
BUILDING A SECURE
SOFTWARE

DEVELOPMENT
LIFECYCLE

By Avi Douglen

CEO, Bounce Security

“All software developers
are security engineers

(whether they know it, admit it, or like it)”

- Jim Manico

2

Agenda

■Background and History

■Primary Activities

■Positive Practices
3A

g
e

n
d

a

I am… Avi Douglen

■ Email: AviD@BounceSecurity.com

■ Twitter: @sec_tigger

■ He / Him

■ The important stuff:

– Whisky: smokey

– Beer: stout

– Coffee: strong

■ Product Security Consulting

■ OWASP Israel Leader

■ Global Board of Directors

■ Threat Model Project Leader

■ Moderator Security.StackExchange

■ Startup Advisor @

■ Co-Author of TM Manifesto

mailto:AviD@BounceSecurity.com
https://twitter.com/sec_tigger
https://security.stackexchange.com/

History of SSDLC

SSDLC

■Software

■Development

■Life

■Cycle

6H
is

to
ry

 o
f

S
S

D
L
C

SSDLC

■Secure

■Software

■Development

■Life

■Cycle

7H
is

to
ry

 o
f

S
S

D
L
C

SDLC

■ Started as Systems Development Lifecycle

■ Dates back to 1960s

■ Most common structures:

– Waterfall: One long linear process with distinct steps

– Agile: An iterative process with shorter overlapping

increments

8H
is

to
ry

 o
f

S
S

D
L
C

SSDLC Concept

■ Problem statement:

– How do we make security part of the SDLC?

■ Solution:

– Start some security related "activities"

– Map to SDLC "stages"

– Make activities convenient/natural for developers

9H
is

to
ry

 o
f

S
S

D
L
C

Common models - SDL
■ Originated by Microsoft in 2004

■ Various modifications since then including:

– Version customized to Agile

– Simplified version

10

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

H
is

to
ry

 o
f

S
S

D
L
C

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

SDL Current State

11H
is

to
ry

 o
f

S
S

D
L
C

SDL – Key points

■ Now appears as a series of security practices

■ Focused on the what, not the how

■ Some further links but not much in-depth guidance

■ In summary:

– Good for ideas but not implementation

12H
is

to
ry

 o
f

S
S

D
L
C

OWASP Software Assurance
Maturity Model (SAMM)

■ Benchmark for Secure Software Development

Lifecycle

■ Framework for activities, to set a baseline or

measure maturity

■ Active community and lots of videos with information

about it

13H
is

to
ry

 o
f

S
S

D
L
C

OWASP SAMM – Framework Structure

■ Business Function:

– High-level activities related to development

■ Security Practice:

– Activity which provides security benefit

■ Stream:

– Specific approach for that activity

■ Maturity:

– Target implementation for growing levels of sophistication

14H
is

to
ry

 o
f

S
S

D
L
C

OWASP SAMM – Framework Structure

15

https://owaspsamm.org/about/#owasp-samm-structure

H
is

to
ry

 o
f

S
S

D
L
C

https://owaspsamm.org/about/#owasp-samm-structure

OWASP SAMM - Practices & Streams

16H
is

to
ry

 o
f

S
S

D
L
C

OWASP SAMM – Key points

■ Even better source of ideas than SDL

■ Great for assessing current state and maturity

■ Too detailed to use as an end goal / target state

■ In summary:

– A great resource but not ideally suited for

implementation

17H
is

to
ry

 o
f

S
S

D
L
C

Primary SSDLC
Activities

Application Inventory

■ Provides clear breakdown of what is where

– And who owns what

■ Hard to really do anything without this

■ Helps allocate ownership and responsibilities

19

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Business Impact Analysis (BIA)

■ Define how a product (or feature)

affects the organization

■ Helps understand the relative value

(or damage)

■ How critical and sensitive is this

■ Can be used to align security efforts

to business goals

20

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Feature Risk Weighting

■ Provides security weighting for a feature

■ Helps guide how much security attention is required

■ Important step to balance resources

■ Derived from BIA

21

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Security Requirements

■ Build security into requirements

along with other functionality

■ Important to get business

perspective

■ By defining requirements, QA should

be able to verify them

22

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Threat Modeling

■ Structured security-based analysis

■ Framework to understand security issues

■ Prioritize security efforts by risk

■ Custom solutions instead of generic

“best practices”

23

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Security Design Review

■ Ideally built into the regular design review

■ Looking for security issues or considerations

■ The earlier the discovery, the easier to address

24

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Secure Coding Guidance

■ Provide developers with practical guidance

– For their language / platform / framework

■ May also use organization specific libraries

■ The best solutions are tailored to the

developer/organization

25

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Automated Code Scanning

■ Static Analysis (SAST) scans your
code for common vulns

■ Variety of tools / quality / coverage

■ Make sure to fine-tune the SAST
rules for your codebase!

■ Should be run on every
commit / push / merge / version

26

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Third Party Library Risk Management

■ ~80% of your app’s code – isn’t even yours

■ Your dependencies have dependencies

– And those dependencies have their own dependencies

■ You can’t secure what you don’t know!

■ Always have an SBoM (Software Bill of Material)

■ SCA tracks 3rd party versions and known vulnerabilities

27

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Security QA

■ Ideally flows from security requirements / threat model

■ Can also define standard security tests with QA team

■ Good chance to create regression tests for past security

vulnerabilities

28

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Dynamic Application Vulnerability
Scanning

■ Dynamic Application Security Testing (DAST) scans a

running application

■ Most often refers to web apps / APIs / cloud apps

■ Simulates a low level attacker

■ Finds generic vulnerabilities

29

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Application Penetration Testing

■ Someone external security tests
application dynamically

■ Fresh pair of eyes from a security
expert

■ Ideally done in an open as way as
possible

■ Best if done with specific goals

– e.g. based on a threat model

30

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Final Security Review

■ Checking that security activities happened before

development ends

■ Ideally not hard gate but based on ongoing metrics

■ Maybe part of policy enforcement

31

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Application Security Training

■ Job focused training on security concepts

■ Prepared for anyone involved in

application development

■ Ideally highly interactive and hands on

■ Good opportunity to identify security

champions

32

P
ri

m
a

ry
 S

S
D

L
C

a
c
ti

v
it

ie
s

Positive Practices

Practice 1:
Process, Not a Project

Security is a Journey

35P
ra

c
ti

c
e

 1
 -

P
ro

c
e

s
s
,

n
o

t
a

p
ro

je
c
t

Practicalities

■ Trying to implement every activity may not be valuable

– Need to prioritize

– What brings clear value / solves a problem

■ Real implementation and "bedding-in" will take time

■ You want activities to feel natural and "slot in" with

regular development activities

36P
ra

c
ti

c
e

 1
 -

P
ro

c
e

s
s
,

n
o

t
a

p
ro

je
c
t

Common Anti-Patterns

■ Trying to implement a "full SSDLC"

■ Taking a "big bang" approach

■ Using a project plan or clearly defining a start and finish

37

STOP

P
ra

c
ti

c
e

 1
 -

P
ro

c
e

s
s
,

n
o

t
a

p
ro

je
c
t

Suggested Actions

■ Plan an incremental approach and

manage expectations

■ Prioritize activities based on mix of:

– Easy to implement

– High value (though complex)

■ Define key milestones for the process

38

GO

P
ra

c
ti

c
e

 1
 -

P
ro

c
e

s
s
,

n
o

t
a

p
ro

je
c
t

Practice 2:
Engineering Ownership

Security is not
special…

Quality Attributes of Software

41P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

Quality Attributes – ISO/IEC 25010:2011
■ Functional suitability

– Functional completeness

– Functional correctness

– Functional appropriateness

■ Performance efficiency

– Time behaviour

– Resource utilization

– Capacity

■ Compatibility

– Co-existence

– Interoperability

■ Usability

– Appropriateness

recognizability

– Learnability

– Operability

– User error protection

– User interface aesthetics

– Accessibility

■ Security

– Confidentiality

– Integrity

– Non-repudiation

– Accountability

– Authenticity

■ Maintainability

– Modularity

– Reusability

– Analysability

– Modifiability

– Testability

■ Portability

– Adaptability

– Installability

– Replaceability

■ Reliability

– Maturity

– Availability

– Fault tolerance

– Recoverability

42

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

Just Another Attribute

43

Can users

understand

and use the

feature?

P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

Practicalities

■ Security is NOT everyone's job

■ Security needs to "shift up" to get engineering buy-in

■ Development/engineering needs to take the lead on

security

44P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

Common Anti-Patterns

■ Security get a blessing from engineering

rather than ownership

■ Security trying to add to developer

workload "from the side"

■ AppSec expected to own everything

45

STOP

P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

Suggested Actions

■ All new activities have clear ownership

– Accountable/Responsible should be engineering

– AppSec experts should provide consultation only

■ Overall ownership of software security:

– Product Management

– Engineering

■ Clarify for all new activities how to ensure it will happen

46

GO

P
ra

c
ti

c
e

 2
 -

E
n

g
in

e
e

ri
n

g
o

w
n

e
rs

h
ip

Practice 3:
Useful Measurements

Measuring Performance

■ Need to know how we are doing

■ Need to be able to demonstrate that upwards

■ Because....

48P
ra

c
ti

c
e

 3
 -

U
s
e

fu
l
m

e
a

s
u

re
m

e
n

ts

Measuring Performance

49P
ra

c
ti

c
e

 3
 -

U
s
e

fu
l
m

e
a

s
u

re
m

e
n

ts

Measurement Types

■ How do you know:

– Is an activity taking place?

– What are the results of the activity?

■ Comparable metrics between

teams/groups

■ Between the team and itself over time

50P
ra

c
ti

c
e

 3
 -

U
s
e

fu
l
m

e
a

s
u

re
m

e
n

ts

Common Anti-Patterns

■ Not tracking whether activities are being performed

■ Providing inaccurate / unadjusted numbers

■ Manual collection of measurements

■ Focusing on wrong technical metrics

■ Short-term view of results with unreasonable expectations

51

STOP

P
ra

c
ti

c
e

 3
 -

U
s
e

fu
l
m

e
a

s
u

re
m

e
n

ts

Suggested Actions

■ Every activity defined with metrics

– Is the activity being performed

– Is the activity successful / valuable

– Practical ways of tracking output

■ Consider what qualitative measures are also needed

■ Automate metric collection wherever possible

52

GO

P
ra

c
ti

c
e

 3
 -

U
s
e

fu
l
m

e
a

s
u

re
m

e
n

ts

Practice 4:
Useful Tools Where Appropriate

Variety of Tool Types

■ SAST, SCA, DAST

■ IAST, RASP, OAST, MAST

■ Secrets scanning, container scanning, IaC scanning

■ ASPM, CSPM, ASOC

■ Etc…

54P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te

Practicalities

■ These tools detect a variety of vulnerabilities

– or some other risks

■ Some form of automation is needed to "force multiply“

■ Lots of low hanging fruit

■ Breadth vs depth

■ Regulation may require certain processes/tools

55P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te

Key Challenges

■ Easy to become overwhelmed

■ Not every tool is useful in every case

■ Most tools are mostly generic

■ Tools have their own time cost

■ The myth of automation

56P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te

Common Anti-Patterns

■ Tools become the SSDLC / AppSec programme

■ Tool frustration causes negative perspective on
security

■ More time spent on false positives than on true
positives

■ Assumption that tool automation eliminates the
need for manual effort

57

STOP

P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te

Suggested Actions

■ Focus on process, supported by tools

■ Allocate the manual work across the organization

■ Take a gradual approach

– implementation, integration, configuration

■ Focus on signal over noise

■ Make sure tools become a force multiplier

– And not a broken fence to work around

58

GO

P
ra

c
ti

c
e

 4
 -

U
s
e

fu
l
to

o
ls

w
h

e
re

 a
p

p
ro

p
ri

a
te

Practice 5:
Standardize on Goals,
Be Flexible on Implementation

Practicalities

■ Large organizations will have many different teams

■ Each team will have different

– Tech

– Workflow

– Platforms

– Culture

■ Security activities need to fit the team, but still standardized

60P
ra

c
ti

c
e

 5
 –

S
ta

n
d

a
rd

iz
e

 G
o

a
ls

,
F

le
xi

b
le

 I
m

p
le

m
e

n
ta

ti
o

n

Common Anti-Patterns

■ One size fits all SSDLC

■ Defined as top-down policy

■ Varied and different teams forced to work the same

■ Ignoring different team structure, tech stack,

platforms, technical workflows, business

constraints…

61

STOP

P
ra

c
ti

c
e

 5
 –

S
ta

n
d

a
rd

iz
e

 G
o

a
ls

,
F

le
xi

b
le

 I
m

p
le

m
e

n
ta

ti
o

n

Suggested Actions

■ Define requirements, not implementation

■ Allow different teams to adapt to their

existing workflow and platforms

■ Abstract the measurements to support

commonalities

62

GO

P
ra

c
ti

c
e

 5
 –

S
ta

n
d

a
rd

iz
e

 G
o

a
ls

,
F

le
xi

b
le

 I
m

p
le

m
e

n
ta

ti
o

n

Summary

71

SSDLC – Summary

■ SSDLC can help us spread security across the

development process

■ Incremental approach of gradual improvement

■ Ownership and metrics are key to success

72

THANKS FOR YOUR
ATTENTION!

Avi Douglen

Bounce Security

@sec_tigger

	Initial slides
	Slide 1: Building A Secure Software Development Lifecycle
	Slide 2: “All software developers are security engineers (whether they know it, admit it, or like it)” - Jim Manico
	Slide 3: Agenda
	Slide 4: I am… Avi Douglen

	History of SSDLC
	Slide 5: History of SSDLC
	Slide 6: SSDLC
	Slide 7: SSDLC
	Slide 8: SDLC
	Slide 9: SSDLC Concept
	Slide 10: Common models - SDL
	Slide 11: SDL Current State
	Slide 12: SDL – Key points
	Slide 13: OWASP Software Assurance Maturity Model (SAMM)
	Slide 14: OWASP SAMM – Framework Structure
	Slide 15: OWASP SAMM – Framework Structure
	Slide 16: OWASP SAMM - Practices & Streams
	Slide 17: OWASP SAMM – Key points

	Primary SSDLC activities
	Slide 18: Primary SSDLC Activities
	Slide 19: Application Inventory
	Slide 20: Business Impact Analysis (BIA)
	Slide 21: Feature Risk Weighting
	Slide 22: Security Requirements
	Slide 23: Threat Modeling
	Slide 24: Security Design Review
	Slide 25: Secure Coding Guidance
	Slide 26: Automated Code Scanning
	Slide 27: Third Party Library Risk Management
	Slide 28: Security QA
	Slide 29: Dynamic Application Vulnerability Scanning
	Slide 30: Application Penetration Testing
	Slide 31: Final Security Review
	Slide 32: Application Security Training

	Positive Practices
	Slide 33: Positive Practices

	Practice 1 - Process, not a project
	Slide 34: Practice 1: Process, Not a Project
	Slide 35: Security is a Journey
	Slide 36: Practicalities
	Slide 37: Common Anti-Patterns
	Slide 38: Suggested Actions

	Practice 2 - Engineering ownership
	Slide 39: Practice 2: Engineering Ownership
	Slide 40: Security is not special…
	Slide 41: Quality Attributes of Software
	Slide 42: Quality Attributes – ISO/IEC 25010:2011
	Slide 43: Just Another Attribute
	Slide 44: Practicalities
	Slide 45: Common Anti-Patterns
	Slide 46: Suggested Actions

	Practice 3 - Useful measurements
	Slide 47: Practice 3: Useful Measurements
	Slide 48: Measuring Performance
	Slide 49: Measuring Performance
	Slide 50: Measurement Types
	Slide 51: Common Anti-Patterns
	Slide 52: Suggested Actions

	Practice 4 - Useful tools where appropriate
	Slide 53: Practice 4: Useful Tools Where Appropriate
	Slide 54: Variety of Tool Types
	Slide 55: Practicalities
	Slide 56: Key Challenges
	Slide 57: Common Anti-Patterns
	Slide 58: Suggested Actions

	Practice 5 - Flexible
	Slide 59: Practice 5: Standardize on Goals, Be Flexible on Implementation
	Slide 60: Practicalities
	Slide 61: Common Anti-Patterns
	Slide 62: Suggested Actions

	Summary
	Slide 71: Summary
	Slide 72: SSDLC – Summary
	Slide 73: Thanks for your attention!

