
@bbossola

Supply chain risks
in software

development

"We are not that smart"

Bruno Bossola, CTO
bruno@meterian.io

@bbossola

My Self My Company
● Developer 1988+
● XP coach 2000+
● Java Champion since 2005
● CTO/co-founder @meterian.io
● Passionate about security

● UK company
● Founded in 2018
● SCA solution
● 276k+ vulnerabilities tracked
● 4m+ analysis performed

www.meterian.io

http://www.meterian.io

@bbossola

Agenda
This is an informational session to understand supply chain risks in software
development.

I will tell you about:

● What is the supply chain in software development?
● Common supply chain risks

○ Techniques for managing supply chain risks
○ Best practices for developers

● Is there an industry standard?

@bbossola

 The supply chain in software development

@bbossola

Simplified supply chain

DEVELOPER SOURCE CODE BUILD DISTRIBUTE CONSUMERS

THIRD PARTY COMPONENTS

@bbossola

A graph of chains

@bbossola

SD supply chain components in details

Source code

Development
tools

Third party
libraries

Build tools

Code
repositories

Deployment,
Distribution,
Maintenance

Infrastructure
and Hosting

Developers

Package
repositories

https://www.meterian.io/components

@bbossola

SD supply chain in operation

12'

@bbossola

Software development supply chain risks

@bbossola

Software development supply chain main risks
● Malicious code injection
● Third-Party components
● Compromised tools
● Lack of vendor security practices (we won't drill into this one)

● 650% surge in OSS supply chain attacks (Sonatype)
● 84% commercial code bases have OSS vulnerabilities (Synopsys)
● 45% of orgs will experience supply chain attacks in 2025 (Gartner)

@bbossola

Malicious code injection
Inclusion of malicious code, malware, or backdoors in software components
or libraries during the development process.

@bbossola

Solarwinds
● Major US software company which provides system management tools

for network and infrastructure monitoring
● SolarWinds Orion, an IT monitoring system, has privileged access to IT

systems and it's widely deployed on all infrastructure
● Hackers compromising the infrastructure of SolarWinds
● A DLL is trojanized and then digitally signed
● The DLL is then distributed by Solarwinds in a normal update
● After being dormant for two weeks, the trojan activates
● Sends traffic masquerading it as an internal Orion protocol
● Uses sophisticated obfuscation techniques

September 2020

@bbossola

Solarwinds
● The attack affected a wide range of sectors, including government

agencies, technology companies, and critical infrastructure providers
● More than 18,000 SolarWinds customers installed the malicious updates,

with the malware spreading undetected around the world
● Went undetected for 14 months

September 2020

@bbossola

Solarwinds September 2020

Prevention?

● proper security posture via INFOSEC policies
● active monitoring of infrastructure, patching policies and processes
● artifacts fingerprinting
● CI/CD mirroring

@bbossola

GitlLab Backdoor April 2022

https://gitlab.com/gitlab-org/gitlab/-/merge_requests/76318/diffs?commit_id=5339bc9a22f6392df7615fc3ec7a608dd95d876e

@bbossola

GitlLab Backdoor April 2022

● The commit was coming from a side project (JiHu) managed in China that
was subsequently merged into the main GitLab codebase

● The vulnerability was disclosed as CVE-2022-1162
● GitLab released patched versions which fix the issue and provided a script

for detection
● Password resets were sent across to users

@bbossola

GitlLab Backdoor April 2022

Prevention?

● secret scanning automation
● rigorous review process
● better distinction between test and source files
● MFA on all developer accounts

@bbossola

Third-Party components
In modern software development, more than 90% of the code is now
composed of third-party components, typically OSS

@bbossola

Third-Party components
Your code accounts typically to 10% / 15% of
the code packaged into your application.

Most of it it's someone else's code.

@bbossola

Vulnerable components
A single vulnerable component can make
your packaged application exploitable

● Every day more than 20 new
vulnerabilities appear on the scene in
OSS components.

● Components source code is public
● Malicious actors know this well

https://www.meterian.io/vulns
https://www.meterian.io/vulns

@bbossola

Equifax Megabreach July 2017

A vulnerability in the Apache Struts library was
exploited simply by passing a specially crafted
HTTP header (CVE-2017-5638)

● library unpatched for 2 months
● 140M customers affected
● cost equal to 40% of annual revenue
● total cost probably in the billions of dollars
● At least other 7 (known) successful exploits

using the same vulnerability

https://nvd.nist.gov/vuln/detail/cve-2017-5638

@bbossola

Unmaintained components
Outdated, unpatched or unmaintained
components can rot the entire application

● They may contain vulnerabilities
● They may contain unsolved bugs
● As they are not looked after, they can

become very dangerous

https://www.meterian.io/components/dotnet/Retry/
https://www.meterian.io/components/rust/typeable/
https://www.meterian.io/components/erlang/atlas/
https://www.meterian.io/components/nodejs/buffers/

@bbossola

Wrongly licensed components
A single CopyLeft licensed components can
make the whole application CopyLeft as
well.

● it can be a deeply nested component
● your whole application is "infected"
● some license are infectious over the

network (i.e. AGPL)
● you may need to release your code to

comply with the license

@bbossola

BMW i3 code
IBM sent Terence Eden a DVD containing
proprietary code used on the i3 model

Terence put the code on GitHub the next day :)

Why? He asked for it, as the code was including GPL
licensed components

Undisclosed settlement

Filed for Bankruptcy

 $100M settlement

BMW i3 code ...and others!

@bbossola

Third-Party components
How could you prevent this?

● Implement a robust Software Composition Analysis solution as part of
your build process

● Introduce license compliance and evaluate risks
● Validate the provenance of all components

@bbossola

Compromised tools: IDE
Your IDE may not be safe: malicious extensions and plugins can create
havoc.

@bbossola

Visual studio code extensions
Run with the privileges of the user, no sandbox, built on Electron. And it's all
written in Node! (more on this later

● some real extensions use an embedded web server to operate
○ in presence of vulnerable code this can be used to access the developer machine
○ multiple real world extensions are open to this exploit
○ reported by Snyk, several plugins were found vulnerable to different exploits

LaTex Workshop
(command injection via Websocket)

Open In Default Browser
(path traversal)

Rainbow Fart
(zip path traversal)

@bbossola

Visual studio code extensions
Impersonation!

● it's possible to impersonate a popular extensions
○ typosquatting is used to appear almost like the real extension
○ displayed name can be an exact match of a highly popular one
○ verification on the marketplace means the author owns the domain
○ famous example by aquasec

Prettier

https://marketplace.visualstudio.com/search?term=prettier&target=VSCode&category=All%20categories&sortBy=Relevance
https://blog.aquasec.com/can-you-trust-your-vscode-extensions

@bbossola

Visual studio code extensions
How could you prevent this?

● unfortunately there's no mechanism to vet extensions
● make sure you they come from a reputable source
● always double check what you are installing, be aware of impersonation
● disable auto update of extensions
● implement your own vetting process

@bbossola

Compromised tools: CI/CD
CI/CD systems like CircleCI, GitHub actions, Bitrise, ADO pipelines, can be
compromised in creative ways

@bbossola

CodeCov
Attackers managed to gain access to the Bash Uploader script and altered it
without being caught.

● attackers were able to collect sensitive information undetected
● for two months
● detected only after the difference between the SHA fingerprint of the

script present on the website and the one on GitHub was reported

April 2021

@bbossola

CodeCov
How could you prevent this?

● always validate checksums
● use encrypted secrets management for safe credential storage
● avoid storing secrets in code (git-secrets)
● rotate keys programmatically and establish a triggerable process

https://github.com/awslabs/git-secrets

@bbossola

Compromised tools: code repository
A source code repository can be compromised, as we see before with
GitLab.

@bbossola

Attackers managed to exfiltrate encrypted code signing certificates pertaining
to some versions of GitHub Desktop for Mac and Atom apps.

● attackers could produce valid and digitally signed version of GitHub apps
● 10 versions of GitHub desktop were affected, 2 versions of Atom
● Atom was subsequently discontinued (whoopsie)

Two Digicert code signing certificates used for Windows and one Apple
Developer ID certificate were then set for revocation on February 2, 2023.

GitHub breach July 2022

@bbossola

Incident
Prevention?

● have a way to revoke your signing certificate
● overall better general security posture

○ a PAT token was stolen from a not-so-well protected machine
○ do not let your PAT go loose
○ especially the ones controlling repositories where you store your signing certificates :)

● add additional validation steps to the pipelines

@bbossola

Compromised tools: package repositories
Package can be compromised on package repositories (npmjs.com,
nuget.org, rubygems.org)

Sometimes sabotaged
by their own maintainers!
(‘colors’ and ‘faker’, NPM)

@bbossola

The RubyGems incident
Attackers gained unauthorized access to a RubyGems.org account and
uploaded a malicious version of the popular "strong_password" gem

● widely used by Ruby developers to enforce password strength
● widely used in Ruby gems (libraries)

Developers who unknowingly installed the compromised gem could
inadvertently introduce a security vulnerability into their applications.

The same happened later with another gem, "rest-client", which was altered to
fetch malicious code from a pastebin to be executed on the server. This gem
was also used by other gems, that had to also patched.

August 2019

@bbossola

Prevention?

● always use a lockfile
● validate dependencies update
● we need a way to assert the provenance of an artifact
● we need a way to verify that the artifact was built as expected
● possibly some kind signing and validation

This is currently not available by any package manager, so it's something you
would need to implement yourself

The RubyGems incident

@bbossola

Compromised tools: combined attacks
A graph of supply chains supports sophisticated attacks

@bbossola

VS Code event-stream incident
An attacker gained control of an NPM account associated with a popular
package named 'event-stream'.

● a new maintainer takes over
● adds a (reasonable) dependency to a new package 'flatmap-stream'
● re-implements the functionality and "forgets" to remove 'flatmap-stream'
● later, adds a bitcoin-wallet stealing to 'flatmap-stream' as a patch version
● in the meantime, 'event-stream' have been distributed to end users via a

number of VSCode extensions

A number of wallets are stolen from blissfully unaware developers

@bbossola

Prevention?

● always use a lockfile
● validate dependencies updates

○ it's going to be very difficult when the issue is in a transitive dependency

VS Code event-stream incident

@bbossola

Compromised tools: distribution
Malware can be delivered exploiting software distribution systems

@bbossola

JRE (Java Runtime Environment) update system was exploited to distribute
malware on the end-users computer

● once installed on a machine the JRE can update itself
● the update system verifies that the received update is signed
● unfortunately, affected versions of the JRE trusted any certificate used for

the signature (whoopsie!)

This particular exploit required active participation of a user

JRE distribution incident (CVE-2017-3272)

@bbossola

JRE distribution incident (CVE-2017-3272)
Prevention?

● we need a way to formally validate the provenance of the package
● current proprietary signing systems can be compromised

@bbossola

Prevention?

@bbossola

● proper security posture via INFOSEC policies
● active monitoring of infrastructure, patching policies and processes
● artifacts fingerprinting
● CI/CD mirroring
● SCA solution in the pipelines
● public signing processes
● rigorous review process

What we learned so far...

@bbossola

...plus some other strategies
● Apply least privilege permissions (especially in CI/CD tasks)
● IP address safelisting / Zero Trust Networking
● Assess vendors, train them if required
● MFA everywhere
● Use honeytokens / honeypots

@bbossola

Tools?

@bbossola

git-secrets
Scans commits, commit messages, and merges to prevent adding secrets into
your git repositories.

● configured as a commit hook
● can also be used as a on-demand scanner
● costs 0$
● can be customised

QUICK DEMO

https://github.com/awslabs/git-secrets

@bbossola

in-toto
A framework to secure the integrity of software supply chains

● tooling is available for many languages (python, go, java, rust)
● allows recording and validation of:

○ what steps were performed
○ by whom
○ in what order

● each step can be recoded, signed and later validated
○ clone
○ changes
○ builds
○ packaging

https://github.com/in-toto

@bbossola

sigstore
Securely sign software artifacts with signatures stored in a tamper-resistant
public log. OpenID can be used to generate ephemeral keys.

@bbossola

Industry standard?

@bbossola

Supply-chain Levels for Software Artifacts

● a framework for Supply Chain Security
● ensure integrity of software artifacts throughout the supply chain
● inspired by Google internal "Binary Authorization for Borg"
● structured in tracks and levels

○ atm only the build track is released in spec 1.0

● establish the provenance of each component

Enter SLSA

https://cloud.google.com/security/binary-authorization-for-borg

@bbossola

SLSA Principles
● Trust platforms, verify artifacts
● Trust code, not individuals
● Prefer attestations over inferences

@bbossola

SLSA build track
● increasing levels of trustworthiness and completeness in a package

artifact’s provenance
● enable verification that the artifact was built as expected.
● Each ecosystem or organization defines exactly how this is implemented

○ what provenance format is accepted
○ whether reproducible builds are used
○ how provenance is distributed
○ when verification happens
○ what happens on failure.

This is not fluff, there are actually OSS tools to help :)

@bbossola

SLSA build track levels

Level Requirements Focus

L0 None

L1 Provenance showing how the package
was built

Mistakes, documentation

L2 Signed provenance, generated by a
hosted build platform

Tampering after the build

L3 Hardened build platform Tampering during the build

Each level provide increasing supply chain security guarantees

@bbossola

Build L1 - Provenance exists
Package has provenance showing how it was built. Can be used to prevent
mistakes but is trivial to bypass or forge.

● the build platform automatically generates provenance
● the software producer follows a consistent build process
● the software producer distributes provenance to consumers

Note that provenance may be incomplete and/or unsigned at L1.

@bbossola

Build L2- Hosted build platform
Builds run on a hosted platform that generates and signs the provenance.

● the build runs on a hosted build platform
● the hosted platform generates and signs the provenance itself
● the authenticity of the provenance can be validated
● the provenance cannot be easily falsified

@bbossola

Build L3 - Hardened builds
Builds run on a hardened build platform that offers strong tamper protection.

● prevent runs from influencing one another
● secret material used to sign the provenance is not accessible to the

user-defined build steps
● prevents tampering during the build
● strong confidence that the package was built from the official source and

build process.

@bbossola

SLSA
(micro)

DEMO

https://gitlab.com/bbossola/slsa-demo
https://gitlab.com/bbossola/slsa-demo
https://gitlab.com/bbossola/slsa-demo

@bbossola

Anything else in the industry? (that I know of)
TACOS - Trusted Attestation and Compliance for Open Source

● Developed by Tidelift
● A framework for assessing the development practices of open source

projects against a set of secure development standards specified by the
NIST Secure Software Development Framework (SSDF)

● Defines a machine-readable specification vendors can use as a part of
their overall self-attestation paperwork compliance

https://github.com/tacosframework

@bbossola

What about SBOMs?
● a SBOM identifies all the components that are part of an application
● provide transparency about the components of a software
● fashionable since Biden executive order
● available in different and confusing formats :)

When no signed provenance is associated with them, they need to be trusted.
SLSA can provide that :) and you can provide SBOMs for every part of the local
supply chain

https://www.meterian.io/projects/?pid=0ae8079e-66d8-4858-aea2-9add85d1d997&mode=eli&branch=master

@bbossola

Q&A

www.meterian.io

Bruno Bossola, CTO
bruno@meterian.io

http://www.meterian.io

