
Security of
WebAssembly Applications
Quentin Stiévenart, Vrije Universiteit Brussel

SecAppDev 2022

@acieroid quentin.stievenart@vub.be

WebAssembly:
Context

- History of native web

technologies

- What is WebAssembly

- Existing uses for WebAssembly

- WebAssembly in practice

History of Native Web Technologies

History of Native Web Technologies
Why do we want native web technologies?

- Optimize compute-intensive parts of an application

- Enable ahead-of-time compilation

- Hardware accelerated graphics

- Compile from a variety of programming languages

Java Applets (1995-2017)
First released with Java 1 (1995)

Requires local installation of Java + browser plugin

JVM running the applet is separated from browser at OS-level

Only supports Java

Phased out from 2013, fully removed in Java 9 (2017)

<applet code="First.class" width="300" height="300">

ActiveX (1996-2015)
Introduced by Microsoft in 1996, as a competitor to Java Applets

Supports more programming languages, supposedly faster

Designed to be cross-platform and not tied to Windows (but not really in practice)

Many criticisms: security issues (no sandboxing), lack of portability

Dropped support in Microsoft Edge (2015)

Flash (1996-2017)
Released by Macromedia in 1996

Closed-source implementation

Many security issues: 1078 CVE entries, 842 leading to arbitrary code execution

Deprecated by Adobe in 2017, EOL in 2020

Google Native Client & PNaCl (2011-2017)
Introduced by Google in 2011

Sandboxing technology to run native code

OS and architecture independent

Deprecation announced in 2017 in favor of WebAssembly

asm.js (2013-...)
Strict subset of JavaScript: can be run on any JS engine

Rely on annotations to compile AOT:

- More efficient representations (e.g., unboxed ints)

- If validation fails, falls back to regular JIT

- Manual memory management, no GC

Still supported, mostly as fallback

Emscripten introduced to compile C and C++ to asm.js

function isPair(x) {
 x = x | 0;
 return ((x & 1 ? MEM8[x & 31] | 0 : (MEM32[x >> 2] | 0) >>> 2 & 63 | 0) | 0) == 0 | 0;
}

WebAssembly: What It Is, Its Goals, and Its Usage

WebAssembly

“WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based

virtual machine. Wasm is designed as a portable compilation target for programming

languages, enabling deployment on the web for client and server applications.”

 – https://webassembly.org/

A Brief History of WebAssembly
First public announcement

“Unlike asm.js, which was just a pure optimization - i.e. it did not require

standardization - WebAssembly is being developed as a standard.”

2015

First demo

“AngryBots” game developed in Unity,

compiled to WebAssembly

2016

W3C recommendation2019

End of preview phase2017

First working draft2018

For WebAssembly Core 1.0

WebAssembly Goals
Major goals:

- Provide an execution environment for client- and server-side applications

- Enable almost-native performance

- Isolate executed code from the rest of the browser/OS

- Open standard

WebAssembly Usage in a Nutshell

14

program.c

program.wasm

WASM compiler

program.rs

program.go

Today’s Use of WebAssembly: Web Applications

15earth.google.com

Today’s Use of WebAssembly: IoT

16

Wen and Weber, PerCom 2020

Today’s Use of WebAssembly: Embedded Systems

17

Gurdeep Singh and Scholliers, MPLR’19

Today’s Use of WebAssembly: Smart Contract Platforms

18

Today’s Use of WebAssembly: Browser Add-Ons

19

Today’s Use of WebAssembly: Edge Computing

WebAssembly in Practice: Two Formats

0061 736d 0100 0000 0138 0a60 027f 7f01

7f60 037f 7f7f 017f 6002 7f7f 0060 017f

0060 037f 7f7f 0060 017f 017f 6004 7f7f

7f7f 017f 6001 7f01 7e60 0000 6002 7e7f

017f 0230 010f 2e2f 6865 6c6c 5f5f 7761

736d 2e6a 731c 5f5f 7762 675f 616c 6572

745f 3238 3437 6336 3164 6632 3737 3436

3563 0002 0331 3005 0101 0300 0102 0002

0902 0002 0203 0402 0202 0303 0400 0600

0104 0105 0102 0103 0300 0506 0000 0000

(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (type (;1;) (func (param i32 i32 i32) (result i32)))

 (type (;2;) (func (param i32 i32)))

 (type (;3;) (func (param i32)))

 (type (;4;) (func (param i32 i32 i32)))

 (type (;5;) (func (param i32) (result i32)))

 (import "./hell__wasm.js" "alert" (func (;0;) (type 2)))

 (func (;1;) (type 5) (param i32) (result i32)

 (local i32 i32 i32 i32 i32 i32 i32 i32 i64)

 block ;; label = @1

 block ;; label = @2

 block ;; label = @3

 local.get 0

 i32.const 245

 i32.ge_u

 if ;; label = @4

 local.get 0

 i32.const -65587

 i32.ge_u

 …
program.wasm

program.wat

WebAssembly in Practice: Two Formats

program.wasm program.wat

wasm2wat

wat2wasm

WebAssembly in Practice: Compiling to WebAssembly
Many existing compilers rely on LLVM support

Emscripten generates a .wasm and all necessary glue code

$ emcc hello.c -o hello.html

$ clang --target=wasm32 … hello.wasm hello.c

WebAssembly in Practice: Interfacing with JavaScript
WebAssembly object provides way of interacting with WebAssembly

WebAssembly.instantiateStreaming(fetch('myModule.wasm'), importObject).then(obj => {

 obj.instance.exports.exported_func();

 var i32 = new Uint32Array(obj.instance.exports.memory.buffer);

 var table = obj.instance.exports.table;

 console.log(table.get(0)());

});

WebAssembly in Practice: Interfacing with JavaScript
(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (type (;1;) (func (param i32 i32 i32) (result i32)))

 (type (;2;) (func (param i32 i32)))

 (import "./module.js" "add" (func (;0;) (type 0)))

 (func (;1;) (type 0) (param i32 i32) (result i32)

 i32.const 1

 i32.const 2

 call 0)

 …)
var importObject = {

 imports: { add: (x, y) => { return x + y; } }

};

WebAssembly in Practice: WASI
For stand-alone applications, it is necessary to interface with the operating system

WASI is currently experimental

int main() {

 printf("Hello, world!\n");

}

Can I Use WebAssembly Today?
Yes!

https://caniuse.com/wasm

Can I Use WebAssembly Today?
Many projects are starting to target WebAssembly

For a full list of resources: https://github.com/mbasso/awesome-wasm

WebAssembly’s Stack-Based Execution Model
(module

 (func (type 0)

 (param i32) (result i32) …)

 (func (type 1)

 (param i32 i32) (result)

 local.get 0 ;; -> i32

 if ;; i32 ->

 local.get 0 ;; -> i32

 local.get 1 ;; -> i32

 i32.add ;; i32 i32 -> i32

 call 0 ;; i32 -> i32

 drop ;; i32 ->

 end))

29

i32

i32

WebAssembly
Advantages

- Simplicity

- Secure design

- WASI security

- Performance

- Energy usage

- Openness

Simplicity of WebAssembly: Size of the Specification
WebAssembly core is a small, well-defined standard

Semantics defined formally, along with a reference implementation

Specification size (number of pages)

let rec step (c : config) : config =
 let {frame; code = vs, es; _} = c in
 let e = List.hd es in
 let vs', es' =
 match e.it, vs with
 | Plain e', vs ->
 (match e', vs with
 ...
 | LocalGet x, vs ->
 !(local frame x) :: vs, []

Simplicity of WebAssembly

(module
 …
 ;; Function with two parameters, one return value
 (func (type 1) (param i32 i32) (result i32)
 local.get 0 ; stack: [arg0]
 local.get 1 ; stack: [arg1, arg0]
 i32.add) ; stack: [arg0+arg1]
 ;; Function with one parameter, no return value
 (func (type 0) (param i32) (result)
 …)
 …)

Secure Design of WebAssembly: Sandboxing
Applications are sandboxed

- Can’t escape expect through appropriate APIs

- Isolated from each other

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by

default, composable future for WebAssembly" (2019)

Secure Design of WebAssembly: Memory Model
WebAssembly programs have a single “linear memory”, isolated from the rest

Pointer arithmetic etc. are still doable, but potential damages are lessened

Linear memory is initialized to 0

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by

default, composable future for WebAssembly" (2019)

(func (;memory-usage;) (type 0)
 (param i32) (result i32)
 global.get 0 ;; [global]
 local.get 0 ;; [arg0, global]
 i32.store ;; [] binds @global to arg0 in memory
 global.get 0 ;; [global]
 i32.load ;; [arg0] loads @global from memory
)

Secure Design of WebAssembly: Memory Safety
The linear memory is separated from:

- Local and global variables (~registers)

- Call stack

Linear memory is not executable: defeats some code injection attacks

call stack

heap

bss

data

text

x86 memory

i32.const 1

local.set 0

i32.const 2

global.set 0

i32.const 0

call 0

Everything lives in a different region.

Out of bounds accesses are caught.

Secure Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)

2. Direct function calls

3. Function returns

4. Indirect function calls

Secure Design of WebAssembly: Structured Control Flow
WebAssembly has no instruction for arbitrary jumps

Local control-flow instructions:

- Scopes: block, loop, if
- Jumps: br, br_if, br_table

block

 i32.const 1

 if

 br 0

 else

 br 1

 end

end

Secure Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)

2. Direct function calls

3. Function returns

4. Indirect function calls

✔

Secure Design of WebAssembly: Direct Function Calls
(module

 (type (;0;) (func (param i32 i32) (result i32)))

 (func (;0;) (type 0) (param i32 i32) (result i32)

 local.get 0

 local.get 1

 i32.add)

 (func (;1;) (type 0) (param i32 i32) (result i32)

 i32.const 1

 i32.const 2

 call 0))

Call implicitly manages the

call stack. The program has no

way of accessing it through

other means.

Secure Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)

2. Direct function calls

3. Function returns

4. Indirect function calls

✔
✔
✔ In x86, the return address is

stored on the stack, and can be

overwritten by an attacker in a

vulnerable program

Secure Design of WebAssembly: Indirect Function Calls

(func (;0;) (type 0) (param i32) (result i32)

 local.get 0

 call_indirect (type 0))

(func (;1;) (type 0) (param i32) (result i32) ...)

(func (;2;) (type 0) (param i32) (result i32) ...)

(func (;3;) (type 1) (param i32 i32) (result i32) ...)

(table (;0;) 4 4 funcref)

(elem (;0;) (i32.const 1) 1 2 3) Possible targets of indirect calls, but can

be mutated by host environment

Call target must have the right type

❌

Secure Design of WebAssembly: Control-Flow Integrity
Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, …)

2. Direct function calls

3. Function returns

4. Indirect function calls

✔
✔
✔
~

Secure Design of WebAssembly: Lack or Arbitrary Jumps
No arbitrary jumps:

- Prevents ROP

- Limit code-reuse attacks ✗
Yun, J., Park, K. W., Koo, D., & Shin, Y. (2020). Lightweight and seamless

memory randomization for mission-critical services in a cloud platform.

Energies, 13(6), 1332.

(func (;0;) (type 0) (param i32) (result i32)

 local.get 0

 call_indirect (type 0))

(func (;1;) (type 0) (param i32) (result i32) ...)

(func (;2;) (type 0) (param i32) (result i32) ...)

(func (;3;) (type 1) (param i32 i32) (result i32) ...)

(table (;0;) 4 4 funcref)

(elem (;0;) (i32.const 1) 1 2 3)

Secure Design of WebAssembly: WASI
WASI relies on capability-based security

Watson, Robert NM, et al. "Capsicum: Practical Capabilities for UNIX."

19th USENIX Security Symposium (USENIX Security 10). 2010.

Energy Usage
WebAssembly is still in its early years, with lots of room to grow

van Hasselt, Max, et al. "Comparing the Energy Efficiency of WebAssembly

and JavaScript in Web Applications on Android Mobile Devices." (2022).

De Macedo, João, et al. "On the Runtime and Energy Performance of

WebAssembly: Is WebAssembly superior to JavaScript yet?." 2021 36th

IEEE/ACM International Conference on Automated Software Engineering

Workshops (ASEW). IEEE, 2021.

Performance
Again: plenty of room for improvements, while JS engines have been heavily optimized

As input size increases, JS

becomes faster (JIT)

Wang, Weihang. "Empowering Web Applications with

WebAssembly: Are We There Yet?." 2021 36th IEEE/ACM

International Conference on Automated Software Engineering

(ASE). IEEE, 2021.

Johansson, L. (2022). Ray tracing in WebAssembly, a

comparative benchmark.

Ketonen, T. (2022). Examining performance benefits of

real-world WebAssembly applications: a quantitative

multiple-case study.

On a real-world

application (the Micrio

storytelling platform)

On a raytracer

Language Support for WebAssembly
https://github.com/appcypher/awesome-wasm-langs

Enterprise-Backed Standard
“The Bytecode Alliance is committed to establishing a capable, secure platform that

allows application developers and service providers to confidently run untrusted code,

on any infrastructure, for any operating system or device, leveraging decades of

experience doing so inside web browsers.”

 – bytecodealliance.org/

Enterprise-Backed Standard

Open Standard
The goal is to have a standard, not a specific implementation

Standard can be extended through a proposal system, open to anyone

Features can only be standardized after being implemented in 2+ VMs

WebAssembly
Security Concerns

- Malwares

- Vulnerabilities and their exploits

- Execution differences

- Compiler bugs

- Runtime bugs

WebAssembly Malwares
If a malicious program runs in a sandbox, can it still cause harm? Yes!

Musch, Marius, et al. "New Kid on the Web: A Study on the Prevalence of

WebAssembly in the Wild." International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment. Springer, Cham, 2019.

WebAssembly Malwares: Rise and Fall of Cryptojacking
In 2017: Coinhive mining scripts get misused on purpose

In 2019: Coinhive shuts down

Since then, 1% of sites that used Coinhive still do cryptojacking

“We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still

alive, but not as attractive as it used to be.”

Varlioglu, Said, et al. "Is cryptojacking dead after coinhive shutdown?." 2020 3rd

International Conference on Information and Computer Technologies (ICICT). IEEE,

2020.

WebAssembly Malwares: A More Recent Study
Finds a similar number: 1% of binaries found on the web are doing cryptomining

“We find WebAssembly-based cryptominers to have significantly dropped in

importance compared to the results of an earlier study. This finding motivates security

research to shift the focus from malicious WebAssembly to vulnerabilities in

WebAssembly binaries”

Hilbig, Aaron, Daniel Lehmann, and Michael Pradel. "An empirical study of real-world

webassembly binaries: Security, languages, use cases." Proceedings of the Web

Conference 2021. 2021.

Vulnerabilities
How can we attack a WebAssembly binary?

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Missing Protection: Unmapped Pages
In native code: accessing unmapped pages

trigger segfaults

In WebAssembly: all access to linear memory

are allowed

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Missing Protection: ASLR
In native code: layout can be randomized

Render attacks on 64 bits much more difficult

In WebAssembly: no randomization

Even if added, 32 bit makes it easy to defeat

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Missing Protection: Page Protection
In native code: pages have “protection flags”:

readable, writable, executable

In WebAssembly: linear memory is r, w,

but not x

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Managed vs. Unmanaged Data
Locals, globals, call stack, etc. are isolated in “managed data”

However, compilers need to use linear memory for unmanaged data: strings, arrays, …

→ Even though the WebAssembly call stack is isolated, the C call stack may not be!

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Attack: Stack-Based Buffer Overflow
WebAssembly is supposedly protected against stack smashing attacks

… but due to unmanaged stack when compiling from C, attacks are still possible

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Missing Protection: Stack Canaries
In native code: stack smashing is prevented

through stack canaries

In WebAssembly: return address cannot

be rewritten, but data can still be overwritten

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Memory Allocators in WebAssembly
Memory is manually managed → need for an allocator

Binary size is an important factor → use of minimal allocators

Default (native) allocator dlmalloc are hardened against many attacks

Minimal allocators (wee_alloc, emmalloc) are not…

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Attack: Heap Metadata Corruption
“Unlink exploit” possible against emmalloc

After an overflow, allocator merges

free block with another non-free one

Value of prev and next can be used for

writing to arbitrary locations

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

What Can be Overwritten?
- Any stack data

→ But no return addresses!

- Any heap data

- Constant data! Read-only linear memory does not exist in WebAssembly

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Arbitrary Code Execution?
Three main approaches to achieve it for WebAssembly:

- Redirect indirect calls

- Inject code in the host environment

- Application-specific

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Arbitrary Code Execution through Indirect Calls
Not really “arbitrary”

(func (;0;) (type 0) (param i32) (result i32)

 local.get 0

 call_indirect (type 0))

(func (;1;) (type 0) (param i32) (result i32) ...)

(func (;2;) (type 0) (param i32) (result i32) ...)

(func (;3;) (type 1) (param i32 i32) (result i32) ...)

(table (;0;) 4 4 funcref)

(elem (;0;) (i32.const 1) 1 2 3)

Call target must have the right type

❌

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Arbitrary Code Execution through Host Environment

char *payload = “alert(‘XSS’);// ”

 “ ”

 “ ”

 “ ”

 “ \x40\x00\x05\x00\x00\x00”;

memcpy(comms.msg, payload, 72); // comms.msg is 64 bytes long!

emscripten_run_script(“console.log(‘Porting my program to WASM!’);”);

…

⚡

McFadden, B., Lukasiewicz, T., Dileo, J., & Engler, J. (2018). Security chasms of wasm.

NCC Group Whitepaper.

Arbitrary Code Execution through Application-Specific Means
Example: WebAssembly issues a web request through an imported function

Different host could be contacted through overwrites

Example: WebAssembly modules contain interpreter/runtime for CLI/.NET

Manually crafted code could be interpreted

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

End-to-End Case Study: XSS in the Browser
Including vulnerable code may lead to XSS

Example: image manipulation website that depends on vulnerable version of libpng

- Specific version of libpng suffers from a buffer overflow

Overwrites the img_tag buffer

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

End-to-End Case Study: Remote Code Execution in Node.js
Including vulnerable code in server-side WebAssembly can enable RCE

Example: server accepts log requests from clients

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

End-to-End Case Study: Arbitrary File Write in VM
Some attacks impossible on native code become possible in WebAssembly

Example: writing to a file

Read-only in native code

Can be overwritten in WASM

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

Execution Differences
Dataset of 17 802 programs

(terminating and deterministic)

Compile & run .wasm

Compile & run native

Compare return code and stdout

Programs exhibiting differences

4 911 programs

Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Execution Differences: Wide Characters
Most differences are caused by files using wide characters

73

wprintf(L"hello\n");

Displays nothing

WebAssembly Native

Displays hello

Requires calling fwide(stdout, 1) Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Execution Differences: puts

74

puts("hello\n");

Returns 0

WebAssembly Native

Returns 6

Documentation states that puts returns a

“non-negative value upon success”

Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Execution Difference: Pointer Size
WebAssembly is a 32-bit architecture

75

sizeof(void *);

Returns 4

WebAssembly Native

Returns 8

Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Execution Difference: Uninitialised Data
WebAssembly’s memory is zero initialized, reducing the chance of seeing “garbage”

76

printf("%s", malloc(5*sizeof(char)));

Prints the empty string

WebAssembly Native

Prints garbage

Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Execution Difference: Malloc/Free Implementation

77

char *data = malloc(100 * sizeof(char));

data += 10;

free(data);

Runs successfully

WebAssembly Native

free(): invalid pointer

Execution Difference: Memory Protections

78

char *data = malloc(100 * sizeof(char));

data -= 10;

strcpy(data, other);

Runs successfully

WebAssembly Native

SIGSEGV

Summary of Differences Encountered

79

Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

risks of porting C programs to webassembly. In Proceedings of the

37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Compiler Bugs
Study of 146 bugs in WebAssembly compilers

Romano, Alan, et al. "An Empirical Study of Bugs in WebAssembly Compilers." 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE).

IEEE, 2021.

Runtime Bugs

Any break in the isolation guarantee can result in malicious modules corrupting or

stealing other modules’ data

program.wasm x86

WASM “interpreter”

Need to trust it

Runtime Bugs
Flaws in x86 code generation can happen!

Detected because programs were crashing in the wild

Runtime Bugs
VeriWasm moves the trust further along the chain

Johnson, E., Thien, D., Alhessi, Y., Narayan, S., Brown, F., Lerner, S., ... & Stefan, D.

(2021, February). Доверяй, но проверяй: SFI safety for native-compiled Wasm. In

Network and Distributed System Security Symposium (NDSS). Internet Society.

Is WebAssembly That Insecure?
Most security aspects also affect native binaries!

The picture looks much better for WebAssembly than native

WebAssembly is still young: lots of room for improvements & better stability

The Future of
WebAssembly - Feature proposals and

WebAssembly 2.0

- Tools for WebAssembly

Extensible, Open Standard
Anyone can submit proposals to extend WebAssembly!

Proposal Process
- Phase 0 (“Pre-Proposal”): someone has an idea, discussion is initiated

Move to next phase if CG deem that it is in-scope and feasible

- Phase 1 (“Feature-Proposal”): iteration over the features

Move to next phase once spec text has been extended

- Phase 2 (“Proposed Spec Text Available”): implementation + tests

Move to next phase once test suite has been updated and runs against 1 impl.

- Phase 3 (“Implementation”): implementation in other VMs + toolchains

Move to next phase once 2 VMs + 1 toolchain support it

- Phase 4 (“Standardization”): more discussion, edge cases, minor changes

Moves to next phase when consensus is reached

- Phase 5 (“Feature Standardized”): update to W3C recommendation

Proposals Implementations

Feature Proposals: Accepted Proposals
Accepted proposals will make it to the next standard specification

Mostly focus on important

features missing in 1.0

Feature Proposals: Proposals In-Progress
Other in-progress proposals are in an earlier phase

Extend CSP with policies

specific for WebAssembly

Feature Proposals: In-Progress
Other noteworthy proposals:

- Threads

- Garbage collection

- Feature detection

- Constant time

Tools for WebAssembly
There is a lot of ongoing research towards tool support for WebAssembly in order to

- Analyze binaries

- Increase their security

- Perform automated testing

- …

Program Analyses for WebAssembly

Security of
WebAssembly Applications
Quentin Stiévenart, Vrije Universiteit Brussel

SecAppDev 2022

@acieroid quentin.stievenart@vub.be

