
Analyzing the Compliance of
OAuth 2.0 Implementations
Pieter Philippaerts

“We do not believe the attacker obtained these tokens via a compromise of GitHub [..] because
the tokens in question are not stored by GitHub in their original, usable formats”

- Mike Hanley, chief security officer, GitHub

“Once you have implemented
OAuth2, how do you know you have

implemented it correctly?”

The OAuch logo is based on the OAuth logo created by Chris Messina. The logo is released under the Creative Commons Attribution ShareAlike 3.0 license.

The OAuch Tool

Copyright © Aaron Parecki

Building a test case

The client MUST NOT use the authorization code

more than once.

OAuch tries to use the same authorization code two times and

keeps track of the server’s response

Test case coverage

› OAuch implements 112 unique test cases from 10

documents

Many documents contain the same requirements

If a requirement has varying requirement levels, OAuch picks the

strictest one

› Not all security requirements can be converted to test

cases

Testing Process

› OAuch is set up like any other client

… but acts like a malicious client!

› Access token validation requires an API endpoint

HTTP 2xx → access token is valid

HTTP 4xx/5xx→ access token is invalid

Testing Process

› OAuch detects which features are enabled on the server

The relevant test cases are selected and run

OAuch keeps a detailed log, that can be inspected by the user

› Result: a full overview of which countermeasures are

enabled on the server

DEMO: OAuch

https://developer.okta.com/blog/2017/06/21/what-the-heck-is-oauth

Authorization
Server

API
ServerOAuch.io

You

Testing Process

› OAuch detects which features are enabled on the server

The relevant test cases are selected and run

OAuch keeps a detailed log, that can be inspected by the user

› Result: a full overview of which countermeasures are

enabled on the server

But what does that mean?

OAuth Threat Model

16

4.4.2.2. Threat: Access Token Leak in Browser History

An attacker could obtain the token from the browser's history. Note

that this means the attacker needs access to the particular device.

Countermeasures:

o Use short expiry time for tokens (see Section 5.1.5.3). Reduced

scope of the token may reduce the impact of that attack (see

Section 5.1.5.1).

o Make responses non-cacheable.

Name →

Description →

List of counter-

measures →

OAuth Threat Model

› OAuch integrates this threat model (+BCP) into the analysis

42 server-side threats are evaluated

A threat can be full mitigated, partially mitigate or not mitigated

› OAuch gives clear advice to a site owner

Which threats your site might be vulnerable to

Which countermeasures must be implemented to mitigate them

DEMO: The Threat Model

Limitations of OAuch

› Only tests the authorization server

Assumes no client-side mitigations

› Only unintrusive tests

No validation of DDoS countermeasures

› The threat model assumes a powerful attacker

Nation-state attackers

19

Analyzing the OAuth 2.0 Ecosystem

What we did

› We tested 100 OAuth implementations

80 API providers, 20 OIDC providers

75 sites from Top 10000

All publicly available (so they should be secure)

› We drew statistics over the sites and over the individual

countermeasures/threats

Results – Failure Rates

Overall: 33% FR

Must: 20% FR Should: 56% FR May: 81% FR

Results – Partially Mitigated Threats

Results – Unmitigated Threats

Confirming the Results

› To validate the results, we used OAuch as an offensive

tool

1. Choose an attack vector

2. Use OAuch to list all vulnerable sites

3. Try to write a proof-of-concept exploit

Confirming the Results – Clickjacking Attack

Confirming the Results – Clickjacking Attack

› OAuch identified 22 sites that could be vulnerable to this

threat

After manual verification, 19 could be exploited (86% success rate)

2 sites used JavaScript to redirect to a secure page

1 site used frame-busting JavaScript

Confirming the Results – Authorization Code
Injection

Confirming the Results – Authorization Code
Injection

› Focus on the OIDC providers

Found clients for 12 OIDC providers

These clients were tested for this vulnerability

Most clients were vulnerable

For each provider, at least one vulnerable client was found (100%

success rate)

“Is it really that bad?”

Is it really that bad?

› Yes and no.

Yes, the servers do not (fully) mitigate certain threats

No, the threat model assumes a powerful attacker

Often complex exploitability

No, OAuch assumes no client mitigations

“Why are OAuth implementations
lacking so many counter-

measures?”

Why are implementations non-compliant?

› The provider knows about it, but…

… wants to maintain backward compatibility

… some countermeasures cannot be efficiently implemented

… they have other development priorities

… doesn’t care, because “it can be mitigated on the client side”

Why are implementations non-compliant?

› The provider may not know about it, because…

… the original OAuth standard is outdated

… they make invalid assumptions

… they assume the OAuth library handles everything

… OAuth looks deceptively easy to implement

Concluding Thoughts

› It’s hard to use these results to create generally applicable

advice

Everyone makes different mistakes

OAuch gives tailor-made advice per site

Lessons Learned?

› Do not assume that a library is safe. Verify that it is.

› Update your packages regularly. Security protocols

evolve.

› Do not rely on clients making great security decisions.

Enforce them.

Lessons Learned

Lessons Learned

› Having a formal verification of the OAuth2 protocol is great

… but we also need tools to verify practical implementations

› A lot of sites can benefit from implementing missing

countermeasures

Try it!

› The tool is available on https://oauch.io/

Let us know if we can improve something

https://oauch.io/

Thank you!
https://distrinet.cs.kuleuven.be/

Pieter.Philippaerts@kuleuven.be

