BUILDING A SECURE
SOFTWARE
DEVELOPMENT
LIFECYCLE

By Avi Douglen
CEO, Bounce Security

SSSSSSSS

“All software developers
are security engineers
(whether they know it, admit it, or like it)"

- Jim Manico

SSSSSSSS

Agenda

i AGENDA

mBackground and History

mPrimary Activities

m Positive Practices

SSSSSSSS

| am... Avi Douglen

m Email: AviD@BounceSecurity.com

m Twitter: @sec tigger
m He / Him

m The important stuff:

- Whisky: smokey
- Beer: stout
- Coffee: strong

m Product Security Consultings(9) Bounce
m OWASP Israel Leader 2

m Global 0 Board of Directors

0 0Threat Model Project Leader

m Moderator Security.StackExchange S
m Startup Advisor @ €»*OurCrowd Labs/~

m Co-Author of TM Manifesto C,-y)
|9) Bounce

SECURITY

mailto:AviD@BounceSecurity.com
https://twitter.com/sec_tigger
https://security.stackexchange.com/

History of SSDLC

SDLC

m Software
mDevelopment
mlife

mCycle

SSSSSSSS

SSDLC

mSecure

m Software

m Development
mlLife

mCycle

SSSSSSSS

O
-
()]
99}
99}
Y—
(@)
>
(<
ke
0
T

i_\‘i‘ N

SDLC

m Started as Systems Development Lifecycle
m Dates back to 1960s

m Most common structures:

- Waterfall: One long linear process with distinct steps

- Agile: An iterative process with shorter overlapping
Increments

9)Bounce

SECURITY

SSDLC Concept

m Problem statement:
- How do we make security part of the SDLC?

m Solution:

- Start some security related "activities"
- Map to SDLC "stages”

- Make activities convenient/natural for developers

O
-
()]
99}
99}
Y—
(@)
>
(<
ke
0
T

9)Bounce

SECURITY

Common models - SDL

m Originated by Microsoft in 2004

m Various modifications since then including:
Version customized to Agile
Simplified version

m Implementat|o e

Establish Security Establish Design Use Approved
Requirements Requirements Tools

Dynamic Incident
Analysis Response Plan

Core Security Create Quality Analyze Attack Deprecate Unsafe
Training Gates / Bug Bars Surface Functions

Fuzz Final Security
Testing Review

Security & Privacy Threat Static Attack Surface

Release
Risk Assessment Modeling Analysis

Review Archive

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

|9) Bounce

SECURITY

O
-
()]
99}
9p]
Y—
(@)
>
(<
ke
0
T

https://learn.microsoft.com/en-us/windows/security/threat-protection/msft-security-dev-lifecycle

O
—
()]
(7))
99}
Y—
o
>
S
@]
+—
@2
I

SDL Current State

a,_ &

®®®

Provide Training

v v prasee

Learm morw >

blish Design Req xE
Detre atande s securty Seasates s ol etg tees
oy d e

Leam mars

Gl

Perform Static Analysls Security Testing
(SAST)

Arabyze 3ourze code betore comping to v date the
uze of sacure codng polder

Leamn mers

Vi

Define Security Requirements

Cartrusly UScme 1000rTY MeOU NeMaTE I3 refec
o i 10 Faniznalty 240 10 U rigulanony a0d Uveat
Iarcticape

Luwrs more

=

(=

Define and Use Cryptagraphy Standards

e e nght cryptcgrashec schit one ere waes 12
DONT ey

Leaes mrare

Perform Dynamic Analysis Sacurity
Testing (DAST)

Seriorm rur-teme sentcation of hily compded sotvars
257057 secerity o Ay Ietmgrated snd rusning coos

Lear= meore

Dafine Metrics and Compliance
Reporting

et by the mismur sccepiache leews of secaty
sy and how engineedng teares wil be held

&

Manage the Security Risk of Using
Third-Party Components

SO 31 IRTROTY O THAT 2Ty COMBORGNT 10
owate ¥ SINT 13 eoakaate repseas wlamandtier

Leam mose >

earmmces

Perform Penetration Testing

Uncover zortersial vilrerasiiEat rewsting fram cading
0% Speten Configuration fashi. o U cpwatond
azizy et uesinater

Laammzre

perform Threat Modeling
Use myreat maceing to idenmty securey w ekl e
OSIEIMING 50 g Dantily Mipativg.

Leam more >

Use Approved Toolks

Cubne and putinn & ut of sporowed toots and thee
azaciaond sy checks

Learm man >
co—
e—
B—
Establish 3 5tandard Incldent Resp
Process

Frapace a7 nodest eapcras San 10 adcreas nes
ThIRars fRyr O AMErOE OwEF Te

Leam mare >

Jd)Bounce

SECURITY

11

SDL - Key points

m Now appears as a series of security practices
m Focused on the what, not the how
m Some further links but not much in-depth guidance

m [n summary:
- Good for ideas but not implementation

O
-
()]
(7))
99}
Y—
(@)
>
S
o
+—
0
I

9)Bounce

SECURITY 12

(&)
-
()]
9]
w
Y—
(@)
>
j
e
0
T

OWASP Software Assurance
Maturity Model (SAMM)

m Benchmark for Secure Software Development
Lifecycle

m Framework for activities, to set a baseline or
measure maturity

m Active community and lots of videos with information
about it

|9) Bounce

SECURITY

OWASP SAMM - Framework Structure

m Business Function:
— High-level activities related to development
m Security Practice:
— Activity which provides security benefit
m Stream:
- Specific approach for that activity
m Maturity:

- Target implementation for growing levels of sophistication
|9) Bounce

SECURITY 14

O
-
()]
99}
9p]
Y—
(@)
>
(<
ke
0
T

O
-
()]
(7))
99}
Y—
(@)
>
S
o
+—
0
I

OWASP SAMM - Framework Structure

Maturity level 1 activity

Stream A Maturity level 2 activity

Security Practice

Business Function

Maturity level 3 activity

Stream B

https://owaspsamm.org/about/#owasp-samm-structure

9)Bounce

SECURITY

15

https://owaspsamm.org/about/#owasp-samm-structure

OWASP SAMM - Practices & Streams

Governance

Implementation

Verification

Operations

O
-
()]
(7))
99}
Y—
(@)
>
S
o
+—
0
I

. . Architecture .

Strategy & Metrics Threat Assessment Secure Build Incident Management
Assessment

Create & Measure & Application Threat Build Software Architecture | Architecture Incident Incident

promote improve risk profile modeling process dependencies validation mitigation detection response

Policy & Compliance

Security Requirements

Secure Deployment

Requirements-driven

Environment

Testing Management
Policy & Compliance Software Supplier Deployment Secret Control Misuse/abuse Configuration Patch &
standards management requirements security process management verification testing hardening update

Education & Guidance

Secure Architecture

Defect Management

Security Testing

Operational

Management
Training & Organization Architecture Technology Defect Metrics & Scalable Deep Data Legacy
awareness & culture design management tracking feedback baseline understanding protection management

=l

B

=3

=

En

9)Bounce

SECURITY

=1

B

=1

=

16

OWASP SAMM - Key points

m Even better source of ideas than SDL
m Great for assessing current state and maturity

m [00 detailed to use as an end goal / target state
m [n summary:

- A great resource but not ideally suited for
Implementation

O
-
()]
(7))
99}
Y—
(@)
>
(<
_8
0
T

9)Bounce

SECURITY 17

Primary SSDLC
Activities

% SECURITY

Application Inventory

m Provides clear breakdown of what is where
- And who owns what

m Hard to really do anything without this
m Helps allocate ownership and responsibilities
HAPPY,INVENTORYDAY!

\;-“’-/ - :

w J
)

MAY THE ODDS BE EVER IN YOUR
_ ___FAVOR!

SECURITY

19

Business Impact Analysis (BIA)

m Define how a product (or feature)
affects the organization

m Helps understand the relative value
(or damage)

m How critical and sensitive iIs this

m Can be used to align security efforts
to business goals

0
Q0
B
2
3]
@
o
|
()]
9))
w
>
@
£
j—
a

|9) Bounce

SECURITY 20

Feature Risk Weighting

Provides security weighting for a feature

Helps guide how much security attention is required
mportant step to balance resources
Derived from BIA

(9}
2
5=
2
—

(@]

@©
O
—
()]
()]
99}

o

(<

@©
£

—
[a

|9) Bounce

SECURITY 21

(9}
2
5=
2
—

(&)

@©
O
—
()]
()]
99}

>

(<

@©
£

—
[a

Security Requirements

m Build security into requirements
along with other functionality

m Important to get business
perspective

m By defining requirements, QA should
be able to verify them

9)Bounce

SECURITY

22

Threat Modeling

m Structured security-based analysis
m Framework to understand security issues
m Prioritize security efforts by risk

m Custom solutions instead of generic
“best practices”

(9}
2
5=
2
—

(@]

@©
O
—
()]
()]
99}

o

(<

@©
£

—
[a

9)Bounce

SECURITY 23

Security Design Review

m |deally built into the regular design review
m Looking for security issues or considerations
m [he earlier the discovery, the easier to address

0
Q0
B
2
3]
@
o
|
()]
9))
9p]
>
S
@
£
j—
a

|9) Bounce

SECURITY 24

Secure Coding Guidance

m Provide developers with practical guidance
— For their language / platform / framework

m May also use organization specific libraries

m The best solutions are tailored to the
developer/organization

SECURITY 25

Automated Code Scanning

m Static Analysis (SAST) scans your
code for common vulns

m Variety of tools / quality / coverage

m Make sure to fine-tune the SAST
rules for your codebase!

m Should be run on every
commit / push / merge / version

0
Q0
B
2
3]
@
o
|
()]
9))
9p]
>
S
@
£
j—
a

|9) Bounce

SECURITY 26

0
Q0
B
2
3]
@
o
|
()]
9))
9p]
>
S
@
£
j—
a

Third Party Library Risk Management

m ~80% of your app’s code - isn’'t even yours

m Your dependencies have dependencies
- And those dependencies have their own dependencies

m You can't secure what you don’t know!
m Always have an SBoM (Software Bill of Material)
m SCA tracks 3" party versions and known vulnerabilities

A s j‘ ;
I .

= —
| q

27

Security QA

m |deally flows from security requirements / threat model
m Can also define standard security tests with QA team

m Good chance to create regression tests for past security
vulnerabilities

(9}
2
5=
2
—

(@]

@©
O
—
()]
()]
99}

o

(<

@©
£

—
[a

|9) Bounce

SECURITY

Dynamic Application Vulnerability
Scanning

m Dynamic Application Security Testing (DAST) scans a
running application

m Most often refers to web apps / APIs / cloud apps
m Simulates a low level attacker
m Finds generic vulnerabilities

SECURITY

Application Penetration Testing

m Someone external security tests
application dynamically

m Fresh pair of eyes from a security
expert

m |deally done in an open as way as
possible

m Best if done with specific goals
- e.g. based on a threat model

0
Q0
B
2
3]
@
o
|
()]
9))
9p]
>
S
@
£
j—
a

|9) Bounce

SECURITY

Final Security Review

m Checking that security activities happened before
development ends

m |deally not hard gate but based on ongoing metrics
m Maybe part of policy enforcement

THAT "SECURITY REVIEW
SECURITY ESCALATED QUICKLY .

Application Security Training

m Job focused training on security concepts

m Prepared for anyone involved in
application development

m [deally
m Good o

nighly interactive and hands on

oportunity to identify security

champions

SECURITY

¢ WEARE
THE CHAMPIONS,

32

Positive Practices

Practice 1:
Process, Not a Project

+—
(@]
2
=
o
@©
+—
o
<
@B
[%)]
(5}
[&]
o
o
1
i
(5}
(&)
B
O
@©
—
(a1

Security is a Journey

9)Bounce

SECURITY

35

+—
(@]
2
=
o
©
+—
o
<
@B
[%)]
(5}
[&]
o
o
1
i
(5}
(&)
B
O
©
—
(a1

Practicalities

m [rying to implement every activity may not be valuable
— Need to prioritize
- What brings clear value / solves a problem

m Real implementation and "bedding-in" will take time

m You want activities to feel natural and "slot in" with
regular development activities

|9) Bounce

SECURITY 36

Common Anti-Patterns

m Trying to implement a "full SSDLC"
m [aking a "big bang" approach
m Using a project plan or clearly defining a start and finish

SECURITY 37

Suggested Actions

m Plan an incremental approach and
manage expectations

m Prioritize activities based on mix of:
- Easy to implement
- High value (though complex)

m Define key milestones for the process

9)Bounce

SECURITY

38

Practice 2:
Engineering Ownership

' Y

Quality Attributes of Software

Special pages Quality attributes | edit]

Permanent link

Page information MNotable quality attributes include:

autonomy [Erl]

failure transparency

process capabilities

Cite this page « accessibility « deployability » madifiability » seamlessness
LT T « accountability « discoverability [Er] « modularity + self-sustainability
Print/export e accuracy « distributability o obzervability « serviceability (a.k.a. supportability)
Download as PDF « adaptability » durability « operability » securability (see Common subsets below)
Printable version & administrability + effectivensss s orthogonality + simplicity
— o « affordability « efficiency « portability « stability
. s agility (see Commen subsets below) = evolvability s precision « standards compliance
Edit links o auditability o extensibility e predictability o survivability

sustainability

* availability * fault-tolerance * producibility « tailorability

s compatibility « fidelity s provability « testability

o composability [Er] o flexibility o recoverability o timeliness

« confidentiality + inspectability + relevance « traceability

« configurability » installability « reliability « fransparency
s corectness s integrity s repeatability & ubiguity

o credibility » interchangeability o reproducibility « understandability
« customizability « interoperability [Er)] « resilience « upgradability
» debuggability » learnability * fesponsiveness « usability

& degradability s localizability & reusability [Er] « vulnerability
o determinability « maintainability o robustness

« demonstrability « manageability « safety

+ dependability (see Common subsets below) + mobility s scalability

IMany of these quality attributes can also be applied to data quality.

2
<
(9)]
P -
(&}
c
=
(@]
a0l
C
=
)
(&}
<
o0
c
Lol
1
N
O
(&)
S
(@]
©
p—
(el

5

Bounce

SECURITY

41

m Functional suitability
- Functional completeness
- Functional correctness

- Functional appropriateness

m Performance efficiency
- Time behaviour
- Resource utilization

- Capacity

m Compatibility
- Co-existence
- Interoperability

m Usability

- Appropriateness
recognizability

2o
<
(9)]
S
(]
[
=
(@]
o
C
=
o
(]
k=
o0
c
Lol
1
(Q\]
]
(&)
e
(&)
©
S
(el

- Learnability
- Operability

- User error protection
- User interface aesthetics n

- Accessibility

Security
- Confidentiality
- Integrity
- Non-repudiation
- Accountability
- Authenticity

Maintainability
- Modularity
- Reusability

9)Bounce

SECURITY

Quality Attributes — ISO/IEC 25010:2011

- Analysability
- Modifiability
- Testability

Portability
- Adaptability
- Installability
- Replaceability

m Reliability
- Maturity
- Availability
- Fault tolerance
- Recoverability

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:vl:en

42

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

Just Another Attribute

Does thd Can users

\s the
feature
. ?

2
<
n
P -
(&}
c
=
o
a0l
C
=
)
(&}
<
o0
c
Lol
1
(Q\]
O
(&)
S
(@]
©
p—
(el

|9) Bounce

SECURITY

43

Practicalities

m Security is NOT everyone's job
m Security needs to "shift up" to get engineering buy-in

m Development/engineering needs to take the lead on
security

2o
<
(9)]
S
(]
[
=
(@]
o
C
=
o
(]
k=
o0
c
Lol
1
(Q\]
]
(&)
e
(&)
©
p—
(el

9)Bounce

SECURITY

44

e
<
7
S
[}
c
2
o
o0
c
=
(<5}
o}
=
o0
c
L
1
(Q\
(5}
o
=
O
©
S
o

Common Anti-Patterns

m Security get a blessing from engineering
rather than ownership

m Security trying to add to developer
workload "from the side"

m AppSec expected to own everything

|9) Bounce

SECURITY

45

2o
<
(9)]
S
(]
[
=
(@]
o
C
=
o
(]
k=
o0
c
Lol
1
(Q\]
]
(&)
e
(&)
©
p—
(el

Suggested Actions

m All new activities have clear ownership
- Accountable/Responsible should be engineering
- AppSec experts should provide consultation only

m Overall ownership of software security:
- Product Management
- Engineering
m Clarify for all new activities how to ensure it will happen

9)Bounce

SECURITY 46

Practice 3:
Useful Measurements

2
C
(]
S
(]
usf
>
n
©
)
S
=
y—
(]
n
-]
1
o
)
(@]
—
(&)
@©
o
o

Measuring Performance

m Need to know how we are doing
m Need to be able to demonstrate that upwards
m Because....

9)Bounce

SECURITY

48

Measuring Performance

If wvou
Measure |t

somebody
else

will

::::::::::

Measurement Types

m How do you Know:
- Is an activity taking place?
- What are the results of the activity?

m Comparable metrics between
teams/groups

m Between the team and itself over time

2
C
(]
S
(]
—
>
n
©
)
S
=
y—
(]
n
-]
1
o
)
(@]
—
(&)
@©
—
o

|9) Bounce o o

SECURITY

Common Anti-Patterns

m Not tracking whether activities are being performed

m Providing inaccurate / unadjusted numbers

m Manual collection of measurements

m Focusing on wrong technical metrics

m Short-term view of results with unreasonable expectations

2
c
(D)
€
(D)
—
)
[4)]
®©
()
S
=
y—
(D)
[0}
-]
1
o
(5}
(&)
—
(@]
@©
—
o

|9) Bounce

SECURITY 51

Suggested Actions

m Every activity defined with metrics
- Is the activity being performed
— Is the activity successful / valuable
— Practical ways of tracking output

m Consider what qualitative measures are also needed
m Automate metric collection wherever possible

2
C
(]
S
(]
usf
>
n
©
)
S
=
y—
(]
n
-]
1
o
)
(@]
—
(&)
@©
o
o

9)Bounce

SECURITY 52

Practice 4:
Useful Tools Where Appropriate

Variety of Tool Types

m SAST, SCA, DAST

m IAST, RASP, OAST, MAST

m Secrets scanning, container scanning, laC scanning
m ASPM, CSPM, ASOC

m Etc...

)
+—
©
=
o
o
S
o
o
©
)
-
)
<
2
0
o
o
+—
>
Y—
O
(%))
D
1
q
)
Qo
+—
(&)
©
S
o

|9) Bounce

SECURITY 54

)
+—
©
=
o
o
S
o
o
©
)
-
)
<
2
0
o
o
+—
>
Y—
O
(%))
D
1
q
)
Qo
+—
(&)
©
S
o

Practicalities

m [hese tools detect a variety of vulnherabilities
— or some other risks

m Some form of automation is needed to "force multiply*
m Lots of low hanging fruit

m Breadth vs depth

m Regulation may require certain processes/tools

|9) Bounce

SECURITY

55

)
+—
©
=
o
o
S
o
o
©
)
S
)
<
=
0
o
o
+—
>
Y—
O
(%))
D
1
#
)
Qo
+—
(&)
©
.
o

Key Challenges

m Easy to become overwhelmed

m Not every tool is useful in every case
m Most tools are mostly generic

m [ools have their own time cost

m The myth of automation

9)Bounce

SECURITY

56

L
©
=
o
o
S
o
o
©
()
-
()
<
2
0
o
O
+—
>
Y—
()
)
D
1
q
()
Qo
+—
(&)
©
S
o

Common Anti-Patterns

m Tools become the SSDLC / AppSec programme

m ool frustration causes negative perspective on
security

m More time spent on false positives than on true
positives

m Assumption that tool automation eliminates the
need for manual effort

|9) Bounce

SECURITY 57

)
+—
©
=
o
o
S
o
o
©
)
S
)
<
=
0
o
o
+—
>
Y—
O
(%))
D
1
#
)
Qo
+—
(&)
©
.
o

Suggested Actions

m Focus on process, supported by tools
m Allocate the manual work across the organization

m [ake a gradual approach
- implementation, integration, configuration

m Focus on signal over noise

m Make sure tools become a force multiplier
- And not a broken fence to work around

9)Bounce

SECURITY

58

Practice 5:
Standardize on Goals,
Be Flexible on Implementation

<
o
)
©
+—
<
O
S
L)
Q.
£
L)
e
x
L)
L
%)
@®©
o
S
(&)
N
©
=
©
©
c
©
+—
wn
|

Practice 5

Practicalities

m Large organizations will have many different teams

m Each team will have different
- Tech
- Workflow
- Platforms
- Culture

m Security activities need to fit the team, but still standardized

9)Bounce

SECURITY

60

Common Anti-Patterns

m One size fits all SSDLC
m Defined as top-down policy
m Varied and different teams forced to work the same

m Ignoring different team structure, tech stack,
platforms, technical workflows, business
constraints...

c
o
=
©
+
c
(&)
S
<@
Q.
£
<
=
x
<
L
%)
©
o
S
(&)
N
©
=
©
©
C
©
+—
wn
|
LO
(5}
(&)
B
O
©
—
[a

|9) Bounce

SECURITY 61

<
o
]
©
+—
<
O
S
L)
Q.
£
L)
e
x
L)
L
2.
@®©
o
S
(]
N
©
S
©
©
c
©
+
wn
|

Practice 5

Suggested Actions

m Define requirements, not implementation

m Allow different teams to adapt to their
existing workflow and platforms

m Abstract the measurements to support
commonalities

9)Bounce

SECURITY

62

Summary

SSDLC - Summary

m SSDLC can help us spread security across the
development process

m Incremental approach of gradual improvement
m Ownership and metrics are key to success

9)Bounce

SECURITY

72

THANKS FOR YOUR
ATTENTION!

Avi Douglen

Bounce Security
W @sec_tigger

SSSSSSSS

	Initial slides
	Slide 1: Building A Secure Software Development Lifecycle
	Slide 2: “All software developers are security engineers (whether they know it, admit it, or like it)” - Jim Manico
	Slide 3: Agenda
	Slide 4: I am… Avi Douglen

	History of SSDLC
	Slide 5: History of SSDLC
	Slide 6: SSDLC
	Slide 7: SSDLC
	Slide 8: SDLC
	Slide 9: SSDLC Concept
	Slide 10: Common models - SDL
	Slide 11: SDL Current State
	Slide 12: SDL – Key points
	Slide 13: OWASP Software Assurance Maturity Model (SAMM)
	Slide 14: OWASP SAMM – Framework Structure
	Slide 15: OWASP SAMM – Framework Structure
	Slide 16: OWASP SAMM - Practices & Streams
	Slide 17: OWASP SAMM – Key points

	Primary SSDLC activities
	Slide 18: Primary SSDLC Activities
	Slide 19: Application Inventory
	Slide 20: Business Impact Analysis (BIA)
	Slide 21: Feature Risk Weighting
	Slide 22: Security Requirements
	Slide 23: Threat Modeling
	Slide 24: Security Design Review
	Slide 25: Secure Coding Guidance
	Slide 26: Automated Code Scanning
	Slide 27: Third Party Library Risk Management
	Slide 28: Security QA
	Slide 29: Dynamic Application Vulnerability Scanning
	Slide 30: Application Penetration Testing
	Slide 31: Final Security Review
	Slide 32: Application Security Training

	Positive Practices
	Slide 33: Positive Practices

	Practice 1 - Process, not a project
	Slide 34: Practice 1: Process, Not a Project
	Slide 35: Security is a Journey
	Slide 36: Practicalities
	Slide 37: Common Anti-Patterns
	Slide 38: Suggested Actions

	Practice 2 - Engineering ownership
	Slide 39: Practice 2: Engineering Ownership
	Slide 40: Security is not special…
	Slide 41: Quality Attributes of Software
	Slide 42: Quality Attributes – ISO/IEC 25010:2011
	Slide 43: Just Another Attribute
	Slide 44: Practicalities
	Slide 45: Common Anti-Patterns
	Slide 46: Suggested Actions

	Practice 3 - Useful measurements
	Slide 47: Practice 3: Useful Measurements
	Slide 48: Measuring Performance
	Slide 49: Measuring Performance
	Slide 50: Measurement Types
	Slide 51: Common Anti-Patterns
	Slide 52: Suggested Actions

	Practice 4 - Useful tools where appropriate
	Slide 53: Practice 4: Useful Tools Where Appropriate
	Slide 54: Variety of Tool Types
	Slide 55: Practicalities
	Slide 56: Key Challenges
	Slide 57: Common Anti-Patterns
	Slide 58: Suggested Actions

	Practice 5 - Flexible
	Slide 59: Practice 5: Standardize on Goals, Be Flexible on Implementation
	Slide 60: Practicalities
	Slide 61: Common Anti-Patterns
	Slide 62: Suggested Actions

	Summary
	Slide 71: Summary
	Slide 72: SSDLC – Summary
	Slide 73: Thanks for your attention!

