

Outline Symmetric cryptology ° confidentiality ° data authentication ° authenticated encryption Public key cryptology (asymmetric cryptology) Hybrid cryptology

4

Cryptana	lysis e	xamp	le:					
TIPGK	RERCP	JZJZJ	WLE	GVCTX	EREPC	WMWMW	JYR	
UJQHL	SFSDQ	KAKAK	XMF	HWDUY	FSFQD	XNXNX	KZS	
VKRIM	TGTER	LBLBL	YNG	IXEVZ	GTGRE	YOYOY	LAT	
WLSJN	UHUFS	MCMCM	ZOH	JYFWA	HUHSF	ZPZPZ	MBU	
XDTKO	VOVGT	NDNDN	API	KZGXB	IVITG	AQAQA	NCV	
YNULP	WKWHU	OEOEO	BQJ	LAHYC	JWJUH	BRBRB	ODW	
ZOVMQ	XKXIV	PFPFP	CRK	MBIZD	KXKVI	CSCSC	PEX	
APWNR	YLYJW	QGQGQ	DSL	NCJAE	LYLWJ	DTDTD	QFY	
BQXOS	ZMXKX	RHRHR	ETM	ODKBF	MZMXK	EUEUE	RGZ	
CRYPT	ANALY	SISIS	FUN	PELCG	NANYL	FVFVF	SHA	
DSZQU	BOBMZ	TJTJT	GVO	QFMDH	OBOZM	GWGWG	TIB	
ETARV	CPCNA	UKUKU	HWP	RGNEI	PCPAN	нхнхн	UJC	
FUBSW	DQDOB	VLVLV	IXQ	SHOFJ	QDQBO	IYIYI	VKD	
	Plai	ntext?	7	k = 1	7			KU LEUVEN

10

Assumptions on Eve (the opponent)

- > Cryptology = cryptography + cryptanalysis
- > Eve knows the algorithm, except for the key (Kerckhoffs's principle)

- > increasing capability of Eve:
 - >> knows some information about the plaintext (e.g., in English)
 - >> knows part of the plaintext
 - >> can choose (part of) the plaintext and look at the ciphertext
 - >> can choose (part of) the ciphertext and look at the plaintext

12

11

17

One time pad: properties perfect secrecy: ciphertext gives opponent no additional > information on the plaintext or H(P|C)=H(P)impractical: key is as long as the plaintext > but this is optimal: for perfect secrecy one has always > $H(K) \ge H(P)$

20

20

22

25

30

32

KU LEUVEN

Data authentication: hash function preimage resistance: for given y, hard to find input x such that h(x) = y(2ⁿ operations) 2^{nd} preimage resistance: hard to find $x' \neq x$ such that h(x') = h(x)> (2ⁿ operations) collision resistance: hard to find (x,x') with $x' \neq x$ such that h(x') = h(x) $(2^{n/2} \text{ operations})$

40

40

>

>

Data authentication: MAC algorithms Modif, Alice Bob Clear Clear Clear Clear VERI MAC text FY text text 43 KU LEUVEN

C3

Caesar competition	for /	Authenticated	Encryption
--------------------	-------	---------------	------------

2013-2019 https://competitions.cr.yp.to/caesar.html

	Name	Designers		
Lightweight	Ascon	C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer		
	ACORN	H. Wu		
High speed	Aegis	H. Wu, B. Preneel		
	OCB	T. Krovetz, P. Rogaway		
Robust	COLM	J. Jean, I. Nikolić, T. Peyrin, Y. Seurin		
	AES-COPA	E. Andreeva, A. Bogdanov, N. Datta, A. Luykx, B. Mennink, M. Nandi, E. Tischhauser, K. Yasuda		

Selected from 52 submissions - a 5-year effort

OCB2 has been broken at Crypto 2019 (bug in security proof) - but OCB3 is still ok

AEGIS: nonce-based Authenticated Encryption

- · stream cipher using AES instruction
- 2x faster than AES-GCM: 0.287 cycles/byte
- multiple implementations available (including in Linux kernel)

54

53

Lightweight cryptography https://csrc.nist.gov/projects/lightweight	competition (2015-202	3)
Authenticated Encryption with	Status	
Associated Data (AEAD)	Start: 2015	
 AEAD and hashing for constraint environments 	Feb. 2019: Round 1: regular submissions	56
 AEAD for hardware environments 	Aug. 2019: Round 2: candidates left	32
	Mar. 2021: 10 finalists	
	ASCON, Elephant, GIFT-COFB Grain128-AEAD, ISAP, Photon- Romulus, Sparkle, TinyJambu,	, Beetle, Xoodyak
	Feb. 2023: 1 winner: ASCON	
	56	KU LEUVEN

54

 \rightarrow compute d = e⁻¹ mod $\lambda(n)$

64

The security of RSA is based on the "fact" that it is easy to generate two large primes, but that it is hard to factor their product try to factor 2419

64

KU LEUVEN

Family	Signatures	KEM / Encryption
Lattice-based	Dilithium Falcon	Kyber Saber NTRU FrodoKEM NTRUprime
Hash-based	Sphincs+	
Code-based		Classic McEliece Bike HQC
Multivariate	GeMSS Rainbow	
Other	SIKE Picnic	
	69	

69

12 June 2022

Disadvantages of public key cryptology Calculations in software or hardware two to three orders of > magnitude slower than symmetric algorithms Longer keys: 64-512 bytes rather than 10..32 bytes What if factoring is easy or if a large quantum computer can be built? > Post-quantum cryptography Public Key vs Ciphertexts, Category 1024 512 Public Key Size (Bytes) KU LEUVEI

77