Bart Preneel

1

Cryptology: principle

3

2

Outline

, Symmetric cryptology
" confidentiality
" data authentication
" authenticated encryption
, Public key cryptology (asymmetric cryptology)
> Hybrid cryptology

Bart Preneel

Symmetric cryptology: confidentiality

Old cipher systems:
" transposition, substitution
, Opponent and her power
, One time pad
, Stream ciphers
, Block ciphers
, Authenticated encryption

Old cipher systems (pre 1900)

Caesar cipher: shift letters over k positions in the alphabet (k is the secret key)

THIS IS THE CAESAR CIPHER
WKLV LV WKH FDHVDU FLSKHU

Julius Caesar never changed his key ($\mathrm{k}=3$)

6

Old cipher systems (pre 1900) (2)

, Substitutions

ABCDEFGHIJKLMNOPQRSTUVWXYZ MZNJSOAXFQGYKHLUCTDVWBIRPE
! Easy to
break using statistical techniques
, Transpositions

TRANS	OIPSR
POSIT	NOTNT

GVCTX EREPC WMWMW JYR HWDUY FSFOD XNXNX KZS IXEVZ GTGRE YOYOY LAT JYFWA HUHSF ZPZPZ MBU KZGXB IVITG AQAQA NCV LAHYC JWJUH BRBRB ODW MBIZD KXKVI CSCSC PEX NCJAE LYLWJ DTDTD QFY ODKBF MZMXK EUEUE RGZ PELCG NANYL FVFVF SHA OFMDH OBOZM GWGWG TIB RGNEI PCPAN HXHXH UJC SHOFJ QDQBO IYIYI VKD $k=17$

IONS
OSAI
8

Bart Preneel

Security

, there are n ! different substitutions on an alphabet with n letters
, there are n ! different transpositions of n letters
> $\mathrm{n}=26: \mathrm{n}!=40329|46| \mid 26605635584000000=4 \cdot 10^{26}$ keys
, trying all possibilities at I nanosecond per key requires....

9

Assumptions on Eve (the opponent)

) A scheme is broken if Eve can deduce the key or obtain additional plaintext
, Eve can always try all keys till "meaningful" plaintext appears: a brute force attack
" solution: large key space
, Eve will try to find shortcut attacks (faster than brute force)
" history shows that designers are too optimistic about the security of their cryptosystems

Letter distributions

10

Assumptions on Eve (the opponent)

, Cryptology = cryptography + cryptanalysis
, Eve knows the algorithm, except for the key (Kerckhoffs's principle)
> increasing capability of Eve:
" knows some information about the plaintext (e.g., in English)
" knows part of the plaintext
" can choose (part of) the plaintext and look at the ciphertext
" can choose (part of) the ciphertext and look at the plaintext

Bart Preneel

New assumptions on Eve
Eve may have access to side channels
" timing attacks
" simple power analysis
" differential power analysis
" acoustic attacks
" electromagnetic interference
" micro-architecture attacks
Eve may launch (semi-)invasive attacks
" differential fault analysis
" probing of memory or bus

13

Side channel analysis: electromagnetic setup

Use simple antenna to measure radiation of an FPGA computing a public key operation

15

Side channel analysis: power setup

14

Simple and differential power analysis: DES block cipher

16

Bart Preneel

17

18

One time pad: properties
, perfect secrecy: ciphertext gives opponent no additional information on the plaintext or $\mathrm{H}(\mathrm{P} \mid \mathrm{C})=\mathrm{H}(\mathrm{P})$
, impractical: key is as long as the plaintext
> but this is optimal: for perfect secrecy one has always $H(K) \geq H(P)$

Bart Preneel

One time pad: Venona Project (I942-I948)
skilled cryptanalyst can recover p_{1} and p_{2} from $p_{1}-p_{2}$ using the redundancy in the language
reuse of key material is also known as "transmission in depth"
https://en.wikipedia.org/wiki/Venona project
11

Exhaustive key search

2023: I million machines with 16 cores @ 4 GHz can do 2^{56} instructions/sec or 2^{80} instructions/year trying I key ≈ 100 instruction
Bitcoin: 200 Exahashes $/ \mathrm{sec}=2^{67.4}$ hashes $/ \mathrm{sec}$ or 2^{89} hashes $/$ year $\approx 2^{95.6}$ instructions/year
Electricity: $100 \mathrm{TWh} /$ year (or $\$ 10 B / y$ year at US $10 \mathrm{c} / \mathrm{kWh}$)

Moore's "law": speed of computers doubles every 18 months: key lengths need to grow in time but adding I key bit doubles the work for the attacker


```
c
c
then }\mp@subsup{c}{1}{}-\mp@subsup{c}{2}{}=\mp@subsup{P}{1}{}-\mp@subsup{P}{2}{
\(c_{2}=P_{2}+k\)
then \(c_{1}-c_{2}=P_{1}-P_{2}\)
```


Synchronous Stream Cipher (SSC)

22

Widely used stream ciphers
) A5/I (GSM) (64 or 54)
) EO (Bluetooth) (128)
, RC4 (browser) (40-128)
) SNOW-3G (3GSM) (I28)
HC-I28 (I28)
Trivium (80)
ChaCha20 (I28)

Bart Preneel

Block cipher

Never use a block cipher in this way

Block cipher

) large table: list n-bit ciphertext for each n-bit plaintext
" if n is large: very secure (codebook)
") but for an n-bit block: 2^{n} values
" impractical if $n \geq 32$
) alternative $\mathrm{n}=64$ or 128
" simplify the implementation
" repeat many simple operations

26

AES variants (200I)

AES-128	AES-192	AES-256
10 rounds	12 rounds	14 rounds
Sensitive/classified (SECRET)	Classified (TOP SECRET)	Classified (TOP SECRET)

28

Bart Preneel

29

Encrypted with substitution and transposition cipher

30

CounTer Mode (CTR)
$C_{i}=P_{i} \oplus E_{k}\left(C T R_{i}\right), C T R_{i}++$

state initialized $\mathrm{CTR}_{0}=\mathrm{IV}$
all 0 ? or random? or nonce? or?

Bart Preneel

CTR: properties

) different IV necessary; otherwise insecure (Venona)
) uses only encryption
, key stream independent of plaintext: can be pre-computed
, no error propagation: errors are only copied
, random access on decryption
, optimal for hardware.
") parellellism: one can process multiple counter values at the same time
" pipelining: no need to know the ciphertext block corresponding to the current plaintext block to start processing the next plaintext block
) risk: what if counters are (accidentally) reset to same value?

Encryption limitations

, Typically does not hide the length of the plaintext (unless randomized padding but even then...)
, Ciphertext becomes random string:"normal" crypto does not encrypt a credit card number into a (valid) credit card number
) Does not hide existence of plaintext (requires steganography)
) Does not hide that Alice is talking to Bob (e.g. Tor)
> Does not hide traffic volume (requires dummy traffic)

Symmetric cryptology: data authentication
, the problem
) hash functions without a key
" MDC: Manipulation Detection Codes
, hash functions with a secret key
" MAC: Message Authentication Codes

Data authentication: the problem

, encryption provides confidentiality:
" prevents Eve from learning information on the cleartext/plaintext
" but does not protect against modifications (active eavesdropping)
, Bob wants to know:
" the source of the information (data origin)
" that the information has not been modified
" (optionally) the destination of the information
" (optionally) timeliness and sequence

There are no applications that require encryption without data authentication (but this can still be found in legacy applications with as excuse performance)

Bart Preneel

37

Data authentication: hash function

preimage resistance: for given y, hard to find input x such that $h(x)=y$ (2 2^{n} operations)
$2^{\text {nd }}$ preimage resistance: hard to find $x^{\prime} \neq \mathrm{x}$ such that $\mathrm{h}\left(\mathrm{x}^{\prime}\right)=\mathrm{h}(\mathrm{x})$
(2 $2^{\text {n }}$ operations)
collision resistance: hard to find $\left(x, x^{\prime}\right)$ with $x^{\prime} \neq x$ such that $h\left(x^{\prime}\right)=h(x)$ ($2^{n / 2}$ operations)

(MD5)

(SHA-I), SHA-256,
SHA-5I2
RIPEMD-160
SHA-3 (Keccak)

This is an input to a cryptographic
hash function The input is ary
hash function. The input is a very
long string, that is reduced by the
hash function to a string of fixed
length There are ardditional sed
length. There are additional securi,
conditions: it should be very hard find an input hashing to a given
value (a preimage) or to find two
colliding inputs (a collision).
Shift authenticity of file to authenticity of short hash value

38

39

Bart Preneel

Widely used hash functions

) MD5

") (2 $\left.2^{\text {nd }}\right)$ preimage 2^{128} steps (improved to 2^{123} steps)
") collisions 2^{64} steps
shortcut:Aug. '04: 2^{39} steps; ${ }^{\circ} 09: 2^{20}$ steps
) SHA-I:
" (2 $\left.2^{\text {nd }}\right)$ preimage 2^{160} steps
" collisions 2^{80} steps
0.15 M\$ for I year in 2023
shortcut:Aug. ${ }^{\circ} 05:{ }^{69}$ steps
Feb. 2017: 2^{61} steps
SHA-2 family (2002)
) SHA-3 family (2013) - Keccak (Belgian design)
" ($\left.2^{\text {nd }}\right)$ preimage 2^{256}.. 2^{512} steps
") collisions 2^{128}.. 2^{256} steps

41

43

Data authentication: MAC algorithms

- Replace protection of authenticity of (long) message by protection of secrecy of (short) key
- Append MAC to the plaintext

CBC-MAC (CMAC/LMAC)
HMAC
GMAC

42

Data authentication: MAC algorithms

, typical MAC lengths: (32)..64..96 bits
") forgery attacks: 2^{m} steps with m the MAC length in bits
) typical key lengths: (56)..I I2.. 160 bits
" exhaustive key search: 2^{k} steps with k the key length in bits
, birthday attacks: security level smaller than expected

Bart Preneel

MAC algorithms

Banking: CBC-MAC based on triple-DES

Internet: HMAC and CBC-MAC based on AES
information theoretic secure MAC algorithms (authentication codes): GMAC/Poly I 305
") rather efficient
" part of the key refreshed per message

45

MAC based on a hash function

) Insufficient: hash secret key with data
) HMAC:

- $h_{K}(X)=h\left(h\left(K_{1} \| x\right) \| K_{2}\right)$
- not secure with MD4/MD5
- Ok with SHA-I/SHA-2/SHA-3

CBC-MAC based on AES (LMAC)

Secure up to 2^{50} message blocks
46
46

48

Bart Preneel

Authenticated Encryption

Generic composition [BN'00][NRS'।4]

" Encrypt-then-MAC with 2 independent keys ") IPsec,TLS I.2, I.3
") MAC-then-Encrypt with 2 independent keys ")TLS I.I and older, 802.1 li WiFi
" MAC-and-Encrypt with 2 independent keys

Design "from scratch"

" Integrated authenticated encryption schemes: combined operation with I key: see next slide

49

IPsec - ESP Transport mode

\square IP hdr [ESP hdr 【 upper layer data ! ESP tir ! ICV

51

Authenticated Encryption: properties wish list

) Associated data

> Parallelizable
Online for encryption
, Security reduction
) Resistance to nonce reuse
) Incremental tags
) Fragmentation
) No release of unverified plaintext
) Committing encryption
) Flexible implementation sizes
Performance: speed/size
) Secure implementations: constant time/power analysis/EM analysis/fault attacks...

50

Long history to achieve AE based on block ciphers

Ad hoc schemes
Ad hoc schemes
" Jueneman ('80s)
" Jueneman ('80s)
" PCBC (Kerberos)
" PCBC (Kerberos)
iaPCBC
iaPCBC
WEP forWiFi 802.II
WEP forWiFi 802.II

- Ist schemes with proofs
- Ist schemes with proofs
RPC [Katz-Yung'00]
RPC [Katz-Yung'00]
IAPM [Jutla'01]
IAPM [Jutla'01]
XECB and XCBC [GD'0I]
XECB and XCBC [GD'0I]
OCBI, OCB2, OCB3
OCBI, OCB2, OCB3
[RBBK'OI]
[RBBK'OI]

```
- 2nd generation
```

- 2nd generation
-CCM
-CCM
GCM
GCM
- EAX
- EAX
 - CWC
 - CWC
- 3rd generation
- 3rd generation
BTM
BTM
 - McOE-G
 - McOE-G
 - Aegis

```
    - Aegis
```

52

Bart Preneel

53

Caesar competition for Authenticated Encryption
2013-2019 https://competitions.cr.yp.to/caesar.html

	Name	Designers
Lightweight	Ascon	C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer
High speed	ACORN	Hegis

Selected from 52 submissions - a 5 -year effort
OCB2 has been broken at Crypto 2019 (bug in security proof) - but OCB3 is still ok
AEGIS: nonce-based Authenticated Encryption

- stream cipher using AES instruction
- $2 x$ faster than AES-GCM: 0.287 cycles/byte
- multiple implementations available (including in Linux kernel)

54

Lightweight cryptography competition (2015-2023)
https://csrc.nist.gov/projects/lightweight-cryptography
0.287 cycles/byte on Skylake, 0.66 cycles/byte on Sandy Bridge

55

Bart Preneel

57

Public-key cryptology
, the problem
, public-key encryption
, digital signatures
, Diffie-Hellman
, RSA

Outline

, Symmetric cryptology
" confidentiality
" data authentication
" authenticated encryption
, Public key cryptology (asymmetric cryptology)
, Hybrid cryptology

Limitation of symmetric cryptology

> Reduce security of information to security of keys

) But: how to establish these secret keys?
" cumbersome and expensive
" or risky: all keys in I place
, Do we really need to establish secret keys?

Bart Preneel

61

Public key cryptology: digital signature

62

RSA ('78)
> choose 2 "large" prime numbers p and q
) modulus $\mathrm{n}=\mathrm{p} . \mathrm{q}$
) compute $\lambda(n)=\operatorname{lcm}(p-I, q-I)$
, choose e relatively prime w.r.t. λ (n)
, compute $d=e^{-I} \bmod \lambda(n)$
) public key $=(\mathrm{e}, \mathrm{n})$
) private key $=d$ of (p, q)
encryption: $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{n}$ decryption: $m=c^{d} \bmod n$

The security of RSA is based on the "fact" that it is easy to generate two large primes, but that it is hard to factor their product to factor 2419

After:Alice and Bob share a short term key k
Eve cannot compute \mathbf{k} : in several mathematical structures it is hard to derive x from α^{x} (the discrete logarithm problem)

63

Bart Preneel

65

67

66

Bart Preneel

69

2022: COSIC breaks two finalists

A New Attack Easily Knocked Out a

 Potential Encryption AlgorithmSIKE was a contender for post-quantum-computing encryption. It took
researchers an hour and a single PC to break it.
Wouter Castryck, Thomas Dec
Microsoft bounty of $50.000 \$$
Paper 2022/214
Breaking Rainbow Takes a Weekend on a Laptop

70
What did the NSA say in Sept.'22?

Dilithium level V

		2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Software/firmware signing	transition			Support and								
Networking (VPN/routers)				prefer								ve
Web browsers/servers												
Operating systems										Upda	te/repl	ce
Niche (IoT, PKI)												N

Bart Preneel

Hash-based signatures

, Sphincs+ (stateless)
" Large (x100 vs pre-quantum)
" Slow (x500 vs pre-quantum)
" Alternative to lattice-based
" Security very well understood
, Separate standardization (IETF) (stateful)
" RFC 8554 Leighton-Micali signatures
" RFC 8391 XMSS eXtended Merkle
" Additional constraints on sender and receiver staying in sync
" But $\times 30$ faster than stateless

73

How to continue?

Pre-Quantum era
" RSA / ECC
, Hybrid era
" RSA / ECC + Post-Quantum
, Post-Quantum Era
" Once confidence in post-quantum is high enough

New call for signature schemes: deadline I June 2023 - four more years

74

Disadvantages of public key cryptology

, Calculations in software or hardware two to three orders of magnitude slower than symmetric algorithms
, Longer keys: 64-5I2 bytes rather than $10 . .32$ bytes
, What if factoring is easy or if a large quantum computer can be built?
) Post-quantum cryptography

76

Bart Preneel

Outline

, Symmetric cryptology
" confidentiality
" data authentication
" authenticated encryption
Public key cryptology (asymmetric cryptology)
Hybrid cryptology

RSA signatures for long messages (with appendix)

$$
\begin{aligned}
\text { signature: } & s=h(m)^{d} \bmod n \\
\text { verification: } & h(m)=s^{e} \bmod n \text { ? }
\end{aligned}
$$

78

Selected books on cryptology

A.J. Menezes, P.C. van Oorschot, S.A.Vanstone, Handbook of Applied Cryptography, CRC Press,
1997. The "bible" of applied cryptography. Thorough and complete reference work but slightly outdatednot suited as a first text book. http://www.cacrmath. uwaterloo.ca/hac
D. Boneh,V. Shoup, A Graduate Course in Applied Cryptography, https://toc.cryptobook.us/ Draft. Rather advanced course with interesting application.
N. Smart, Cryptography Made Simple, Springer, 2015. Solid and up to date but on the mathematical side
D. Stinson, M. Peterson, Cryptography:Theory and Practice, CRC Press, 4th Ed., 2018. Solid introduction, but only for the mathematically inclined.
J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman \& Hall, 2014. Rigorous and theoretical approach.

