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“All software developers 
are security engineers

(whether they know it, admit it, or like it)”

- Jim Manico
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■Background and History

■Primary Activities

■Positive Practices
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I am… Avi Douglen

■ Email: AviD@BounceSecurity.com

■ Twitter: @sec_tigger

■ He / Him

■ The important stuff:

– Whisky: smokey 

– Beer: stout

– Coffee: strong

■ Product Security Consulting

■ OWASP Israel Leader

■ Global       Board of Directors

■ Threat Model Project Leader

■ Moderator Security.StackExchange

■ Startup Advisor @

■ Co-Author of TM Manifesto

mailto:AviD@BounceSecurity.com
https://twitter.com/sec_tigger
https://security.stackexchange.com/


History of SSDLC



SSDLC

■Software

■Development

■Life

■Cycle
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SSDLC

■Secure

■Software

■Development

■Life

■Cycle
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SDLC

■ Started as Systems Development Lifecycle

■ Dates back to 1960s

■ Most common structures:

– Waterfall: One long linear process with distinct steps

– Agile: An iterative process with shorter overlapping 

increments
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SSDLC Concept

■ Problem statement:

– How do we make security part of the SDLC?

■ Solution:

– Start some security related "activities"

– Map to SDLC "stages"

– Make activities convenient/natural for developers
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Common models - SDL
■ Originated by Microsoft in 2004

■ Various modifications since then including:

– Version customized to Agile

– Simplified version
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SDL Current State
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SDL – Key points

■ Now appears as a series of security practices

■ Focused on the what, not the how

■ Some further links but not much in-depth guidance

■ In summary:

– Good for ideas but not implementation
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OWASP Software Assurance 
Maturity Model (SAMM)

■ Benchmark for Secure Software Development 

Lifecycle

■ Framework for activities, to set a baseline or 

measure maturity

■ Active community and lots of videos with information 

about it
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OWASP SAMM – Framework Structure

■ Business Function: 

– High-level activities related to development

■ Security Practice: 

– Activity which provides security benefit

■ Stream:

– Specific approach for that activity

■ Maturity: 

– Target implementation for growing levels of sophistication
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OWASP SAMM – Framework Structure
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OWASP SAMM - Practices & Streams
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OWASP SAMM – Key points

■ Even better source of ideas than SDL

■ Great for assessing current state and maturity

■ Too detailed to use as an end goal / target state

■ In summary:

– A great resource but not ideally suited for 

implementation
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Primary SSDLC 
Activities



Application Inventory

■ Provides clear breakdown of what is where

– And who owns what

■ Hard to really do anything without this

■ Helps allocate ownership and responsibilities
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Business Impact Analysis (BIA)

■ Define how a product (or feature) 

affects the organization

■ Helps understand the relative value 

(or damage)

■ How critical and sensitive is this 

■ Can be used to align security efforts 

to business goals
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Feature Risk Weighting

■ Provides security weighting for a feature

■ Helps guide how much security attention is required

■ Important step to balance resources

■ Derived from BIA
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Security Requirements

■ Build security into requirements 

along with other functionality

■ Important to get business 

perspective

■ By defining requirements, QA should 

be able to verify them
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Threat Modeling

■ Structured security-based analysis 

■ Framework to understand security issues

■ Prioritize security efforts by risk

■ Custom solutions instead of generic 

“best practices”
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Security Design Review

■ Ideally built into the regular design review

■ Looking for security issues or considerations

■ The earlier the discovery, the easier to address
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Secure Coding Guidance

■ Provide developers with practical guidance 

– For their language / platform / framework

■ May also use organization specific libraries

■ The best solutions are tailored to the 

developer/organization
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Automated Code Scanning

■ Static Analysis (SAST) scans your 
code for common vulns

■ Variety of tools / quality / coverage

■ Make sure to fine-tune the SAST 
rules for your codebase! 

■ Should be run on every 
commit / push / merge / version

26

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s



Third Party Library Risk Management

■ ~80% of your app’s code – isn’t even yours

■ Your dependencies have dependencies 

– And those dependencies have their own dependencies

■ You can’t secure what you don’t know! 

■ Always have an SBoM (Software Bill of Material)

■ SCA tracks 3rd party versions and known vulnerabilities 
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Security QA

■ Ideally flows from security requirements / threat model

■ Can also define standard security tests with QA team

■ Good chance to create regression tests for past security 

vulnerabilities
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Dynamic Application Vulnerability 
Scanning

■ Dynamic Application Security Testing (DAST) scans a 

running application 

■ Most often refers to web apps / APIs / cloud apps

■ Simulates a low level attacker 

■ Finds generic vulnerabilities 
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Application Penetration Testing

■ Someone external security tests 
application dynamically

■ Fresh pair of eyes from a security 
expert

■ Ideally done in an open as way as 
possible

■ Best if done with specific goals 

– e.g. based on a threat model
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Final Security Review

■ Checking that security activities happened before 

development ends

■ Ideally not hard gate but based on ongoing metrics

■ Maybe part of policy enforcement
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Application Security Training

■ Job focused training on security concepts

■ Prepared for anyone involved in 

application development

■ Ideally highly interactive and hands on

■ Good opportunity to identify security 

champions
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Positive Practices



Practice 1:
Process, Not a Project



Security is a Journey
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Practicalities

■ Trying to implement every activity may not be valuable

– Need to prioritize 

– What brings clear value / solves a problem

■ Real implementation and "bedding-in" will take time

■ You want activities to feel natural and "slot in" with 

regular development activities
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Common Anti-Patterns

■ Trying to implement a "full SSDLC"

■ Taking a "big bang" approach

■ Using a project plan or clearly defining a start and finish
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Suggested Actions

■ Plan an incremental approach and 

manage expectations

■ Prioritize activities based on mix of:

– Easy to implement

– High value (though complex)

■ Define key milestones for the process
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Practice 2:
Engineering Ownership



Security is not 
special…



Quality Attributes of Software
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Quality Attributes – ISO/IEC 25010:2011
■ Functional suitability

– Functional completeness

– Functional correctness

– Functional appropriateness

■ Performance efficiency

– Time behaviour

– Resource utilization

– Capacity

■ Compatibility

– Co-existence

– Interoperability

■ Usability

– Appropriateness 

recognizability

– Learnability

– Operability

– User error protection

– User interface aesthetics

– Accessibility

■ Security

– Confidentiality

– Integrity

– Non-repudiation

– Accountability

– Authenticity

■ Maintainability

– Modularity

– Reusability

– Analysability

– Modifiability

– Testability

■ Portability

– Adaptability

– Installability

– Replaceability

■ Reliability

– Maturity

– Availability

– Fault tolerance

– Recoverability
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Just Another Attribute

43
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Practicalities

■ Security is NOT everyone's job

■ Security needs to "shift up" to get engineering buy-in

■ Development/engineering needs to take the lead on 

security
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Common Anti-Patterns

■ Security get a blessing from engineering 

rather than ownership

■ Security trying to add to developer 

workload "from the side"

■ AppSec expected to own everything
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Suggested Actions

■ All new activities have clear ownership

– Accountable/Responsible should be engineering

– AppSec experts should provide consultation only

■ Overall ownership of software security: 

– Product Management

– Engineering

■ Clarify for all new activities how to ensure it will happen
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Practice 3:
Useful Measurements



Measuring Performance

■ Need to know how we are doing

■ Need to be able to demonstrate that upwards

■ Because....
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Measuring Performance
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Measurement Types

■ How do you know:

– Is an activity taking place?

– What are the results of the activity?

■ Comparable metrics between 

teams/groups

■ Between the team and itself over time 
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Common Anti-Patterns

■ Not tracking whether activities are being performed

■ Providing inaccurate / unadjusted numbers

■ Manual collection of measurements

■ Focusing on wrong technical metrics

■ Short-term view of results with unreasonable expectations 
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Suggested Actions

■ Every activity defined with metrics

– Is the activity being performed

– Is the activity successful / valuable 

– Practical ways of tracking output

■ Consider what qualitative measures are also needed

■ Automate metric collection wherever possible
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Practice 4:
Useful Tools Where Appropriate



Variety of Tool Types

■ SAST, SCA, DAST

■ IAST, RASP, OAST, MAST

■ Secrets scanning, container scanning, IaC scanning

■ ASPM, CSPM, ASOC

■ Etc… 
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Practicalities

■ These tools detect a variety of vulnerabilities 

– or some other risks

■ Some form of automation is needed to "force multiply“

■ Lots of low hanging fruit

■ Breadth vs depth

■ Regulation may require certain processes/tools
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Key Challenges

■ Easy to become overwhelmed

■ Not every tool is useful in every case

■ Most tools are mostly generic

■ Tools have their own time cost

■ The myth of automation
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Common Anti-Patterns

■ Tools become the SSDLC / AppSec programme

■ Tool frustration causes negative perspective on 
security

■ More time spent on false positives than on true 
positives

■ Assumption that tool automation eliminates the 
need for manual effort

57

STOP

P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l 
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te



Suggested Actions

■ Focus on process, supported by tools

■ Allocate the manual work across the organization

■ Take a gradual approach 

– implementation, integration, configuration

■ Focus on signal over noise

■ Make sure tools become a force multiplier 

– And not a broken fence to work around 
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Practice 5:
Standardize on Goals, 
Be Flexible on Implementation 



Practicalities

■ Large organizations will have many different teams

■ Each team will have different 

– Tech

– Workflow

– Platforms

– Culture 

■ Security activities need to fit the team, but still standardized
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Common Anti-Patterns

■ One size fits all SSDLC 

■ Defined as top-down policy 

■ Varied and different teams forced to work the same

■ Ignoring different team structure, tech stack, 

platforms, technical workflows, business 

constraints… 
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Suggested Actions

■ Define requirements, not implementation

■ Allow different teams to adapt to their 

existing workflow and platforms

■ Abstract the measurements to support 

commonalities
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Summary
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SSDLC – Summary

■ SSDLC can help us spread security across the 

development process

■ Incremental approach of gradual improvement

■ Ownership and metrics are key to success
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THANKS FOR YOUR 
ATTENTION!

Avi Douglen

Bounce Security

@sec_tigger
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