
OAuth for Security Critical
Applications

Dr. Torsten Lodderstedt, yes.com

About me
● Identity Practitioner

○ Consumer Identity Management (Architect, PO, VP)
○ Open Banking Ecosystem (CTO)
○ Freelancer

● Standards Guy
○ OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
○ ...
○ OAuth 2.0 Security Best Current Practice
○ OAuth 2.0 Pushed Authorization Requests
○ OAuth 2.0 Rich Authorization Requests
○ OAuth 2.1
○ OpenID Connect 4 Identity Assurance
○ OpenID 4 Verifiable Credentials
○ Global Assured Identity Network (GAIN)

RFC 6749
The OAuth 2.0 Authorization
Framework

RFC 6750
The OAuth 2.0 Authorization
Framework: Bearer Token Usage

RFC 6819
OAuth 2.0 Threat Model and Security
Considerations

RFC 7009
OAuth 2.0 Token Revocation

RFC 7519
JSON Web Token (JWT)

RFC 7521
Assertion Framework for OAuth 2.0 Client
Authentication and Authorization Grants

RFC 7522
Security Assertion Markup Language
(SAML) 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants

RFC 7523
JSON Web Token (JWT) Profile for
OAuth 2.0 Client Authentication and
Authorization Grants

RFC 7591
OAuth 2.0 Dynamic Client
Registration Protocol

RFC 7592
OAuth 2.0 Dynamic Client Registration
Management Protocol

RFC 7636
Proof Key for Code Exchange by
OAuth Public Clients

RFC 7662
OAuth 2.0 Token Introspection

RFC 7800
Proof-of-Possession Key Semantics for
JSON Web Tokens (JWTs)

RFC 8176
Authentication Method Reference Values

RFC 8252
OAuth 2.0 for Native Apps RFC 8414

OAuth 2.0 Authorization Server Metadata

RFC 8628
OAuth 2.0 Device
Authorization Grant

RFC 8693
OAuth 2.0 Token Exchange

OAuth 2.0 Universe

OAuth 2.0 Security Best Current Practice
● Refines and enhances security guidance for OAuth 2.0 implementers
● Updates, but does not replace:

○ OAuth 2.0 Threat Model and Security Considerations (RFC 6819)
○ OAuth 2.0 Security Considerations (RFC 6749 & 6750)

● Updated, more comprehensive Threat Model
● Description of Attacks and Mitigations
● Simple and actionable recommendations

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics

OAuth 2 Design Principles

Authorization Server

Resource Server (API)

Client

Getting an access token

Using an access token

client & user data

Authorization Server acts as trusted 3rd party for Resource Server - decoupling user authentication & consent
from service authorization

Huge potential regarding software architecture, security, and user experience

Software Architecture

Client

Getting access token(s)

Using access token(s)

client & user data

Resource Server (API)

Authorization Server

Different Channels, same API

Flexibility to orchestrate

Redirect
Decoupled
Service2service
...

● AS handles user credentials in frontend process
○ APIs do not handle user credentials
○ Clients do not handle user credentials

● AS handles user consent
● AS may handle authorization centrally
● Results in reduced attack surface
● Origin bound credentials (cookies, certs, FIDO) and 3rd party Logins can be

used in API scenarios

Security

User Experience

Client

Getting an access token

Using access token(s)

client & user data

User may authorize access to multiple APIs (including 2FA) once, client uses access token multiple times

Resource Server (API)

ok

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit,

ok

Topics
● OAuth Code Flow (re-enforced)
● Client Authentication
● Token Leakage and Replay Prevention
● Introspection vs Structure Access Tokens
● Privilege Enforcement
● Audience Restriction
● Server Metadata

OAuth Code Flow (re-enforced)

RSASUser

OAuth Code Flow (Threats)

GET /authorize?redirect_uri=

Redirect to AS

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

POST /token,
code=foo42&…

GET …?code=foo42

Send access_token

POST /connect Client

Photo
Editor

Give access
to Photo
Editor?

Code Injections

Code leakage through counterfeit
authorization server (Mix-Up)

Code leakage
(redirect to attacker)

Hardened Authorization Code Grant
● Security improvements with

○ OAuth Security Guidelines (https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics)
○ and OAuth 2.1 (https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1)

● Exact redirect URI matching (Code Leakage)
● Proof Key for Code Exchange - PKCE (Code Replay & CSRF)
● “iss” response parameter (Mix Up - Conditional)

ASUser

Authorization Code Grant (Security BCP/OAuth 2.1)

GET /authorize?code_challenge=sha256xyz&...

Redirect to AS

...

Redirect to rp.com/authok?code=bar42&...&iss=

POST /token, code=bar42
 &code_verifier=xyz...

Use access_token

Send code

Send access_token

Client RSExact redirect URI
matching

PKCE Check
(code_verifier)

iss check

Client Authentication

Why Client Authentication?
● Decide on policy

○ Accessible APIs
○ User consent required? 1st vs 3rd party clients

● Show correct party in user consent
● Ensure only vetted parties can access your API
● Ensure the bill is paid

Client Authentication Options
● Client Secret (RFC 6749)

○ Basic Authorization Header or POST message parameter
○ Simple, shared secret, secret sent over the wire

● TLS Client Authentication (RFC 8705)
○ Self-signed certificates or public key infrastructure (PKI)
○ Can be simple, secret known to client only
○ Integrates well with token replay detection (next topic)

● Signed JWTs (RFC 7523)
○ private_key_jwt: Signature using private key corresponding to pre-registered JSON Web Key

■ Secure and simple to use, secret known to client only
○ client_secret_jwt: HMAC of shared secret

■ Secure and simple to use, however shared secret

Comparison

Method Complexity Who knows secret? Secret on the wire

Client Secret Simple Shared Secret yes

mTLS 4 OAuth Depends Client only no

private_key_jwt Increased, but
manageable

Client only no

client_secret_jwt Increased, but
manageable

Shared Secret no

Token Leakage & Replay Prevention

RSASUser

Token Leakage

GET /authorize?redirect_uri=

Redirect to AS

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

POST /token,
code=foo42&…

Use access_token

GET …?code=foo42

Send access_token

POST /connect Client

Photo
Editor

Give access
to Photo
Editor?

Leakage from web application
(XSS, proxies, log files,
backups, ...)

Compromised or counterfeit
resource server

RSASUser

Sender-Constrained Access Tokens (mTLS)

GET /authorize?redirect_uri=

Redirect to AS

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

POST /token,
code=foo42&…

Use access_token

GET …?code=foo42

Send access_token

POST /connect Client

Photo
Editor

Give access
to Photo
Editor?

TLS Client Authentication

Bind access token to cert

TLS Client Authentication
(same cert)

Check access
token binding

server {
 …
 ssl_verify_client optional_no_ca;
 location /example/ {
 proxy_set_header x-client-x509-cert-alaelul8geiqu3ohog1mafa4ecu9ahsh $ssl_client_cert;
 proxy_pass <app server>;
 }
}

Access Token Binding Check (self-signed certs)

{
 "iss":"https://server.example.com",
 "sub":"ty.webb@example.com",
 "exp":1493726400,
 "cnf":{
 "x5t#S256":"bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
}

Cert fingerprint (SHA 256)

Reverse Proxy Configuration (NGINX)

Access Token Content

Turn on optional client TLS
w/o trust chain validation

Pass client TLS cert to RS

RSASUser

Sender-Constrained Access Tokens (DPoP)

GET /authorize?redirect_uri=

Redirect to AS

User authenticates; authorizes access

Redirect to client.example/cb?code=foo42

POST /token,
code=foo42&…

Use access_token

GET …?code=foo42

Send access_token

POST /connect Client

Photo
Editor

Give access
to Photo
Editor?

DPoP Proof

Bind access token to DPoP key

Add DPoP proof to request
Check access
token binding

DPoP-protected Request

Access Token Content

Key fingerprint (SHA 256)

 {
 "sub":"someone@example.com",
 "iss":"https://server.example.com",
 "nbf":1562262611,
 "exp":1562266216,
 "cnf":
 {
 "jkt":"0ZcOCORZNYy-DWpqq30jZyJGHTN0d2HglBV3uiguA4I"
 }
 }

DPoP-Proof

protected resource

 {
 "typ":"dpop+jwt",
 "alg":"ES256",
 "jwk": {
 "kty":"EC",
 "x":"l8tFrhx-34tV3hRICRDY9zCkDlpBhF42UQUfWVAWBFs",
 "y":"9VE4jf_Ok_o64zbTTlcuNJajHmt6v9TDVrU0CdvGRDA",
 "crv":"P-256"
 }
 }
 .
 {
 "jti":"e1j3V_bKic8-LAEB",
 "htm":"GET",
 "htu":"https://resource.example.org/protectedresource",
 "iat":1562262618,
 "ath":"fUHyO2r2Z3DZ53EsNrWBb0xWXoaNy59IiKCAqksmQEo",
 "nonce": "eyJ7S_zG.eyJH0-Z.HX4w-7v"
 }

identifier

HTTP method

Access token hash

RS provided nonce

mTLS vs DPoP
mTLS

● Utilizes TLS/HTTPS stack
● Client setup straightforward with

self-signed certs (works with Postman)
● PKI might cause issues
● Server setup might be challenging in

managed infrastructures

DPoP

● Utilizes application level signatures
● Works on top of any managed

infrastructure
● Requires dedicated support in OAuth

library
● Replay detection might require server-side

nonces

● Both methods are designed to work for public clients and for confidential clients (in conjunction
with any client authentication method)

Structured Access Tokens
vs Token Introspection

Structured Access Tokens (e.g. JWTs)

My Address Book
Service

Client

Authorization Server

ok

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit,

ok

Access Token (w/ token & user data)

4

3

1 2

JWT-based Access Tokens
● Signed and (optionally) encrypted tokens
● May contain any user data required to authorize and perform API requests
● Recommended reads:

○ JSON Web Token (JWT/ RFC 7519)
○ Profile for OAuth 2.0 Access Tokens (RFC 906)

● (Some of the) standard claims
○ iss: token issuer
○ sub: token subject (user id)
○ aud: token audience
○ exp: token expiration
○ scope: delegated scope

{

 "iss":"https://as.example.com/",

 "sub":" 5ba552d67",

 "aud":"https://ab.example.com/",

 "exp":1544645174,

 "client_id":"s6BhdRkqt3",

 "scope":"read",

 "role":"helpdesk",

 "email":"max@company.com"

}

Token Introspection

My Address Book
Service

Client

Authorization Server

ok

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit,

ok

Access Token (just
 unpredictable identifier)

4

3

1 2

token & user data5
OAuth 2.0 Token Introspection (RFC 7662)

Token Introspection Example
HTTP/1.1 200 OK
Content-Type: application/json

{
 "active": true,
 "iss":"https://as.example.com/",
 "sub":" 5ba552d67",
 "aud":"https://ab.example.com/",
 "exp":1544645174,
 "client_id":"s6BhdRkqt3",
 "scope":"read",
 "role":"helpdesk"
}

Is this access token
still valid?

POST /introspect HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

token=mF_9.B5f-4.1JqM

Comparison
Structured Tokens Token Introspection

API Performance No impact, RS can meet access control
decisions locally

RS needs to callback to AS

Scalability Excellent, since no state required at RS Depends on AS’s scalability

Client 2 API
Performance

Access tokens can be huge, potential impact on
lower latency networks

No impact, since access tokens are very small

Integrity Based on digital signatures or HMACs Based on random numbers and TLS server
authentication

Revocation Difficult to implement (Refresh Tokens as
alternative)

Easy to implement

Privacy Client: token encryption
RS: RS-specific access tokens required (RAR)

Client: token does not contain PII
RS: RS-specific introspection responses

Privileges Enforcement

Authorization vs Access Control

My Address Book
Service

Client

Authorization ServerGET /authorize?response_type=code
&client_id=s6BhdRkqt3
&scope=read ...1

ok

Lorem ipsum dolor sit
amet, consectetur
adipiscing elit,

ok

2

GET /contacts HTTP/1.1
Host: ab.example.com
Authorization: Bearer mF_9.B5f-4.1JqM

4

3

"access_token":"mF_9.B5f-4.1JqM"

Access Control

Authorization

Does it match?

Convey granted privileges to RS
● Options

○ Put the data into the access token (e.g. JSON Web Tokens)
○ Query data from AS during access control process (e.g. Token Introspection)

● Let’s discuss it with JSON Web Tokens (JWT)

Access control based on JWT
Access Token in JWT format

Header

{

 "typ":"at+JWT",

 "alg":"RS256",

 "kid":"RjEwOwOA"

}

Payload

{

 "iss":"https://as.example.com/",

 "sub":" 5ba552d67",

 "aud":"https://ab.example.com/",

 "exp":1544645174,

 "client_id":"s6BhdRkqt3",

 "scope":"read"

}

GET /contacts/@me/@all HTTP/1.1

Host: ab.example.com

Authorization: Bearer mF_9.B5f-4.1JqM

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

[

 {

 "id":"1234",

 "displayName":"Contact ABC"

 },

 ...

]

POST /contacts/@me/1234 HTTP/1.1

Host: ab.example.com

Content-Type: application/json;charset=UTF-8

Authorization: Bearer mF_9.B5f-4.1JqM

{

 "id":"1234",

 "displayName":"Something else"

}

HTTP/1.1 403 Forbidden

User ID

scope

User Data in Access Token
GET /contacts/@fred.firestone/@all HTTP/1.1

Host: ab.example.com

Authorization: Bearer mF_9.B5f-4.1JqM

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

[

 {

 "id":"3456",

 "displayName":"Contact WWA"

 },

 ...

]

{

 "iss":"https://as.example.com/",

 "sub":" 5ba552d67",

 "aud":"https://ab.example.com/",

 "exp":1544645174,

 "client_id":"s6BhdRkqt3",

 "scope":"read"

}

No user data -
Requires user

database lookup

{

 "iss":"https://as.example.com/",

 "sub":" 5ba552d67",

 "aud":"https://ab.example.com/",

 "exp":1544645174,

 "client_id":"s6BhdRkqt3",

 "scope":"read",

 "role":"helpdesk"

}

User privileges are provided
in JWT, no additional lookup
needed

Access Token Validity
Header

{

 "typ":"at+JWT",

 "alg":"RS256",

 "kid":"RjEwOwOA"

}

Payload

{

 "iss":"https://as.example.com/",

 "sub":" 5ba552d67",

 "aud":"https://ab.example.com/",

 "exp":1544645174,

 "client_id":"s6BhdRkqt3",

 "scope":"read"

}

Is this an access
token?

An authorization
server I trust?

eyJhbGciOiJSUzI1NiIsInR5cCI6ImF0K0pXVCIsImtp
ZCI6IlJqRXdPd09BIn0.eyJpc3MiOiJodHRwczovL2Fz
LmV4YW1wbGUuY29tLyIsInN1YiI6IiA1YmE1NTJkNjci
LCJhdWQiOiJodHRwczovL2FiLmV4YW1wbGUuY29tLyIs
ImV4cCI6MTU0NDY0NTE3NCwiY2xpZW50X2lkIjoiczZC
aGRSa3F0MyIsInNjb3BlIjoicmVhZCJ9.hm3ZKFVu-u2
DxavIy3tcLqIICWlZAP0Ht_GvB7awgBEmagdhLxRTCgF
ZQbPOSSXXa0EzirmtXkWCxo-_raYF5NiKgfWX2Hhj1ux
ukNelJi0L3GXqD6AKzVvSU5Q0pY_kWcCxyyUpU0YbeEx
FS25bl6q9kkON3z7nRiNFWfkQOhSHqip7cD1k7HNZXwz
NNQ-0qy083EP8fxD929zDRR-YUgiUJR6bjrNekDcT9TR
MjLzcSHy_REL5PYgjZxwzwM_XsfUtlUwkdnKyvmNo37w
PsIh02ZCrJcYA4ONjD-MijlkzlxLl728N4iafF0ZSjbf
wX0hMW1Egk5ktcF7bD513zA

Signature

Is the signature
valid?

Is that me?
Is token still valid?

Base64 Encoded Representation

Audience Restriction

One Client, Multiple Resource Servers

Client

Getting an access token

Using an access token

client & user data

Resource Server (API)

Authorization Server

What if the AS protects multiple RSs?
You want to make sure:

● That every RS is only provided with the data it needs.
● That a RS cannot replay a token it received from a legitimate client with

another RS.
● That the RS unambiguously can determine the privileges a client has wrt to

this RS.

Audience Restriction

RS-specific access tokens
● Typically used in conjunction with JWTs (and other structured access tokens)
● Audience set to specific RS (audience restriction), so RS cannot use access

token somewhere else
● Privacy ensured since token only contains data relevant for particular RS
● Per-RS encryption keys
● How does client request such a token?

○ resource indicators (RFC 8707)
○ “locations” element in “authorization_details”

"authorization_details":[
 {
 "type":"payment_initiation",
 "locations":[
 "https://api.example.com/payments"
],
 "instructedAmount":{
 "currency":"GBP",
 "amount":"31.94"
 },
 "creditorName":"Merchant",
 …
]

RS-specific token introspection response
● Single token across resource

servers
● Every RS authenticates towards AS

in introspection request
● AS responds with RS-specific

introspection response
● Response only contains data

relevant for particular RS and only if
the access token is good for that
particular RS

HTTP/1.1 200 OK
Content-Type: application/json

{
 "active":true,
 "iss":"https://as.example.com/",
 "sub":" 5ba552d67",
 "aud":"https://api.example.com/payments",
 "exp":1544645174,
 "client_id":"s6BhdRkqt3",
 "authorization_details":[
 {
 "type":"payment_initiation",
 "locations":[
 "https://api.example.com/payments"],
 "instructedAmount":{
 "currency":"GBP",
 "amount":"31.94"
 },
 "creditorName":"Merchant"
 }
]
}

Server Metadata make your life easier
● OAuth 2.0 Authorization Server

Metadata (RFC 8414)
● Client obtains endpoint URLs and

other metadata from well defined URL
● More efficient and secure than

manual configuration

{
 "issuer":"https://server.example.com",
 "authorization_endpoint":
 "https://server.example.com/authorize",
 "token_endpoint":
 "https://server.example.com/token",
 "token_endpoint_auth_methods_supported":[
 "client_secret_basic",
 "private_key_jwt"
],
 "scopes_supported":[
 "contacts",
 "cloud"
],
 "response_types_supported":[
 "code"
]
}

https://server.example.com/

.well-known/oauth-authorization-server

Q&A

