BUILDING A SECURE
SOFTWARE
DEVELOPMENT
LIFECYCLE

By Avi Douglen
CEO, Bounce Security
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“All software developers
are security engineers
(whether they know it, admit it, or like it)"

- Jim Manico
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Agenda

i AGENDA

mBackground and History

mPrimary Activities

m Positive Practices
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| am... Avi Douglen

m Email: AviD@BounceSecurity.com

m Twitter: @sec tigger
m He / Him

m The important stuff:

- Whisky: smokey
- Beer: stout
- Coffee: strong

m Product Security Consultings(9) Bounce
m OWASP Israel Leader 2

m Global 0 Board of Directors

0 0Threat Model Project Leader

m Moderator Security.StackExchange S
m Startup Advisor @ €»*OurCrowd Labs/~

m Co-Author of TM Manifesto C,-y)
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mailto:AviD@BounceSecurity.com
https://twitter.com/sec_tigger
https://security.stackexchange.com/

History of SSDLC




SDLC

m Software
mDevelopment
mlife

mCycle

SSSSSSSS




SSDLC

mSecure

m Software

m Development
mlLife

mCycle
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SDLC

m Started as Systems Development Lifecycle
m Dates back to 1960s

m Most common structures:

- Waterfall: One long linear process with distinct steps

- Agile: An iterative process with shorter overlapping
Increments
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SSDLC Concept

m Problem statement:
- How do we make security part of the SDLC?

m Solution:

- Start some security related "activities"
- Map to SDLC "stages”

- Make activities convenient/natural for developers

O
-
()]
99}
99}
Y—
(@)
>
(<
ke
0
T

9)Bounce

SECURITY



Common models - SDL

m Originated by Microsoft in 2004

m Various modifications since then including:
Version customized to Agile
Simplified version

m Implementat|o e

Establish Security Establish Design Use Approved
Requirements Requirements Tools

Dynamic Incident
Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe
Training Gates / Bug Bars Surface Functions

Fuzz Final Security
Testing Review

Security & Privacy Threat Static Attack Surface

Release
Risk Assessment Modeling Analysis

Review Archive

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle
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https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle
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SDL Current State
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SDL - Key points

m Now appears as a series of security practices
m Focused on the what, not the how
m Some further links but not much in-depth guidance

m [n summary:
- Good for ideas but not implementation
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OWASP Software Assurance
Maturity Model (SAMM)

m Benchmark for Secure Software Development
Lifecycle

m Framework for activities, to set a baseline or
measure maturity

m Active community and lots of videos with information
about it
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OWASP SAMM - Framework Structure

m Business Function:
— High-level activities related to development
m Security Practice:
— Activity which provides security benefit
m Stream:
- Specific approach for that activity
m Maturity:

- Target implementation for growing levels of sophistication
|9) Bounce
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OWASP SAMM - Framework Structure

Maturity level 1 activity

Stream A Maturity level 2 activity

Security Practice

Business Function

Maturity level 3 activity

Stream B

https://owaspsamm.org/about/#owasp-samm-structure
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OWASP SAMM - Practices & Streams

Governance

Implementation

Verification

Operations
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. . Architecture .

Strategy & Metrics Threat Assessment Secure Build Incident Management
Assessment

Create & Measure & Application Threat Build Software Architecture | Architecture Incident Incident

promote improve risk profile modeling process dependencies validation mitigation detection response

Policy & Compliance

Security Requirements

Secure Deployment

Requirements-driven

Environment

Testing Management
Policy & Compliance Software Supplier Deployment Secret Control Misuse/abuse Configuration Patch &
standards management requirements security process management verification testing hardening update

Education & Guidance

Secure Architecture

Defect Management

Security Testing

Operational

Management
Training & Organization Architecture Technology Defect Metrics & Scalable Deep Data Legacy
awareness & culture design management tracking feedback baseline understanding protection management
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OWASP SAMM - Key points

m Even better source of ideas than SDL
m Great for assessing current state and maturity

m [00 detailed to use as an end goal / target state
m [n summary:

- A great resource but not ideally suited for
Implementation
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Primary SSDLC
Activities
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Application Inventory

m Provides clear breakdown of what is where
- And who owns what

m Hard to really do anything without this
m Helps allocate ownership and responsibilities
HAPPY,INVENTORYDAY!
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MAY THE ODDS BE EVER IN YOUR
_ ___FAVOR!
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Business Impact Analysis (BIA)

m Define how a product (or feature)
affects the organization

m Helps understand the relative value
(or damage)

m How critical and sensitive iIs this

m Can be used to align security efforts
to business goals

0
Q0
B
2
3]
@
o
|
()]
9))
w
>
@
£
j—
a

|9) Bounce

SECURITY 20



Feature Risk Weighting

Provides security weighting for a feature

Helps guide how much security attention is required
mportant step to balance resources
Derived from BIA
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Security Requirements

m Build security into requirements
along with other functionality

m Important to get business
perspective

m By defining requirements, QA should
be able to verify them
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Threat Modeling

m Structured security-based analysis
m Framework to understand security issues
m Prioritize security efforts by risk

m Custom solutions instead of generic
“best practices”
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Security Design Review

m |deally built into the regular design review
m Looking for security issues or considerations
m [he earlier the discovery, the easier to address
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Secure Coding Guidance

m Provide developers with practical guidance
— For their language / platform / framework

m May also use organization specific libraries

m The best solutions are tailored to the
developer/organization

SECURITY 25



Automated Code Scanning

m Static Analysis (SAST) scans your
code for common vulns

m Variety of tools / quality / coverage

m Make sure to fine-tune the SAST
rules for your codebase!

m Should be run on every
commit / push / merge / version
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Third Party Library Risk Management

m ~80% of your app’s code - isn’'t even yours

m Your dependencies have dependencies
- And those dependencies have their own dependencies

m You can't secure what you don’t know!
m Always have an SBoM (Software Bill of Material)
m SCA tracks 3" party versions and known vulnerabilities
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Security QA

m |deally flows from security requirements / threat model
m Can also define standard security tests with QA team

m Good chance to create regression tests for past security
vulnerabilities
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Dynamic Application Vulnerability
Scanning

m Dynamic Application Security Testing (DAST) scans a
running application

m Most often refers to web apps / APIs / cloud apps
m Simulates a low level attacker
m Finds generic vulnerabilities

SECURITY




Application Penetration Testing

m Someone external security tests
application dynamically

m Fresh pair of eyes from a security
expert

m |deally done in an open as way as
possible

m Best if done with specific goals
- e.g. based on a threat model
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Final Security Review

m Checking that security activities happened before
development ends

m |deally not hard gate but based on ongoing metrics
m Maybe part of policy enforcement

THAT "SECURITY REVIEW
SECURITY ESCALATED QUICKLY .




Application Security Training

m Job focused training on security concepts

m Prepared for anyone involved in
application development

m [deally
m Good o

nighly interactive and hands on

oportunity to identify security

champions

SECURITY

¢ WEARE
THE CHAMPIONS,
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Positive Practices




Practice 1:
Process, Not a Project
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Security is a Journey
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Practicalities

m [rying to implement every activity may not be valuable
— Need to prioritize
- What brings clear value / solves a problem

m Real implementation and "bedding-in" will take time

m You want activities to feel natural and "slot in" with
regular development activities

|9) Bounce
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Common Anti-Patterns

m Trying to implement a "full SSDLC"
m [aking a "big bang" approach
m Using a project plan or clearly defining a start and finish

SECURITY 37



Suggested Actions

m Plan an incremental approach and
manage expectations

m Prioritize activities based on mix of:
- Easy to implement
- High value (though complex)

m Define key milestones for the process

9)Bounce
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Practice 2:
Engineering Ownership
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Quality Attributes of Software

Special pages Quality attributes | edit]

Permanent link

Page information MNotable quality attributes include:

autonomy [Erl]

failure transparency

process capabilities

Cite this page « accessibility « deployability » madifiability » seamlessness
LT T « accountability « discoverability [Er] « modularity + self-sustainability
Print/export e accuracy « distributability o obzervability « serviceability (a.k.a. supportability)
Download as PDF « adaptability » durability « operability » securability (see Common subsets below)
Printable version & administrability + effectivensss s orthogonality + simplicity
— o « affordability « efficiency « portability « stability
. s agility (see Commen subsets below) = evolvability s precision « standards compliance
# Edit links o auditability o extensibility e predictability o survivability

sustainability

* availability * fault-tolerance * producibility « tailorability

s compatibility « fidelity s provability « testability

o composability [Er] o flexibility o recoverability o timeliness

« confidentiality + inspectability + relevance « traceability

« configurability » installability « reliability « fransparency
s corectness s integrity s repeatability & ubiguity

o credibility » interchangeability o reproducibility « understandability
« customizability « interoperability [Er)] « resilience « upgradability
» debuggability » learnability * fesponsiveness « usability

& degradability s localizability & reusability [Er] « vulnerability
o determinability « maintainability o robustness

« demonstrability « manageability « safety

+ dependability (see Common subsets below) + mobility s scalability

IMany of these quality attributes can also be applied to data quality.
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m Functional suitability
- Functional completeness
- Functional correctness

- Functional appropriateness

m Performance efficiency
- Time behaviour
- Resource utilization

- Capacity

m Compatibility
-  Co-existence
- Interoperability

m Usability

- Appropriateness
recognizability
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- Learnability
- Operability

- User error protection
- User interface aesthetics n

- Accessibility

Security
- Confidentiality
- Integrity
- Non-repudiation
- Accountability
- Authenticity

Maintainability
- Modularity
- Reusability

9)Bounce

SECURITY

Quality Attributes — ISO/IEC 25010:2011

- Analysability
- Modifiability
- Testability

Portability
- Adaptability
- Installability
- Replaceability

m Reliability
- Maturity
- Availability
- Fault tolerance
- Recoverability

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:vl:en

42
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Just Another Attribute

Does thd Can users

\s the
feature
. ?
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Practicalities

m Security is NOT everyone's job
m Security needs to "shift up" to get engineering buy-in

m Development/engineering needs to take the lead on
security
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Common Anti-Patterns

m Security get a blessing from engineering
rather than ownership

m Security trying to add to developer
workload "from the side"

m AppSec expected to own everything
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Suggested Actions

m All new activities have clear ownership
- Accountable/Responsible should be engineering
- AppSec experts should provide consultation only

m Overall ownership of software security:
- Product Management
- Engineering
m Clarify for all new activities how to ensure it will happen
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Practice 3:
Useful Measurements
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Measuring Performance

m Need to know how we are doing
m Need to be able to demonstrate that upwards
m Because....
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Measuring Performance

If wvou
Measure |t

somebody
else

will

::::::::::



Measurement Types

m How do you Know:
- Is an activity taking place?
- What are the results of the activity?

m Comparable metrics between
teams/groups

m Between the team and itself over time
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Common Anti-Patterns

m Not tracking whether activities are being performed

m Providing inaccurate / unadjusted numbers

m Manual collection of measurements

m Focusing on wrong technical metrics

m Short-term view of results with unreasonable expectations
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Suggested Actions

m Every activity defined with metrics
- Is the activity being performed
— Is the activity successful / valuable
— Practical ways of tracking output

m Consider what qualitative measures are also needed
m Automate metric collection wherever possible
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Practice 4:
Useful Tools Where Appropriate




Variety of Tool Types

m SAST, SCA, DAST

m IAST, RASP, OAST, MAST

m Secrets scanning, container scanning, laC scanning
m ASPM, CSPM, ASOC

m Etc...
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Practicalities

m [hese tools detect a variety of vulnherabilities
— or some other risks

m Some form of automation is needed to "force multiply*
m Lots of low hanging fruit

m Breadth vs depth

m Regulation may require certain processes/tools
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Key Challenges

m Easy to become overwhelmed

m Not every tool is useful in every case
m Most tools are mostly generic

m [ools have their own time cost

m The myth of automation
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Common Anti-Patterns

m Tools become the SSDLC / AppSec programme

m ool frustration causes negative perspective on
security

m More time spent on false positives than on true
positives

m Assumption that tool automation eliminates the
need for manual effort
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Suggested Actions

m Focus on process, supported by tools
m Allocate the manual work across the organization

m [ake a gradual approach
- implementation, integration, configuration

m Focus on signal over noise

m Make sure tools become a force multiplier
- And not a broken fence to work around
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Practice 5:
Standardize on Goals,
Be Flexible on Implementation
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Practice 5

Practicalities

m Large organizations will have many different teams

m Each team will have different
- Tech
- Workflow
- Platforms
- Culture

m Security activities need to fit the team, but still standardized
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Common Anti-Patterns

m One size fits all SSDLC
m Defined as top-down policy
m Varied and different teams forced to work the same

m Ignoring different team structure, tech stack,
platforms, technical workflows, business
constraints...
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Practice 5

Suggested Actions

m Define requirements, not implementation

m Allow different teams to adapt to their
existing workflow and platforms

m Abstract the measurements to support
commonalities
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Summary




SSDLC - Summary

m SSDLC can help us spread security across the
development process

m Incremental approach of gradual improvement
m Ownership and metrics are key to success
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THANKS FOR YOUR
ATTENTION!

Avi Douglen

Bounce Security
W @sec_tigger
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