaminate ML model during training phase to modify predictions
on new data during testing phase

• Push the decision boundary:
• Label modification
• Data modification
• Data injection

94

Data poisoning attack (training phase)

a
a

a a

a

aa

a a

b
b

b
b

b
b

b

b

b

b
b

b

b

b

Decision boundary

a

a’ a’ a’

92

94

https://arxiv.org/abs/1605.07277

14/06/2023

46

Other ML threats and mitigations

• Description: contaminate ML model during training phase to modify predictions
on new data during testing phase

• Traditional countermeasures:
• Input validation and sanitization (e.g. SQL injection attacks)
• Strong access control and integrity checking

• ML countermeasures:
• Frequently measure outliers/skew/drift in training data
• Reject On Negative Impact (RONI) defence: remove suspect attack or noisy

training samples with substantial negative impact on classification accuracy
95

Data poisoning attack (training phase)

Other ML threats and mitigations

• Description: Inject additional behaviour by tampering with training data to
deliver Trojaned ML model that forces targeted misclassifications when trigger is
present [1]

• Traditional countermeasures:
• Cfr. Data poisoning attack

• ML countermeasures:
• Train sensitive models in-house
• Input filtering, neuron pruning, unlearning

[1] Wang et al., Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks,
IEEE SP 2019

96

ML backdoor attack (training phase)

95

96

14/06/2023

47

Other ML threats and mitigations

• Description: reconstruct private training data by inferring private features from
ML model by finding inputs that maximize confidence levels [1]

[1] Fredrikson et al., Model Inversion Attacks that Exploit Confidence Information and Basic
Countermeasures. CCS 2015

97

Model inversion attack

Other ML threats and mitigations

• Description: reconstruct private training data by inferring private features from
ML model by finding inputs that maximize confidence levels [1]

• Traditional countermeasures:
• Strong access control
• Rate limiting

• ML countermeasures:
• Omit confidence values from ML model output

[1] Fredrikson et al., Model Inversion Attacks that Exploit Confidence Information and Basic
Countermeasures. CCS 2015

98

Model inversion attack

97

98

14/06/2023

48

Other ML threats and mitigations

• Description: determine whether specific training sample was part of the ML
models training set or not [1]

[1] Shokri et al., Membership Inference Attacks Against Machine Learning Models, IEEE SP 2017

99

Membership inference attack

Training Sample

Test Sample

ML Model

Class 1: 0.987
Class 2: 0.006
Class 3: 0.007

Class 1: 0.876
Class 2: 0.067
Class 3: 0.057

Other ML threats and mitigations

• Description: determine whether specific training sample was part of the ML
models training set or not [1]

© 2021 Davy Preuveneers, DistriNet, KU Leuven 100

Membership inference attack

99

100

14/06/2023

49

Other ML threats and mitigations

• Description: determine whether specific training sample was part of the ML
models training set or not

• Traditional countermeasures:
• Strong access control
• Rate limiting

• ML countermeasures:
• Differential privacy: add random noise (cfr. Tensorflow Privacy)
• Omit confidence values from ML model output

101

Membership inference attack

Other ML threats and mitigations

• Description: copy or recreate the underlying ML model by legitimate querying of
the model and use the model to create adversarial examples that transfer to the
target model, or to invert it and recover feature information [1,2]

unknowns vs. # queries

[1] Tramèr et al., Stealing machine learning models via prediction APIs. SEC 2016

[2] Jagielski et al. High accuracy and high fidelity extraction of neural networks, USENIX Security,
2020, https://arxiv.org/abs/1909.01838

102

Model stealing or model extraction attack

y = m . x + b

101

102

https://arxiv.org/abs/1909.01838

14/06/2023

50

Other ML threats and mitigations

• Description: copy or recreate the underlying ML model by legitimate querying of
the model and use the model to create adversarial examples that transfer to the
target model, or to invert it and recover feature information

• Traditional countermeasures:
• Strong access control
• Rate limiting

• ML countermeasures:
• Omit or reduce accuracy of confidence values from ML model output
• Distribution of consecutive API queries (stateful detection)

Juuti et al. PRADA: protecting against DNN model stealing attacks, EuroS&P 2019,
https://arxiv.org/abs/1805.02628

103

Model stealing or model extraction attack

Other ML threats and mitigations

• Description: malicious MLaaS provider can learn/leak private training data or ML
models

• Traditional countermeasures:
• Fully Homomorphic Encryption for secret data and secret models
• Operate on plaintext data and models in Trusted Execution Environment (TEE)

• ML countermeasures:
• ?

104

Malicious MLaaS providers

103

104

https://arxiv.org/abs/1805.02628

14/06/2023

51

Other ML threats and mitigations

• Description: malicious MLaaS provider can learn/leak private training data or ML
models

105

Malicious MLaaS providers

Test Data FHE Encrypt Encrypted Data

Model Predict

Encrypted ResultFHE DecryptResult

Other ML threats and mitigations

• Description: Large models are trained and shared by 3rd parties. They are often
reused and slightly modified for new task at hand. Adversaries attack the base
model and compromise the retuned model too.

• Traditional countermeasures:
• Minimize dependencies on 3rd parties (data and models)
• Strong access control and encryption

• ML countermeasures:
• Cfr. Training phase attacks: poisoning and backdoor attacks?

106

ML supply chain attacks

105

106

14/06/2023

52

Adversarial ML Frameworks

• CleverHans: http://www.cleverhans.io

• Foolbox: https://foolbox.jonasrauber.de

• ART: https://adversarial-robustness-toolbox.org

• RobustBench: https://robustbench.github.io

• DeepSec: https://github.com/ryderling/DEEPSEC

107

Artificial Intelligence (AI) and Machine
Learning (ML) add value and complexity

to contemporary software systems

But also increase the attack surface,
imposing a holistic approach to secure the

ML pipeline and lifecycle

107

108

http://www.cleverhans.io/
https://foolbox.jonasrauber.de/
https://adversarial-robustness-toolbox.org/
https://robustbench.github.io/
https://github.com/ryderling/DEEPSEC

14/06/2023

53

To summarize

• Does your model learn the right concepts?

• It’s an arms race
• Many defences have been proposed ... and broken

• There is no single line of defense, lot’s of papers on https://arxiv.org

• Not all inputs are images!

• Check which ML attacks are relevant for your application

• Detect, defend, and prepare for after the breach!

109

References

• Carlini and Wagner. Adversarial examples are not easily detected: Bypassing ten detection methods.
AISec 2017, https://arxiv.org/abs/1705.07263

• Carlini et al., Towards Evaluating the Robustness of Neural Networks, S&P, 2016,
https://arxiv.org/abs/1608.04644

• Dalvi et al., Adversarial Classification, 2004, https://dl.acm.org/doi/10.1145/1014052.1014066

• Eykholt et al., Robust Physical-World Attacks on Deep Learning Models, CVPR, 2017,
https://arxiv.org/abs/1707.08945

• Fredrikson et al., Model Inversion Attacks that Exploit Confidence Information and Basic
Countermeasures. CCS 2015, https://dl.acm.org/doi/10.1145/2810103.2813677

• Goodfellow et al., Explaining and harvesting adversarial examples, ICLR, 2015,
https://arxiv.org/abs/1412.6572

• Goodfellow et al., Attacking machine learning with adversarial examples, 2017,
https://openai.com/blog/adversarial-example-research/

110

109

110

https://arxiv.org/
https://arxiv.org/abs/1705.07263
https://arxiv.org/abs/1608.04644
https://dl.acm.org/doi/10.1145/1014052.1014066
https://arxiv.org/abs/1707.08945
https://dl.acm.org/doi/10.1145/2810103.2813677
https://arxiv.org/abs/1412.6572
https://openai.com/blog/adversarial-example-research/

14/06/2023

54

References

• Jagielski et al. High accuracy and high fidelity extraction of neural networks, USENIX Security,
2020, https://arxiv.org/abs/1909.01838

• Juuti et al. PRADA: protecting against DNN model stealing attacks, EuroS&P 2019,
https://arxiv.org/abs/1805.02628

• Kar et al. Trends and applications in Stackelberg security games. Handbook of Dynamic Game
Theory (2017): 1-47, https://link.springer.com/10.1007/978-3-319-27335-8_27-1

• Ko et al., Unsupervised Detection of Adversarial Examples with Model Explanations. AdvML
workshop 2021, https://arxiv.org/abs/2107.10480

• Papernot et al., Transferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples, 2016, https://arxiv.org/abs/1605.07277

• Papernot et al., Practical Black-Box Attacks against Machine Learning, AsiaCCS, 2017,
https://arxiv.org/abs/1602.02697

111

References

• Papernot et al., The Limitations of Deep Learning in Adversarial Settings, EuroS&P, 2016,
https://arxiv.org/abs/1511.07528

• Papernot et al., Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks,
S&P, 2016, https://arxiv.org/abs/1511.04508

• Sharif et al., Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition,
CCS 2016, https://dl.acm.org/doi/10.1145/2976749.2978392

• Shokri et al., Membership Inference Attacks Against Machine Learning Models, IEEE SP 2017,
https://arxiv.org/abs/1610.05820

• Sitawarin et al. DARTS: Deceiving Autonomous Cars with Toxic Signs, 2018,
https://arxiv.org/abs/1802.06430

• Szegedy et al., Intriguing properties of neural networks, ICLR, 2014, https://arxiv.org/abs/1312.6199

• Tramèr et al., Stealing machine learning models via prediction APIs. SEC 2016,
https://arxiv.org/abs/1609.02943

112

111

112

https://arxiv.org/abs/1909.01838
https://arxiv.org/abs/1805.02628
https://link.springer.com/10.1007/978-3-319-27335-8_27-1
https://arxiv.org/abs/2107.10480
https://arxiv.org/abs/1605.07277
https://arxiv.org/abs/1602.02697
https://arxiv.org/abs/1511.07528
https://arxiv.org/abs/1511.04508
https://dl.acm.org/doi/10.1145/2976749.2978392
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1802.06430
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1609.02943

14/06/2023

55

References

• Tramèr et al., AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning, CCS '19,
2019, https://arxiv.org/abs/1811.03194

• Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security Problems the Right
Way. Boston, MA: Addison-Wesley, 2002

• Wang et al., Stealing Hyperparameters in Machine Learning, IEEE S&P, 2018,
https://arxiv.org/abs/1802.05351

• Wang et al., Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks, IEEE
SP 2019, https://cs.ucsb.edu/~bolunwang/assets/docs/backdoor-sp19.pdf

• Zhou et al. Modeling adversarial learning as nested Stackelberg games. Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer, Cham, 2016,
https://dl.acm.org/doi/abs/10.1007/978-3-319-31750-2_28

113

Questions?

davy.preuveneers@kuleuven.be

113

114

https://arxiv.org/abs/1811.03194
https://arxiv.org/abs/1802.05351
https://cs.ucsb.edu/~bolunwang/assets/docs/backdoor-sp19.pdf
https://dl.acm.org/doi/abs/10.1007/978-3-319-31750-2_28

14/06/2023

56

Thank you!
https://distrinet.cs.kuleuven.be/

115

	Slide 1: Attacks against machine learning pipelines
	Slide 2: About me
	Slide 3: Lecture objectives
	Slide 4: Outlook & Overview
	Slide 5
	Slide 6: Growing adoption of AI in various applications
	Slide 7: Growing adoption of AI in various applications
	Slide 8: Growing adoption of AI in various applications
	Slide 10: Growing adoption of AI in various applications
	Slide 11: Growing adoption of AI in various applications
	Slide 12
	Slide 13
	Slide 14: Growing adoption of AI in various applications
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21: AI-centric applications
	Slide 22: AI-centric applications
	Slide 23: AI-centric applications
	Slide 24: Characteristics of an ML pipeline
	Slide 25: Characteristics of an ML pipeline
	Slide 26: Stakeholders, assets and attack surface
	Slide 27: Stakeholders, assets and attack surface
	Slide 28: Attack surface of AI-centric applications
	Slide 29: Attack surface of AI-centric applications
	Slide 30: Attack surface of AI-centric applications
	Slide 31: Attack surface of AI-centric applications
	Slide 32: Attack surface of AI-centric applications
	Slide 33: Attack surface of AI-centric applications
	Slide 34: Attack surface of AI-centric applications
	Slide 35: Security by design
	Slide 36: Security by design
	Slide 37: Security by design
	Slide 38: Security by design
	Slide 39: Security by design
	Slide 40: Security by design
	Slide 41: Security by design
	Slide 42: Security by design
	Slide 43: Security by design
	Slide 44: Security by design
	Slide 45: Security by design
	Slide 46: Traditional countermeasures and best practices
	Slide 47: Traditional countermeasures and best practices
	Slide 48: Traditional countermeasures and best practices
	Slide 49: Approach on securing an AI application
	Slide 50
	Slide 51: Basic ML concepts and terminology
	Slide 52: Basic ML concepts and terminology
	Slide 53: Basic ML concepts and terminology
	Slide 54: Basic ML concepts and terminology
	Slide 55: Basic ML concepts and terminology
	Slide 56: Basic ML concepts and terminology
	Slide 57: Basic ML concepts and terminology
	Slide 58: Adversarial machine learning
	Slide 59: Adversarial machine learning
	Slide 60: Evasion attack: spam filter
	Slide 61: Evasion attack: spam filter
	Slide 62: Evasion attack: spam filter
	Slide 63: Evasion attack: adversarial examples
	Slide 64: Evasion attack: adversarial examples
	Slide 65: Evasion attack: adversarial examples
	Slide 66: Evasion attack: adversarial examples
	Slide 67: Evasion attack: adversarial examples
	Slide 68: Evasion attack: adversarial examples
	Slide 69: Evasion attack: adversarial examples
	Slide 70: Evasion attack: adversarial examples
	Slide 71: Evasion attack: threat model
	Slide 72: Evasion attack: threat model - knowledge
	Slide 73: Generate adversarial examples: white-box
	Slide 74: Generate adversarial examples: white-box (Fast Gradient Sign Method)
	Slide 75: Generate adversarial examples: white-box (Fast Gradient Sign Method)
	Slide 76: Generate adversarial examples: white-box (Fast Gradient Sign Method)
	Slide 77: Generate adversarial examples: white-box (Targeted FGSM)
	Slide 78: Generate adversarial examples: white-box (Iterative FGSM or BIM)
	Slide 79: Generate adversarial examples: white-box (Projected Gradient Descent)
	Slide 81: Generate adversarial examples: white-box
	Slide 82: Defense against adversarial examples
	Slide 83: Defense against adversarial examples
	Slide 84: Defense against adversarial examples
	Slide 85: Defense against adversarial examples
	Slide 86: Arms race
	Slide 87: Arms race
	Slide 88: Generate adversarial examples: black-box
	Slide 89: Generate adversarial examples: black-box
	Slide 90: Generate adversarial examples: black-box
	Slide 91: Generate adversarial examples: black-box
	Slide 92: Generate adversarial examples: black-box
	Slide 94: Other ML threats and mitigations
	Slide 95: Other ML threats and mitigations
	Slide 96: Other ML threats and mitigations
	Slide 97: Other ML threats and mitigations
	Slide 98: Other ML threats and mitigations
	Slide 99: Other ML threats and mitigations
	Slide 100: Other ML threats and mitigations
	Slide 101: Other ML threats and mitigations
	Slide 102: Other ML threats and mitigations
	Slide 103: Other ML threats and mitigations
	Slide 104: Other ML threats and mitigations
	Slide 105: Other ML threats and mitigations
	Slide 106: Other ML threats and mitigations
	Slide 107: Adversarial ML Frameworks
	Slide 108: Artificial Intelligence (AI) and Machine Learning (ML) add value and complexity to contemporary software systems But also increase the attack surface, imposing a holistic approach to secure the ML pipeline and lifecycle
	Slide 109: To summarize
	Slide 110: References
	Slide 111: References
	Slide 112: References
	Slide 113: References
	Slide 114: Questions? davy.preuveneers@kuleuven.be
	Slide 115: Thank you!

