
ANALYSIS OF
AUTHENTICATION:

DECIDING ON "GOOD ENOUGH"

By Avi Douglen

CEO, Bounce Security

Security Maxim of Usability

“Security at the expense of

Usability comes at the

expense of Security”
- Me

Agenda

■ Principles and Attacks

■ Passwords Strength

■ Password Storage

I am… Avi Douglen

■ Email: AviD@BounceSecurity.com

■ Twitter: @sec_tigger

■ He / Him

■ The important stuff:

– Whisky: smokey

– Beer: stout

– Coffee: strong

■ Product Security Consulting

■ OWASP Israel Leader

■ Global Board of Directors

■ Threat Model Project Leader

■ Moderator Security.StackExchange

■ Startup Advisor @

■ Co-Author of TM Manifesto

mailto:AviD@BounceSecurity.com
https://twitter.com/sec_tigger
https://security.stackexchange.com/

PASSWORDS AS
AUTHENTICATION

You get a password! And YOU get a password!

The 3 Auth’s

■ Identification – Who are you?

■ Authentication – Prove it!

■ Authorization – What can you do?

Types of Authentication

■ Knowledge Factor: Something You Know
– E.g. password, PIN, security question

■ Possession Factor: Something You Have
– E.g. smart card, hardware token, key…

■ Inherence Factor: Something You Are (or Do)
– Physiological Biometrics

■ E.g. Fingerprint, retina scan, face recognition

– Behavioral Biometrics

■ Gait, keystroke dynamics, voice recognition

Factor Strengths and Weaknesses

Knowledge

Strengths:

■ Common

■ Easy to replace

■ Consent

Weaknesses:

■ Theft

■ Phishing

■ Hard to remember

■ Reuse

■ Often weak

Inherence

Strengths:

■ Identity

■ Cannot lose

■ Can be transparent

Weaknesses:

■ Specialized hardware

■ Privacy

■ Not replaceable

■ Not accessible

■ Coercion

Possession

Strengths:

■ Attack resistant

■ Physical access

■ Theft discovery

Weaknesses:

■ Hard to replace

■ Easy to lose

■ Usability (?)

■ Phishing (?)

■ Coercion

Guiding Principles

■ No perfect security

■ Consider the system threat model

■ “All models are wrong – some are useful”

■ Appropriate layers of security

■ Choose sensible tradeoffs

Threats & Attacks on Credentials

Indirect:

■ Interception

■ Man-in-the-Middle

■ Bypass

■ Malware

– Rootkits

– Keyloggers

■ Session Hijacking

Sociological:

■ Phishing

■ Chocolate

■ Sticky notes

■ Password Reuse

■ Privacy threats

Direct:

■ Guessing

■ Brute Force

■ Credential Stuffing

■ Password Spraying

■ Hash Cracking

■ Token theft

Why Passwords?

■ Most common form of authentication

■ Easy to implement

■ Easy to use

■ Easy to manage

■ Supported by all platforms

■ Users are familiar with passwords

PASSWORD
STRENGTH

Make ’em strong!

Authentication Strength

■ Definition:

– Protection against given set of attacks

– Assurance of “correct” identity

Password Strength

■ Definition:

– Resistance to direct attacks, e.g.:

■ Brute force

■ Credential stuffing

■ Password spraying

– Sociological factors can affect this too

But first – a word about Brute Force…

E N T R O P Y

Wikipedia Definition of Entropy

“… entropy is the average amount of

information contained in each message

received.”

Wikipedia Definition of Entropy

“…it makes sense to define information as

the negative of the logarithm of the

probability distribution.”

Wikipedia Definition of Entropy

NIST Definition of Entropy

“… an estimate of the average

amount of work required to

guess the password

of a selected user.”

Entropy and Brute Force

■ Entropy controls Brute Force effort

■ How many attempts are required to guess

■ Each bit of entropy – double the effort

■ E.g. 128-bit key ->
– 2128 possible values

– 2128−1 guesses (on average)

■ Entropy == Password “strength”
– … ASSUMING all values have equal probability

– Entropy qualifies process, not result

How long to Brute Force a password?

6 Random Letters, Uppercase only (English only):

■ 26U = ~4.7 Bits of Entropy per letter (`1 1010`)

■ 24.7 6 = 24.7∗6 = 228.2 equiprobable values

■ ~ 308,351,367 possible passwords

■ On average require 228.2 −1 = 227.2 guesses

■ I.E. 154,175,683 guesses (on average)

How long to Brute Force a password?

“Complex” password (4 types of chars – ULNS):

■ Assuming uniform distribution

■ 26U + 26L + 10N + 32S = 94 equiprobable possibilities

– Per character

■ 94 values = ~ 6.5 bits of Entropy

– 94 is `101 1110` in binary

How long to Brute Force a password?

6-character complex password:

■ 26.5
6
= 26.5∗6 = 239 equiprobable values

■ 549,755,813,888 possible passwords

■ On average require 239−1 = 238 guesses

■ I.E. 274,877,906,944 guesses (on average)

How long to Brute Force a password?

8-character complex password:

■ 26.5
8
= 26.5∗8 = 252 equiprobable values

■ 4,503,599,627,370,496 possible passwords

■ On average require 252−1 = 251 guesses

■ I.E. 2,251,799,813,685,248 guesses (on average)

Password Strength

■ But let’s be honest…

■ Realistically: Password != 100% Random

■ How long BF takes depends on how random

– i.e. How much Entropy

■ Usually much, much, MUCH lower…

How long to Brute Force a password?

■ Most Common Passwords

– E.g. Top 100 Passwords from Adobe Hack

– Total Entropy: ~ 6.65

– On average require 50 guesses

How long to Brute Force a password?

Lowercase (English) dictionary word + digit:

■ Assume ~65K words in dictionary

■ Total Entropy: ~ 19.4

– 65,536 = 216

– 10 = ~ 23.4

■ On average require 218.4 guesses

■ I.E. 327,680 guesses (on average)

Common Password Policies

■ Minimum Length (e.g. at least 6 characters)

■ Maximum Length (less than 12 characters)

■ Character sets (at least 3 out of U + L + N + S)

■ Password should not match username

■ Password Expiration (e.g. after 30 days)

■ Password History

And just to make things worse…

■ “Your password has expired!”

■ “You must create a new password!”

■ “… and again every 30 days!”

■ “… and they all have to be different! Of course!”

■ “… and long! Also random!”

■ “… but don’t write it down!”

■ “And remember it or you’re a bad person!”

Common Password Policies

■ Something Important is Missing!

■ Password Policy Does Not Ensure “Strength”

■ What is MOST important for strength:

– Complexity?

– Length?

Common Password Policies

■ Both are wrong!

– 1qaz@WSX <==> aaaaaaabbbaaaaaababa

– 10 Digits would still only have ~ 33 bits entropy

■ Password “Strength” == Entropy

– Complexity squeezes more entropy

– Length gives room for more entropy

– But RANDOMNESS is where entropy comes from

Good Password > Strong Password

■ Good Passwords are not just about “Strength”

■ Difficult to Guess <==> Difficult to Remember

■ Computer Aspect <==> Human Aspect

Passphrases

■ Passphrases must be random

– Your favorite quote or song is weak

■ How do we create strong PassPhrases?

■ Random Selection from Limited Dictionary

– E.g. Diceware.com

Passphrases

■ Easy to remember…

■ Easier to type!

■ Especially on mobile…

■ Easier to share when needed

– E.g. ZIP password

– E.g. Nuclear bomb deactivation codes

■ But are they strong?

How long to Brute Force a passphrase?

Diceware 5 word passphrase:

■ Each Word = ~ 12.9 bits of entropy

– Dictionary = 7776 (short) words = 212.9

– Each Dice roll = ~ 5 𝑥 22.6 = ~ 213

■ 5 words = 64.5 bits of entropy

■ I.e. 26,087,635,650,665,564,424 possibilities

■ BF: 13,043,817,825,332,782,212 tries (on average)

■ 414,753,059 years @ 1000 guesses/second

Drawbacks to Passphrases

■ Still need to remember

■ Sometimes 30-200 of them

■ Some sites don’t accept long passwords

■ Doesn’t “feel” strong

■ Can lead to password reuse

Credential Stuffing

Have I Been Pwned

Password Reuse

■ Passwords should be unique per account

■ Avoid common passwords

■ Avoid leaked passwords

■ Check “known” passwords with HIBP:

– Pwned Passwords list

– API with k-Anonymity

Password Managers

Password Managers

■ Very strong passwords

– Higher risk? Make it longer

■ Randomly generated

■ Very high entropy

■ User does not need to remember passwords

■ Passwords are encrypted with ONE master key

Secure Password Requirements

■ Don’t allow short passwords – minimum 12 chars

■ Allow sufficiently long passwords – at least 64 chars

■ Don’t block password managers

■ Encourage using password manager / passphrase

■ Consider generating a strong password for user

■ HIBP to prevent known passwords

■ Account lockout (aka rate limiting)

Password Expiration

■ Mathematically unnecessary: 550 years > 90 days

■ Maybe makes sense for Tr0ub4dor&3 (3 days)

– But then why wait 90 days…?

■ Usability cost (sticky notes, weaker passwords)

■ New password often similar to old “Tr0ub4d0r&4”

■ Allow users to change, force reset only on breach

PASSWORD STORAGE
Keep ’em safe!

Password Storage – Bad Advice

■ Plain Text!

■ Base 64!

■ Symmetric Encryption

■ Cryptographic Hash

– MD5, SHA-1, SHA-256

-> Obviously not

-> Useless

-> Bad Idea (why?)

-> Rainbow Tables!

Why do we care how it’s stored??

Password Storage – Better Advice?

■ Salted Hash (SHA-*)

– No Rainbow Tables

– Cannot be precomputed

– Attacker needs to BF each individually

– No cost amortization

How long to Brute Force a hash?

8-char random password

■ Approximately 52 bits of entropy

■ 3,047,844,692,705,408 guesses (on average)

■ Is this safe?

■ Can this be brute forced?

BUT WAIT!

Cracking Hashes at Speed

■ Hashes are “embarrassingly parallel”

■ Hash lots of password guesses (e.g. dictionary)

■ GPU faster than CPU by orders of magnitude

– Billions of hashes per second

■ Dedicated hardware faster by orders of magnitude

– E.g. Bitcoin miner

– 100’s billion up to trillions

Hashcat

How long to Brute Force a hash?

■ Single off the shelf GPU

■ Salted SHA-1

■ ~ 5 Billion hash / second

– IE over 2^32 attempts

■ Can trade $$ for GH/s

■ Tr0ub4dor&3 style

– 28 bits entropy

– Less than a second

■ 6 random char

– 39 bits entropy

– ~2 minutes

■ 8 random chars

– 52 bits

– ~10 days

Password Storage – Good Advice

■ Password protection algorithms

– Argon2id

– bcrypt

– scrypt

– PBKDF2

■ Tuned and Tested:

– Set Work Factor as high as server can support

– Adaptive algorithms, continue to tune over time

Bad Password Hashing Functions:

EVERYTHING ELSE

■ Complexity is bad

■ Homemade is bad

■ New is bad

Seriously, just use bcrypt.

How long to Brute Force a hash?

■ Single off the shelf GPU

■ scrypt

■ 50,000 hash / second

■ Calculate cost hash/watt

■ Tr0ub4dor&3 style

– 28 bits entropy

– 1.5 hours

■ 6 random char

– 39 bits entropy

– 4.5 months

■ 8 random chars

– 52 bits

– ~ 3,000 years

Password Verification

■ Don’t leak information during verification

■ E.g. Timing attacks

■ Use a secure password comparison function

– E.g. password_verify() in PHP

■ Prevent DoS attacks with very long inputs

■ Return in constant time

SUMMARY
A quick recap

Summary

■ Mind your threat model!

■ Multiple layers for defense

■ Usable security

■ Password strength = entropy

■ Password storage algorithms

■ Add factors for strength

And now…. A QUIZ!

Join at slido.com

#2422109

ⓘ Start presenting to display the joining instructions on this slide.

What is my name?

ⓘ Start presenting to display the poll results on this slide.

Which of these is an attack on passwords?

ⓘ Start presenting to display the poll results on this slide.

When using multiple factors of authentication, which

considerations are important?

ⓘ Start presenting to display the poll results on this slide.

Which is the best way to store passwords

from these alternatives?

ⓘ Start presenting to display the poll results on this slide.

THANKS FOR YOUR
ATTENTION!

Avi Douglen

Bounce Security

@sec_tigger

	Intro
	Slide 1: Analysis of authentication: deciding on "good enough"
	Slide 2: Security Maxim of Usability
	Slide 3: Agenda
	Slide 4: I am… Avi Douglen

	Passwords Intro
	Slide 5: Passwords As Authentication
	Slide 6: The 3 Auth’s
	Slide 7: Types of Authentication
	Slide 8: Factor Strengths and Weaknesses
	Slide 9: Guiding Principles
	Slide 10: Threats & Attacks on Credentials
	Slide 11: Why Passwords?
	Slide 12
	Slide 13
	Slide 14

	Password Strength
	Slide 15: Password Strength
	Slide 16: Authentication Strength
	Slide 17: Password Strength
	Slide 18: But first – a word about Brute Force…
	Slide 19: Wikipedia Definition of Entropy
	Slide 20: Wikipedia Definition of Entropy
	Slide 21: Wikipedia Definition of Entropy
	Slide 22: NIST Definition of Entropy
	Slide 23: Entropy and Brute Force
	Slide 24: How long to Brute Force a password?
	Slide 25: How long to Brute Force a password?
	Slide 26: How long to Brute Force a password?
	Slide 27: How long to Brute Force a password?
	Slide 28: Password Strength
	Slide 29
	Slide 30: How long to Brute Force a password?
	Slide 31: How long to Brute Force a password?
	Slide 32: Common Password Policies
	Slide 33
	Slide 34
	Slide 35: And just to make things worse…
	Slide 36: Common Password Policies
	Slide 37: Common Password Policies
	Slide 38
	Slide 39
	Slide 40: Good Password > Strong Password
	Slide 41: Passphrases
	Slide 42
	Slide 43: Passphrases
	Slide 44: How long to Brute Force a passphrase?
	Slide 45: Drawbacks to Passphrases
	Slide 46: Credential Stuffing
	Slide 47: Have I Been Pwned
	Slide 48: Password Reuse
	Slide 49: Password Managers
	Slide 50: Password Managers
	Slide 51: Secure Password Requirements
	Slide 52: Password Expiration

	Password Storage
	Slide 53: Password Storage
	Slide 54: Password Storage – Bad Advice
	Slide 55: Why do we care how it’s stored??
	Slide 56: Password Storage – Better Advice?
	Slide 57: How long to Brute Force a hash?
	Slide 58: BUT WAIT!
	Slide 59: Cracking Hashes at Speed
	Slide 60: Hashcat
	Slide 61: How long to Brute Force a hash?
	Slide 62: Password Storage – Good Advice
	Slide 63: Bad Password Hashing Functions:
	Slide 64: How long to Brute Force a hash?
	Slide 65: Password Verification

	Summary
	Slide 74: Summary
	Slide 75: Summary
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: Thanks for your attention!

