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History of Native Web Technologies



History of Native Web Technologies

Why do we want native web technologies?

Optimize compute-intensive parts of an application
Enable ahead-of-time compilation

Hardware accelerated graphics

Compile from a variety of programming languages



Java Applets (1995-2017) (( m
First released with Java 1 (1995) t J a Va

Compmmr
—

Requires local installation of Java + browser plugin
JVM running the applet is separated from browser at OS-level

Only supports Java

=

Phased out from 2013, fully removed in Java 9 (2017)

<applet code="First.class" width="300" height="300"> B L -

ime, h  Gravity vector

Initial angle, o Final time,
Start simulation F9 Reset
o [alekor (2 o» o)




ActiveX (1996-2015) ackiva
—"

Introduced by Microsoft in 1996, as a competitor to Java Applets

Supports more programming languages, supposedly faster

Designed to be cross-platform and not tied to Windows (but not really in practice)
Many criticisms: security issues (no sandboxing), lack of portability

Dropped support in Microsoft Edge (2015)



Flash (1996-2017)

Released by Macromedia in 1996

Closed-source implementation

Many security issues: 1078 CVE entries, 842 leading to arbitrary code execution

Deprecated by Adobe in 2017, EOL in 2020



Google Native Client & PNaCl (2011-2017) *§ nativeclient

Native code for web apps

Introduced by Google in 2011
Sandboxing technology to run native code
OS and architecture independent

Deprecation announced in 2017 in favor of WebAssembly



asm.js (2013-...)

Strict subset of JavaScript: can be run on any JS engine =
mozilla

FOUNDATION

Rely on annotations to compile AOT:

- More efficient representations (e.g., unboxed ints)
- If validation fails, falls back to regular JIT
- Manual memory management, no GC

Still supported, mostly as fallback

Emscripten introduced to compile C and C++ to asm.js

function isPair(x) {
X =Xx | 0;

}

return ((x & 1 ? MEM8[x & 31] | @ : (MEM32[x >> 2] | @) >>> 2 & 63 | ©) | 9)




WebAssembly: What It Is, Its Goals, and Its Usage



WebAssembly

“WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based
virtual machine. Wasm is designed as a portable compilation target for programming
languages, enabling deployment on the web for client and server applications.”

— https://webassembly.org/



A Brief History of WebAssembly

2015

2016

2017

2018

2019

First public announcement Public Announcement (-u)
‘jfbastien released this Jun 18, 2015 (} public-annou. -0- 9974cde

“Unlike asm.,js, which was just a pure optimization - ie. it did not require
Standardization _ WebASSGl‘l‘lbly iS belng developed as a Standard.” As discussed in #150, this is the state of the repository on the initial public announcement of WebAssembly.

First demo

“AngryBots” game developed in Unity,
compiled to WebAssembly

End of preview phase

First working draft

WebAssembly Specification
W3C recommendation

For WebAssembly Core 10 WebAssembly Core Specification W3
W3C Recommendation, 5 December 2019

This version:
https://iwww.w3.org/TR/2019/REC-wasm-core-1-20191205/




WebAssembly Goals

Major goals:

- Provide an execution environment for client- and server-side applications
- Enable almost-native performance

- Isolate executed code from the rest of the browser/OS

- Open standard



WebAssembly Usage in a Nutshell

program.c

E WASM compiler

program.rs

program.wasm

program.go




Today’s Use of WebAssembly: Web Applications

earth.google.com



Today’s Use of WebAssembly: loT

Wasmachine: Bring [0T up to Speed with A
WebAssembly OS

Elliott Wen
The University of Auckland
jwen929 @aucklanduni.ac.nz

Abstract—WebAssembly is a new-generation low-level byte-
code format and gaining wide adoption in browser-centric ap-
plications. Nevertheless, WebAssembly is originally designed as
a general approach for running binaries on any runtime envi-
ronments more than the web. This paper presents Wasmachine,
an OS aiming to efficiently and securely execute WebAssembly
applications in IoT and Fog devices with constrained resources.
Wasmachine achieves more efficient execution than conventional
OSs by compiling WebAssembly ahead of time to native binary
and executing it in kernel mode for zero-cost system calls.
Wasmachine maintains high security by not only exploiting many
sandboxing features of WebAssembly but also implementing the
OS kernel in Rust to ensure memory safety. We benchmark
commonly-used IoT and fog applications and the results show
that Wasmachine is up to 11% faster than Linux.

I. INTRODUCTION

Gerald Weber
The University of Auckland
g.weber@aucklanduni.ac.nz

A conventional WebAssembly runtime, as shown in Fig I
(a), is a program that translates WebAssembly binary instruc-
tions to native CPU machine codes before execution. The
translation is most achieved in a just-in-time (JIT) fashion;
when a WebAssembly application starts, it will be first inter-
preted, and after a while, methods frequently executed will
be compiled to native codes to improve execution efficiency.
JIT enables fast start up time but less efficient codes due to
limited time that can be spent on code optimization. Using JIT
is reasonable in the context of web browsing, where startup
time may significantly affect user experience. However, it is
suboptimal for IoT or fog computing, where code efficiency
is preferred.

A runtime also assists a WebAssembly program with sys-
tem call operations (e.g.. networking or file access). Specifi-

Wen and Weber,

PerCom 2020



Today’s Use of WebAssembly: Embedded Systems

S8 vl WA
RDUINO

Gurdeep Singh and Scholliers, MPLR’19



Today’s Use of WebAssembly: Smart Contract Platforms

Ewasm - Ethereum
Webassembly v




Today’s Use of WebAssembly: Browser Add-Ons

& gorhill /uBlock ( Public

<> Code Issues 35 Pull requests

¥ master v | uBlock/src/js/wasm/

' gorhill Refactor hntrie to avoid the need f...

README.md
biditrie.wasm
biditrie.wat
hntrie.wasm

hntrie.wat

1

Actions

on Aug 10, 2021 ) History

4 years ago

8 months ago

8 months ago



Today’s Use of WebAssembly: Edge Computing

Compute@Edge fa S tly;

The Compute@Edge platform helps you compile your custom code to WebAssembly and runs it at the
Fastly edge using the WebAssembly System Interface for each compute request. Per-request isolation and
lightweight sandboxing create an environment focused on performance and security.

Serverless isolation technology

Compute@Edge runs WebAssembly -~ (Wasm). When a Compute request is received by Fastly, an instance
is created and the serverless function is run, allowing developers to apply custom business logic on
demand.



WebAssembly in Practice: Two Formats

(module

(type (func (param i32 i32) (result i32)))

(type (func (param i32 i32 i32) (result i32)))
027f 701 (type (func (param i32 i32)))

(type (func (param i32)))
0060 017f (type (func (param i32 i32 i32)))

(type (func (param i32) (result i32)))
6oe4 717t (import "./hell__wasm.js" "alert" (func (type 2)))
6002 7e7f (func (type 5) (param i32) (result i32)

(local 132 132 132 i32 132 i32 i32 132 i64)

5f5f 7761 lock

616c 6572 block
block
8737 3436 local.get 0
0102 0002 i32.const 245
i32.ge_u
0400 0600 -

if
a000 o000 local.get 0
i32.const -65587

program.wasm i32.ge_u

program.wat




WebAssembly in Practice: Two Formats

wasm2wat

program.wasm program.wat

wat2wasm



WebAssembly in Practice: Compiling to WebAssembly

Many existing compilers rely on LLVM support

Emscripten generates a .wasm and all necessary glue code

S emcc hello.c -o hello.html

S clang --target=wasm32 .. hello.wasm hello.c

| emscripten



WebAssembly in Practice: Interfacing with JavaScript

WebAssembly object provides way of interacting with WebAssembly

WebAssembly. ( ( ), importObject). (obj => {
obj.instance.exports. OF

var 132 = new (obj.instance.exports.memory.buffer);

var table = obj.instance.exports.table;
console. (table. (0)());

IOF




WebAssembly in Practice: Interfacing with JavaScript

(module
(func (param i32 i32) (result i32)))
(func (param 132 i32 i32) (result i32)))
(func (param i32 i32)))
"./module.js" "add" (func (type 0)))

(type 0) (param 182 i32) (result i32)

i32.const 1

132 .consip”2

call @) var importObjett =

imports: { add: (x, y) => { return x + y; } }
}i




WebAssembly in Practice: WASI

For stand-alone applications, it is necessary to interface with the operating system

WASI is currently experimental E—
( ,( MUSL libc “top half”
int main() { libpreopen WAS! libo
printf("Hello, world!\n"); [ Svstemca" wrappers

WASI API ,___% ----- i ----- { ..... } ...... .

[[[ Implmmaﬁons ofWASI }

Application v \_/

(



Can | Use WebAssembly Today?

Yes!

https://caniuse.com/wasm

Usage % of all users s
WebAssembly & -otHer
Global 93.06%
WebAssembly or "wasm" is a new portable, size- and load-time-

efficient format suitable for compilation to the web.

[@Vgd Il Usage relative  Date relative Filtered WNIN &

uc
& Safari on* * Android* O g o Firefox f B S Baid KaioS
IE Edge Firefox ~ Chrome Safari Opera ai%rlson Opera Mini 2n¢ro! pera for IreTox 1ok for 2mang 24 Ao al

Browser Mobile Android  Android  Android Internet  Browser  Browser  Browser

EDCTEMED  ERTEEm
|




Can | Use WebAssembly Today?

Many projects are starting to target WebAssembly

For a full list of resources: https://github.com/mbasso/awesome-wasm

Blazor

Build client web apps with C# Yew

Rust / Wasm client web app framework



WebAssembly’s Stack-Based Execution Model

(module
(func (type 0)
(param i32) (result i32) ...)
(func (type 1)
(param i32 i32) (result)
local.get @ ;; -> 132

1 132 -> )
22 i32

local.get @ ;; -> 132

local.get 1 ;; -> 132 132
i32.add ;; i32 i32 -> i32
0 ;; 132 -> 1i32
drop ;; 132 ->
))




WebAssembly
Advantages

- Simplicity

- Secure design
- WASI security
- Performance

- Energy usage
- Openness



Simplicity of WebAssembly: Size of the Specification

WebAssembly core is a small, well-defined standard

Semantics defined formally, along with a reference implementation

local.get « 1500
1. Let F be the current frame.
2. Assert: due to validation, F'locals[z] exists.
3. Let val be the value F.locals[z].
1000

4. Push the value val to the stack.
F;(local.getz) — F;val (if F.locals[z] = val)

let rec step (c : config) : config =
let {frame; code = vs, es; _} = c in 500
let e = List.hd es in
let vs', es' =
match e.it, vs with

| Plain e', vs ->

(match e', vs with 0
o HTML 5 Css 2.1 ECMAScript 2015 WebAssembly 1.0
| LocalGet x, vs -> . . .

I (local frame x) :: vs, [] Specification size (number of pages)




Simplicity of WebAssembly

(module

(func (type 1) (param i32 i32) (result i32)
local.get @ ; stack: [arg9]
local.get 1 ; stack: [argl, argo]
i32.add) ; stack: [arg@+argl]

(func (type 0) (param i32) (result)

)
)




Secure Design of WebAssembly: Sandboxing

Applications are sandboxed

- Can’t escape expect through appropriate APIs
- Isolated from each other

Here, you can use
getrandom... but to ensure
everyone's safety, that's the

only one I'm giving you

/ / sandboxing

kgetrandom

( usb_make_path
Y p en clock
getrandom

write

Clark, Lin. "Announcing the Bytecode Alliance: Building a secure by
default, composable future for WebAssembly" (2019)



Secure Design of WebAssembly: Memory Model

WebAssembly programs have a single “linear memory”, isolated from the rest

Pointer arithmetic etc. are still doable, but potential damages are lessened

Linear memory is initialized to 0

(func (type 9)
(param i32) (result i32)
global.get ©
local.get ©

132 .store
global.get ©
i32.1load




Secure Design of WebAssembly: Memory Safety

The linear memory is separated from:

- Local and global variables (~registers) call stack
- Call stack
Linear memory is not executable: defeats some code injection attacks
heap
132.const 1
local.set © bss
, Everything lives in a different region.
132.const 2 Out of bounds accesses are caught. data
global.set ©
132.const © text

call ©

x86 memory



Secure Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

1. Local jumps (if, br, ...)
2. Direct function calls
3. Function returns

4. Indirect function calls



Secure Design of WebAssembly: Structured Control Flow

WebAssembly has no instruction for arbitrary jumps

Local control-flow instructions:
] block
- Scopes: block, Loop, 1f 132 const 1

- Jumps: br,br_if,br_table




Secure Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

Local jumps (if, br, ...)
2. Direct function calls
3. Function returns
4. Indirect function calls



Secure Design of WebAssembly: Direct Function Calls

(module
(type (func (param i32 i32) (result i32)))
(func (type 0) (param i32 i32) (result i32)

local.get ©
local.get 1

i32.add)
(func (type 0) (param i32 i32) (result i32)

i32.const 1
Call implicitly manages the

132.const 2 call stack. The program has no
call 0)) way of accessing it through
other means.




Secure Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

1

Local jumps (if, br, ...)

Direct function calls
In x86, the return address is

Function returns stored on the stack, and can be

4. Indirect function calls overwritten by an attacker in a
vulnerable program




Secure Design of WebAssembly: Indirect Function Calls

(func (type 0) (param i32) (result i32)

local.get ©

call_indirect (type 0)) Call target must have the right type

(type ©) (param i32) (result i32) ...)
(type 0) (param i32) (result i32) ...)
(type 1) (param i32 i32) (result i32) ...)
4 4 funcref)

Possible targets of indirect calls, but can

(i32.const 1) 1 2 3) be mutated by host environment




Secure Design of WebAssembly: Control-Flow Integrity

Four control-flow mechanisms that need to be protected:

Local jumps (if, br, ...)
Direct function calls
Function returns

%4~ Indirect function calls



Secure Design of WebAssembly: Lack or Arbitrary Jumps

Code Segment
Stack Segment T ____

Return Address

No arbitrary jumps:

- Prevents ROP

- Limit code-reuse attacks T —

Gadget#3 Address”

Gadget#2 Address
(func (type @) (param i32) (result i32) L] Gadget#1 Address

local.get ©

push rbp )
mov rbp, rsp

pop rbp
ret Y,

call_indirect (type 9))
(func (type @) (param i32) (result i32) ...)

Yun, J., Park, K. W, Koo, D., & Shin, Y. (2020). Lightweight and seamless
memory randomization for mission-critical services in a cloud platform.
Energies, 13(6), 1332.

(func (type @) (param i32) (result i32) ...)
(func (type 1) (param i32 i32) (result i32)
(table 4 4 funcref)

(elem (i32.const 1) 1 2 3)




Secure Design of WebAssembly: WASI

WASI relies on capability-based security

You seem like an
app i can trust.

Here are the keys
to the castle.
Just keep it safe!

J

A few nanoseconds later...

Come on,

everybody! You get a
set of keys!
And you get a
set of keys!
Everyone gets Look at that poor,
\ a set of keys! lcneIY bitcoin. Il fi.nd a
/ nice home for it .. and look at what a
| “ giﬁ@i%
|

8 Fommmmme—m—mm e mm e
~al
il struct struct
Process file 3571 ___pl STf(IUCt ~ struct capability L™ SGile ™ wnode
descriptors lle mask = READ ,,"
l’l
=3 1 st(uct | struct capability .'r
il mask = READ | WRITE

Capsicum

Watson, Robert NM, et al. "Capsicum: Practical Capabilities for UNIX."
19th USENIX Security Symposium (USENIX Security 10). 2010.

lovely file system they have



Energy Usage

WebAssembly is still in its early years, with lots of room to grow

CIRCLE SORTING

o)

x

ENERGY (JOULES)
Y
S

2
=3

20

WASM IS

SMALL MEDIUM

De Macedo, Jo#o, et al. "On the Runtime and Energy Performance of
WebAssembly: Is WebAssembly superior to JavaScript yet?." 2021 36th
IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW). IEEE, 2021.

TIME (SECONDS)

== CPU ENERGY

wDRAM ENERGY

* RATIO (JOULES/SECOND)
—TIME (SECONDS)

150
=
c
i9
o
100
E Language
2 B3 JavaScript
2 B3 WebAssembly
>
<
8 50
w “

Chrome Chrome Firefox Firefox

and>l0IdD

van Hasselt, Max, et al. "Comparing the Energy Efficiency of WebAssembly
and JavaScript in Web Applications on Android Mobile Devices." (2022).



Performance

Again: plenty of room for improvements, while JS engines have been heavily optimized

As input size increases, JS
becomes faster (JIT)

Input Size | SD #° SD gmean’ ] SU #  SU gmean’ [ All gmean®

Extra-small 0 0x | 30 35.30x 1 35.30x 1
Small 1 1.53x | 29 8.35x 1 7.67x T
Medium 17 1:53x 13 3.68x 1 1.38x 1
Large 15 1.67x | 15 1.16x 1 0.83x 1
Extra-large 17 1:22x | 13 1.08x 1 0.92x 1

Wang, Weihang. "Empowering Web Applications with
WebAssembly: Are We There Yet?." 2021 36th IEEE/ACM
International Conference on Automated Software Engineering
(ASE). IEEE, 2021.

On a real-world
application (the Micrio
storytelling platform)

On a raytracer

Average FPS

60000 80%
— 2.9 17.6521
3.0 (Wasm) 70%
50000 e CPU decrease
. 60%
M
g 40000 | 9
P 50%
£
= 30000 | 40%
2
=1
3 30%
€ 20000 1 5.78804
) 20%
10000
10%
0%

o . o . native wasm s
Scripting Rendering Painting System Cumulative
sum
Ketonen, T. (2022). Examining performance benefits of
real-world WebAssembly applications: a quantitative

multiple-case study.

Johansson, L. (2022). Ray tracing in WebAssembly, a
comparative benchmark.



Language Support for WebAssembly

https://github.com/appcypher/awesome-wasm-langs

* Net Forest “ Never

“ AssemblyScript w Forth Nim
Astre Unmaintained . Go Ocaml

- Brainfuck Grain “ Pascal % Swift

§ C Haskell % Perl “ Furbeseript Unmaintained

& cu 8 fava % PHP TypeScript

& C++ “ JavaScript Plorth ,": Wahr Unmaintained

z © Walt Unmaintained

* Clean Julia  Poetry “ Wam Unmaintained
Co “ {gfis Unmaintained “ Python e

- COBOL “ Kotlin/Native “ Prolog “ WebAssembly

% D Kou “ Ruby Wraeket Unmaintained

“ Eel % Lisp . Rust W Zig

“ Elixir * Lobster “. Scheme

“ F# ® Lua “, Scopes

Faust “ Lys “. Speedyfs Unmaintained



!' BYTECODE
o «» ALLIANCE
“The Bytecode Alliance is committed to establishing a capable, secure platform that

allows application developers and service providers to confidently run untrusted code,
on any infrastructure, for any operating system or device, leveraging decades of

Enterprise-Backed Standard

experience doing so inside web browsers.”

— bytecodealliance.org/
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Open Standard

The goal is to have a standard, not a specific implementation
Standard can be extended through a proposal system, open to anyone

Features can only be standardized after being implemented in 2+ VMs



WebAssembly
Security Concerns

- Malwares

- Vulnerabilities and their exploits
- Execution differences

- Compiler bugs

- Runtime bugs



WebAssembly Malwares

If a malicious program runs in a sandbox, can it still cause harm? Yes!

Category # of unique samples # of websites Malicious

Custom 17 (11.3%) 14 (0.9%)

Game 44 (29.3%) 58  (3.5%)

Library 25 (16.7%) 636 (38.8%) 47/
Mining 48  (32.0%) 913  (55.7%)

Obfuscation 10 (6.7%) 4 (0.2%) X

Test 2 (1.3%) 244 (14.9%)

Unknown 4 (2.7%) 5  (0.3%)

Total 150 (100.0 %) 1,639 (100.0 %)

Musch, Marius, et al. "New Kid on the Web: A Study on the Prevalence of
WebAssembly in the Wild." International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, Cham, 2019.



WebAssembly Malwares: Rise and Fall of Cryptojacking

In 2017: Coinhive mining scripts get misused on purpose
In 2019: Coinhive shuts down
Since then, 1% of sites that used Coinhive still do cryptojacking

“We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still
alive, but not as attractive as it used to be.”

Varlioglu, Said, et al. "Is cryptojacking dead after coinhive shutdown?." 2020 3rd
International Conference on Information and Computer Technologies (ICICT). IEEE,
2020.



WebAssembly Malwares: A More Recent Study

Finds a similar number: 1% of binaries found on the web are doing cryptomining

“We find WebAssembly-based cryptominers to have significantly dropped in
importance compared to the results of an earlier study. This finding motivates security
research to shift the focus from malicious WebAssembly to vulnerabilities in
WebAssembly binaries”

Hilbig, Aaron, Daniel Lehmann, and Michael Pradel. "An empirical study of real-world
webassembly binaries: Security, languages, use cases." Proceedings of the Web
Conference 2021. 2021.



Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

n n n
Vu I n e ra b I I Itl es Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

How can we attack a WebAssembly binary? ¢ | FORTI%(§0URCE o
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Missing Protection: Unmapped Pages

In native code: accessing unmapped pages
trigger segfaults

In WebAssembly: all access to linear memory

are allowed

2. Overwrite Data 1. Write Primitive

3. Malicious

Action

Lehmann, D, Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).
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n n n Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
M ISSI n Prote ct I 0 n - AS I_R Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
" 20) (pp. 217-234).
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% unmanaged stack @' | unmanaged stack @’ e
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E | Stack)(mries b ] b
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. . Unmapp€d pages
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Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

L} n n n
M ISSI n Prote ct I 0 n - Pa e Prote ctl 0 n Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
" 20) (pp. 217-234).

In native code: pages have “protection flags™ 2 | FORTI%)fstURCE o
= Heap metadata ;
: € :
= Buffer overflow on Stack overflow of corruption 4
readable, writable, executable : [ iﬁm& e -
= < ¢ 3 | Safe unMing, etc.
E | Stack)(mries b A b
oG
. . Unmapp€d pages
In WebAssembly: linear memory is r, w, g S o—
8 /' Manged, safe J) | A)@ b
but not x % return addresses mm
= [ Page piafections b
() ' -
S 7
~ [“stack data, Stati u it.
ey | fewsma L | il L

I |

!

Critical host functions: ;
o

| Wasm-type-based CFI b

eval(), exec(), fwrite(), ...

3. Malicious
Action

| Redirect indirect calls b‘*




Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

M a n a e d VS U n m a n a e d D ata Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
n 20) (pp. 217-234).

Locals, globals, call stack, etc. are isolated in “managed data”
However, compilers need to use linear memory for unmanaged data: strings, arrays, ...

— Even though the WebAssembly call stack is isolated, the C call stack may not be!

higher higher higher
addr. addr. addr.
Heap Heap Heap
Buffer _—
1 -
s I ?l\é\e,vr growsl Stack I oteir Data
grows I Stack ( ) flow Buffer
unuse growsI Stack I e
Data Data T flow
0— 0— 0 —
(a) emcc 1.39.7 (b) emcc 1.39.7 (c) clang 9 (WASI

(fastcomp backend,  (upstream backend),  with stack-first),
deprecated). clang 9 (WASI). rustc 1.41 (WASI).



Attack: Stack-Based Buffer Overflo

WebAssembly is supposedly protected against stack smashing attacks

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

... but due to unmanaged stack when compiling from C, attacks are still possible

—_

S W 0 N O O & W N =

void parent() {
char parent_frame[8] = "BBBBBBBB"; // Also overwritten
vulnerable(readline());
// Dangerous if parent_frame is passed, e.g., to exec
3
void vulnerable(char* input) {
char same_frame[8] = "AAAAAAAA"; // Can be overwritten
char buffer[8];
strcpy(buffer, input); // Buffer overflow on the stack

3

Unmanaged
stack in linear
memory:

$spt+8 —

$sp —

VM state /
Managed data:

parent_frame

same_frame

buffer

return address

I Overflow



Missing Protection: Stack Ganaries

In native code: stack smashing is prevented
through stack canaries

In WebAssembly: return address cannot

be rewritten, but data can still be overwritten |

parent_frame

return address

stack canary

rsp+16 —

buffer
rsp+8 —

same_frame

rsp —

)

T Overflow

Unmanaged
stack in linear
memory:

$Sp+8 —
$sp —

VM state /
Managed data:

parent_frame

same_frame

buffer

return address

¢ | FORTIFY{SOURCE b
= i o Heap metadata
= Buffer overflow on Stack overflow of corruption i
na; unmanaged stack @' | unmanaged stack @ b
- .
T R | Safe unlpking, etc.i7
% | Stack ¢enaries b A
| UnmapMi pages b
o J{ v oE
i v Manged, safe o
D ’
2 return addresses J) | /%@ b
% | Page p)a@ctions b
S ! ' }
N Stack data, even Kasniat Statically init.
of caller(s) % P 14 “constants” 14

| Wasm-type-based CFI b

Critical host functions:
eval(), exec(), fwrite(), ... 4a*

3. Malicious
Action

| Redirect indirect calls 6*

I Overflow

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).



Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

n
M e m 0 r A I I 0 c atO rS I n We bASSB m b I Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

Memory is manually managed — need for an allocator

Binary size is an important factor — use of minimal allocators

Default (native) allocator dlmalloc are hardened against many attacks

Minimal allocators (wee_alloc, emmalloc) are not...



Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

- Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
Attack: Heap Metadata Corruption .

“Unlink exploit” possible against emmalloc alloc : alloc?

used __{1] ‘ﬂ
bit size | prev payload size | prev pay load

After an overflow, allocator merges 9y
(a) Heap layout before the overflow: two adjacent chunks.

A\

free block with another non-free one

free bit Fake free chunk
Value of prev and next can be used for m S
. . . size | prev payload size | prev | prev | next
writing to arbitrary locations —
Overflow R DO
] ) ) Mirrored overwrite: un>d veilus vaiue
// Called on alloc2, before merging it into allocl. -
void removeFromFreelList(Chunk* chunk) { o next
FreeInfox freelnfo = chunk->freelnfo; ‘ (b) Heap layout after an overflow of alloc1: manipulated
freeInfo->prev->next = freeInfo->next; // mirrored metadata causes mirrored write to a chosen location on free.

freeInfo->next->prev = freelnfo->prev; // write

b



n Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
W h at C a n be Ove rW r I tt e n ? Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
| |

20) (pp. 217-234).

- Any stack data
— But no return addresses!
- Any heap data

- Constant data! Read-only linear memory does not exist in WebAssembly



Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

n n
Arb Itra r C 0 d e EXB c u tl 0 n ? Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
u 20) (pp. 217-234).

Three main approaches to achieve it for WebAssembly:

- Redirect indirect calls
- Inject code in the host environment
- Application-specific



Arbitrary Code Execution through Indirect Calls

Lehmann, D., Kinder, ., & Pradel, M. (2020). Everything Old is New Again: Binary

(13 . 2»
Not really arbltrary Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security

20) (pp. 217-234).

(func (type 0) (param i32) (result i32)

local.get ©

call_indirect (type 0)) Call target must have the right type

(type 0) (param i32) (result i32) ...)
(type 0) (param i32) (result i32) ...)
(type 1) (param i32 i32) (result i32) ...)

4 4 funcref)
(i32.const 1) 1 2 3)



Arbitrary Code Execution through Host Environment

char *payload = “alert(‘XSS’);// ”

\x40\x00\x05\x00\x00\x00™;
memcpy(comms.msg, payload, 72); // comms.msg is 64 bytes long!
emscripten_run_script(“console.log(‘Porting my program to WASM!’);”);




Arbitrary Code Execution through Application-Specific Means

Example: WebAssembly issues a web request through an imported function

Different host could be contacted through overwrites

Example: WebAssembly modules contain interpreter/runtime for CLI/NET

Manually crafted code could be interpreted

Lehmann, D., Kinder, ., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).



End-to-End Case Study: XSS in the Browser

Including vulnerable code may lead to XSS

Example: image manipulation website that depends on vulnerable version of libpng

- Specific version of libpng suffers from a buffer overflow

void main() {
std::string img_tag = "<img src=’data:image/png;base64,";
pnm2png("input.pnm”, "output.png”); // CVE-2018-14550 <@~ Overwrites the img_tag buffer
img_tag += file_to_base64("output.png”) + "’>";
emcc: :global ("document”).call("write”, img_tag);

S O AW N =

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).



End-to-End Case Study: Remote Code Execution in Node.js

Including vulnerable code in server-side WebAssembly can enable RCE

Example: server accepts log requests from clients

1| // Functions supposed to be triggered by requests

2 | void log_happy(int customer_id) { /* ... %/ }

3 | void log_unhappy(int customer_id) { /x ... %/ }

4

5 | void handle_request(char *input1, int input2, char *input3) {

6 void (*xfunc)(int) = NULL;

7 char *happiness = malloc(16);

8 char *other_allocation = malloc(16);

9 memcpy (happiness, inputl, input2); // Heap overflow

10 if (happiness[@] == ’h’) func = &log_happy;

1 else if (happiness[@] == ’u’) func = &log_unhappy;

12 free(happiness); // Unlink exploit overwrites func

13 func(atoi(input3)); // 3rd input is passed as argument

14 | 3} Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary

15 Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

16 | // Somewhere else in the binary:

17 | void exec(const char *cmd) { /*x ... */ }




End-to-End Case Study: Arbitrary File Write in VM

Some attacks impossible on native code become possible in WebAssembly

Example: writing to a file

0O N O O A W N =

Lehmann, D., Kinder, J., & Pradel, M. (2020). Everything Old is New Again: Binary
Security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security
20) (pp. 217-234).

// Write "constant” string into "constant” file

FILE xf = fopen("file.txt", "a");
fprintf(f, "Append constant text.");
fclose(f);

// Somewhere else in the binary:
char buf[32];
scanf("%[*\n]", buf); // Stack-based

< (data (i32.const 65536) "%[*\0a]\00
file.txt\00a\00

Append constant text.\@@...

Read-only in native code
buffer overflow Can be overwritten in WASM

II)



Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

H H risks of porting C programs to webassembly. In Proceedings of the
Xe c u I 0 n I e re n c e S 37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).

Dataset of 17 802 programs
(terminating and deterministic)

‘/\s

: Compile & run native
Compile & run .wasm P! " Y

\/

Compare return code and stdout

.

Programs exhibiting differences
4 911 programs



Execution Differences: Wide Characters

Most differences are caused by files using wide characters

wprintf(L"hello\n");

WebAssembly Native

Displays nothing Displays hello

Requires calling fwide(stdout, 1)



Execution Differences: puts

Documentation states that puts returns a
“non-negative value upon success”

puts("hello\n");

WebAssembly Native

Returns O Returns 6



Execution Difference: Pointer Size

WebAssembly is a 32-bit architecture

sizeof(volid =*);

WebAssembly Native

Returns 4 Returns 8



Execution Difference: Uninitialised Data

WebAssembly’s memory is zero initialized, reducing the chance of seeing “garbage”

printf("%s", malloc(5*sizeof(char)));

WebAssembly Native

Prints the empty string Prints garbage



Execution Difference: Malloc/Free Implementation

char *data = malloc(100 * sizeof(char));

data += 10;

free(data);

WebAssembly Native

Runs successfully free(): invalid pointer



Execution Difference: Memory Protections

char *data = malloc(100 * sizeof(char));

data -= 10;

strcpy(data, other);

WebAssembly Native

Runs successfully SIGSEGV



Stiévenart, Q., De Roover, C., & Ghafari, M. (2022, April). Security

n
S u m m a r Of D Iﬁe re n c es En c 0 u n t e re d risks of porting C programs to webassembly. In Proceedings of the
37th ACM/SIGAPP Symposium on Applied Computing (pp.

1713-1722).
Root cause Due to Programs affected
Different standard library 3574
Wide characters 3253
malloc/free 259
puts 36
printf 26
Security protections 769
Stack smashing 626
Memory protections 143
Execution environment 444
Uninitialised data 382
Size of pointers 26
Size of numbers 18
OS’ environment 18

Memory layout 18




Romano, Alan, et al. "An Empirical Study of Bugs in WebAssembly Compilers." 2021
36th IEEE/ACM International Conference on Automated Software Engineering (ASE).

Compiler Bugs

IEEE, 2021.
Study of 146 bugs in WebAssembly compilers
TABLE II
FINDINGS AND IMPLICATIONS OF OUR STUDY.

Findings

Implications

Data type incompatibility bugs account
for 15.75% of the 146 bugs (Sec-
tion IV-B2).

Porting synchronous C/C++ paradigm
to event-loop paradigm causes a unique
challenge (Section IV-B1).

Supporting (or emulating) linear mem-
ory management models is challenging
(Section IV-B3).

Changes of external infrastructures used
in WebAssembly compilers lead to un-
expected bugs (Section IV-B4).
Despite WebAssembly being platform
independent, platform differences cause
bugs (Section IV-BS).

Unsupported primitives not properly
documented lead to bugs being reported
in the compiler (Section IV-D9).

Some bug reports failed to include criti-
cal information, leading to a prolonged
time of debugging (Section IV-C).
Bugs that manifest during runtime made
up a significant portion (43%) of the
bugs inspected (Section V-B).

77.1% of bug-inducing inputs were less
than 20 line and developers manually
reduce the size of inputs (Section V-D).

Interfaces (e.g., APIs) passing values between WebAssembly and JavaScript caused type incompatibility
bugs when their data types are mishandled in one of the languages. Such interfaces (e.g., ftell, fseek,
atoll, 1llabs, and printf) require more attention.

While automated tools support the synchronous to event-loop conversion (e.g., Asyncify), bugs in them
may cause concurrency issues (e.g., race condition, out-of-order events). Programs going through this
conversation require extensive testing.

WebAssembly emulates the linear memory model (of the native execution environment). Many bugs
reported in this regard require a particular condition (e.g., allocation of a large memory to trigger heap
memory size growth), calling for more comprehensive testing.

Compiler developers should stay on top of developments that occur in the existing infrastructure used
within the compiler. In particular, valid changes (in one context) of existing infrastructure can introduce
unexpected bugs in WebAssembly. Rigorous testing is needed.

The default Emscripten Test Suite focuses on testing V8 browser and Node.js, while there are bugs
reported due to the platform differences (e.g., caused by other browsers and OSes). The test suite should
pay attention to cover broader aspects of the platform differences.

WebAssembly compiler developers should pay attention to keeping the document consistent with the
implementation (e.g., mentioning sigsetjmp and function type bitcasting are not supported).

We observe that the current bug reporting practice can be improved. In particular, an automated tool
that collects critical information (e.g., inputs, compilation options, and runtime environments) would
significantly help in the bug reproduction process.

Many bugs in the compilers cause runtime bugs in the compiled programs, which are more difficult to
detect and fix. To mitigate these bugs, compiler developers should be sure to test the emitted modules in
the test suites more exhaustively.

In many cases, bugs can be successfully reproduced by relatively small inputs that are less than 20 lines.
Currently, developers often manually reduce large inputs. Automated bug-inducing input reduction (e.g.,
delta debugging) would be beneficial.




Runtlme Bugs Need to trust it

WASM “interpreter”

program.wasm > <86

Any break in the isolation guarantee can result in malicious modules corrupting or
stealing other modules’ data



Runtime Bugs

Flaws in x86 code generation can happen!

Memory access due to code generation flaw in Cranelift module
cfallin published GHSA-hpqh-2wqx-7qp5 on May 21, 2021

Package Affected versions Patched versions
cranelift-codegen (crates.io) <=0.73.0 0.73.1, 0.74.0
Description

There is a bug in 0.73.0 of the Cranelift x64 backend that can create a scenario that could result in a potential sandbox escape in a
WebAssembly module. Users of versions 0.73.0 of Cranelift should upgrade to either 0.73.1 or 0.74 to remediate this vulnerability. Users
of Cranelift prior to 0.73.0 should update to 0.73.1 or 0.74 if they were not using the old default backend.

Detected because programs were crashing in the wild



Johnson, E., Thien, D., Alhessi, Y., Narayan, S., Brown, E, Lerner, S., .. & Stefan, D.

n
R u n tl m e B u S (2021, February). losepsiii, Ho npoepsii: SFI safety for native-compiled Wasm. In
Network and Distributed System Security Symposium (NDSS). Internet Society.

VeriWasm moves the trust further along the chain

VeriWasm
- foo:
i Lucet M—>[ Yaxpeax ]—» push rbp;
(issassembly) mov rbp, rsp;
safe?
bar:

O untrusted [O trusted M@ verified



Is WebAssembly That Insecure?

Most security aspects also affect native binaries!
The picture looks much better for WebAssembly than native

WebAssembly is still young: lots of room for improvements & better stability



The Future of
WebAssembly [

- Tools for WebAssembly



Extensible, Open Standard

Anyone can submit proposals to extend WebAssembly!



Proposal Process

- Phase 0 (“Pre-Proposal”): someone has an idea, discussion is initiated
Move to next phase if CG deem that it is in-scope and feasible

- Phase 1 (“Feature-Proposal”): iteration over the features
Move to next phase once spec text has been extended

- Phase 2 (“Proposed Spec Text Available”): implementation + tests
Move to next phase once test suite has been updated and runs against 1 impl.

- Phase 3 (“Implementation”): implementation in other VMs + toolchains
Move to next phase once 2 VMs + 1 toolchain support it

- Phase 4 (“Standardization”): more discussion, edge cases, minor changes
Moves to next phase when consensus is reached

- Phase 5 (“Feature Standardized”): update to W3C recommendation



Proposals Implementations

Your e ‘ o x .‘h

browser = Chrome®® | Firefox® Safari’>? = Wasmtime®3® = Wasmer??

Standardized features

JS Bigint to Wasm i64 integration v v v v "/a "/a

Bulk memory operations v v v v v v

Multi-value v v v v v v

Import & export of mutable globals v v v v v v

Reference types v v v v v v

Non-trapping float-to-int conversions v v v v v v

Sign-extension operations v v v v v v

Fixed-width SIMD v v v X v v
In-progress proposals

Exception handling v v v v X X

Extended constant expressions X X Y X X X

Memory64 X X h 4 X X X

Multiple memories X X X X ) 4 X

Module Linking X X X X Y X

Relaxed SIMD X X X X X X

Tail calls X p 4 X X X X

Threads and atomics v v v v X p4

Type reflection X X X X X X



Feature Proposals: Accepted Proposals

Accepted proposals will make it to the next standard specification

Mostly focus on important
features missing in 1.0

Proposal
Import/Export of Mutable Globals
Non-trapping float-to-int conversions
Sign-extension operators
Multi-value
JavaScript BigInt to WebAssembly i64 integration
Reference Types
Bulk memory operations

Fixed-width SIMD

Champion
Ben Smith
Dan Gohman
Ben Smith
Andreas Rossberg
Dan Ehrenberg & Sven Sauleau
Andreas Rossberg
Ben Smith

Deepti Gandluri and Arun Purushan

Meeting notes
WG 2018-06-06
WG 2020-03-11
WG 2020-03-11
WG 2020-03-11
WG 2020-06-09
WG 2021-02-10
WG 2021-02-10

WG 2021-07-14



Feature Proposals: Proposals In-Progress

Other in-progress proposals are in an earlier phase

Extend CSP with policies
specific for WebAssembly

?

Phase 3 - Implementation Phase (CG + WG)

Proposal
Tail call
Multiple memories
Custom Annotation Syntax in the Text Format
Memory64
Exception handling
Web Content Security Policy
Branch Hinting
Extended Constant Expressions

Relaxed SIMD

Champion
Andreas Rossberg
Andreas Rossberg
Andreas Rossberg
Sam Clegg
Heejin Ahn
Francis McCabe
Yuri lozzelli
Sam Clegg

Marat Dukhan & Zhi An Ng



Feature Proposals: In-Progress

Other noteworthy proposals:

-

Threads

Garbage collection
Feature detection
Constant time



Tools for WebAssembly

There is a lot of ongoing research towards tool support for WebAssembly in order to

\

\

\

Static Stack-Preserving Intra-Procedural Slicing of WebAssembly tera Arteaga

Analyze binaries

CROW: Code Diversification for WebAssembly

Binaries

Quentin Stiévenart
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quentin stievenart@vub.be

David W. Binkley
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Fuzzm: Finding Memory Bugs through

mail@dlehmann.eu

Abstract

7:‘ch/\ssemh|y binaries are often compiled from memory-
ek unsafe languages, such as C and C++. Because of Web-

"t Assembly's linear memory and missing protection features,
" g.. stack canaries, source-level memory vulnerabilities are
exploitable in compiled WebAssembly binaries, sometimes
even more easily than in native code. This paper addresses
! the problem of detecting such vulnerabilites through the frst
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Binary-Only Instr ion and F g of WebA bl
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Recent work [30] has shown that, surprisingly, memory vul-
nerabilities in WebAssembly binaries can sometimes be even
more easily exploited than when the same source code is
compiled to native architectures. One reason is the lack of
mitigations. such as stack canaries, page protection flags, or
hardened memory allocators [30].

vhox fuzzing has proven to be an
,47,59]. For example, Google's

Increase their security
Perform automated testing

ute of Technology
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Compositional Information Flow Analysis for
WebAssembly Programs
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stract—WebAssembly is a new W3C standard, pro a
\ble target for compilation for various languages. All major
sers can run WebAssembly programs, and its use extends
nd the web: there s interest in compiling cross-platform
fop applications, server applications, ToT and embedded
cations to WebAssembly because of the performance and
ity guarantees it aims to provide. Indeed, WebAssembly
been carefully designed with security in mind. In par-
i, WebAssembly applications are sandboxed from their

t. However, recent works have brought to light

s, Visitors of websites using WebAssembly have been
sed to malicious code as a result.

this paper, we propose an automated static program analysis
Idress these security concerns.

top 1 million Alexa websites rely on WebAssembly. Howe
the same study revealed an alarming finding: in 2019,
most common application of WebAssembly is to perf
cryplojacking, i.c.. relying on the visitor’s computing resou
to mine cryptocurrencies without authorisation. Moreq
despite being designed with security in mind, WebAssen
applications are still vulnerable to several traditional sect
attacks, on multiple execution platforms [37].
Consequently, there needs to be proper tool support
preventing and identifying malicious usage of WebAssem
There has been some early work on improving the sa
and security of WebAssembly, e.g., through improved men
safety [22]. code protection mechanisms [59], and sandt
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WAFL: Binary-Only WebAssembly Fuzzing with Fast Snapshots

ABSTRACT

‘WebAssembly, the open standard for binary code, is quickly gaining
adoption on the web and beyond. As the binaries are often written
in low-level languages, like C and C++, they are riddled with the
same bugs as their traditional counterparts. Minimal tooling to
uncover these bugs on WebAssembly binaries exists. In this paper
we present WAFL, a fuzzer for WebAssembly binaries. WAFL adds
bly runtime to g

coverage data for the popular AFL++ fuzzer. Thanks to the underly-

a set of patches

Keno Hafller
keno.hassler@campus.tu-berlin.de
Technische Universitit Berlin
Berlin, Germany

WebAssembly is a new binary instruction format that allows targeted compiled code writt
languages to be executed with near-native speed by the browser’s JavaScript engine. How
WebAssembly binaries can be compiled from unsafe languages like C/C++, classical cod:
such as buffer overflows or format strings can be transferred over from the original progra

Dominik Maier
dmaier@sect.tu-berlin.de
Technische Universitat Berlin
Berlin, Germany

and Blazor [13] even side-step JavaScript for web development com-

pletely. Developers can write web i in languages like

Rust and C# directly, the frameworks then target WebAssembly to
execute the respective language.

Taking the idea of portability one step further, the open WASI
standard [4] allows standalone WebAssembly programs that even
run outside the browser. The goal is to create a truly universal binary

to the WAVM Wel:

platform. The infrastructure around WASI is still young but starting
to grow, for example, through the WebA:

embly Package Man-
O PRI R S S
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