Analyzing the Compliance of
OAuth 2.0 Implementations

Pleter Philippaerts

EEEEDistriN=t

ity Product Security OpenSource Enterprise

Security

Security dlert: Attack campaign
involving stolen OAuth user tokens
issued to two third-party integrators

P

“We do not believe the attacker obtained these tokens via a compromise of GitHub [.] because
the tokens in question are not stored by GitHub In their original, usable formats’
- Mike Hanley, chief security officer, GitHub

= DistriN=t

‘Once you have implemented
QAuth2z, how do you Rnow you have
implemented it correctly?”

| SSL Server Test www.googlecor X | == -2

& O & https://www.ssllabs.com/ssltest/analyze.htm|?d=www.google.com8s=172.217.6.68&hideResul... ¥7 ¥= & l}

Home Projects Qualys Free Trial Contact
@ Qualys. ssi Labs

SSL Report: www.google.com (172.217.6.68)

Assessed on: Mon, 20 Jul 2020 06:35:49 UTC | HIDDEN | Clear cache Scan Another »

Summary

Overall Rating

Certificate

Protocol Support

Key Exchange

Cipher Strength

20 40 60 80 100

Visit our page for more , and books. Known issues are documented here.

This server supports TLS 1.0 and TLS 1.1. Grade capped to B. MORE INFO »

| @ Scon resuits forwwwfacebaoke X | 4=

& O & https://securityheaders.com/?q=www.facebook.com&follo... 3% ¥= 2l ‘E

Security Headers Home About Donate

Sponsored by & Report URI
Scan your site now

lwww.facebook.com Scan

M Hide results ¥ Follow redirects

Security Report Summary

Site: https://www.facebook.com/
IP Address: 2a03:2880:f131:83:face:b00c:0:25de
Report Time: 20 Jul 2020 10:51:59 UTC

« Strict-Transport-Security | ¥ Content-Security-Policy
Headers: + X-Content-Type-Options | + X-Frame-Options | % Referrer-Policy
® Feature-Policy

Warning: Grade capped at A, please see warnings below.

Supported By

= DistriN=t

im} © Site results - QAuch X —I— - o ®

E} DnetBox - Home E} DnetShare ™ DistriNet Code mﬂ KU Leuven Webmail E} Cybersecurity Progr... >

&~ C [https://oauch.io/Dashboar

Dashboard Tests overview FAQ About OAuch @® Sign out

Site results

There are 1 pending test(s) that have not been (fully) executed yet.

Hence, the results presented here are incomplete. To complete the
results, please resume the test run.

The site was successfully tested on February 1, 2021 at 16:44. The
details of this test run can be found below. To test the site again, click
here to start a new test run.

Results Failed tests All tests Threats Full log Reporting History

Threats
« Mitigated threats: 16
« Partially mitigated threats: 7
« Unmitigated threats: 6

Deprecated features
+ Deprecated features detected: 2

Countermeasures
« Mandatory test cases failed: 7 (15.9 %)

a Dorornmandad tact cacac failad-@ (oo o ool -

= DistriN=t

The OAuch logo is based on the OAuth logo created by Chris Messina. The logo is released under the Creative Commons Attribution ShareAlike 3.0 license.

Internet Engineering Task Force (IETF) D. Hardt, Ed.
Regquest for Comments: 6749 Microsoft
Chscletes: 58485 October 2012
Category: Standards Track

ISsN: 2070-1721

The ORuth 2.0 Authorization Framework Ruthorizaticn servers MAY issue re
clients and native application cli
thstract

Refresh tokens MUST ke kept confid
The CZuth 2.0 authorization framswork snables a third-party shared only among the authorizatio
application to obtain limited access to an HTTP ssrvice, sither on refresh tokens were issued. The a
behalf of a resource owner by crchestrating an approval interacticon the binding between a refresh toke
between the resource owner and the HTTP service, or by allowing the issued. Refresh tckens MUST conly |}
third-party application to obtain accesss on its own behalf. This described in Secticn 1.6 with serv

specificaticn replaces and cbscletes the ORuth 1.0 protocol described [RFC2818] .

in RFC 5849.
The authorization server MUOST veri

status of This Memo token and cliesnt identity whensver
authenticated. When client authen
Thi= is an Internet Standards Track document. authorization server SHOULD deploy

token abuse.
Thi=z document is a product of the Internet Enginesring Task Force

[IETF) . It represent=s the conssnsus of the IETF community. It has
received public review and has been approved for publication by the
Internst Enginsering Steering Group (IESG). Further information on

Internet Standards is available in Section 2 of RFC 5741.
Information about the currsnt status of this documsnt, any errata,
and how to provide feedback on it may be obtained at

http://www.rfc—editor.org/info/rfcE749.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as ths D\' N
document authors. &All rights reserved. m Istrl =t

BUILDING YOUR APPLICATION

TOKEN BINDING

RFC6749

= DistriN=t

Copyright © Aaron Parecki

Building a test case

The client MUST NOT use the authorization code

more than once.

» OQAuUch tries to use the same authorization code two times and

keeps track of the server's response

= DistriN=t

Test case coverage

» OAuch implements 112 unigue test cases from 10
documents

» Many documents contain the same requirements

» |f a requirement has varying requirement levels, OAuch picks the
strictest one

» Not all security requirements can be converted to test
cases

= DistriN=t

Testing Process

» OAuch Is set up like any other client

» . but acts like a malicious client!

» Access token validation requires an API endpoint

» HTTP 2xx — access token is valid

» HTTP 4xx/5xx — access token is invalid

= DistriN=t

Testing Process

»y OQAuch detects which features are enabled on the server

» The relevant test cases are selected and run

» QAuch keeps a detailed log, that can be inspected by the user

y Result a full overview of which countermeasures are

enabled on the server

= DistriN=t

Authorization
Server

——(®
AP

OAuChIo Server

You

b
https://developer.okta.com/blog/2017/06/21/what-the-heck-is-oauth W D I St r I N - t

Testing Process

»y OQAuch detects which features are enabled on the server

» The relevant test cases are selected and run

» QAuch keeps a detailed log, that can be inspected by the user

y Result a full overview of which countermeasures are
enabled on the server

But what does that mean?

= DistriN=t

OAuth Threat Model

Name — 4.4.2.2. Threat: Access Token Leak in Browser History

Descﬁpﬁon._> An attacker could obtain the token from the browser's history. Note

that this means the attacker needs access to the particular device.

List of counter- Countermeasures:

measures_» 0 Use short expiry time for tokens (see Section 5.1.5.3). Reduced

scope of the token may reduce the impact of that attack

(see
Section 5.1.5.1).

o Make responses non-cacheable.

Ao O N NN S

= DistriN=t

QAuth Threat Model

» OAuch integrates this threat model (+BCP) into the analysis

» 42 server-side threats are evaluated

» A threat can be full mitigated, partially mitigate or not mitigated

» OAuCh gives clear advice to a site owner

» \Which threats your site might be vulnerable to

» Which countermeasures must be implemented to mitigate them

= DistriN=t

MO The Threat Moael

Limitations of OQAuch

» Only tests the authorization server

» Assumes no client-side mitigations

> Only unintrusive tests

» No validation of DDoS countermeasures

» The threat model assumes a powerful attacker

» Nation-state attackers

19 R DistriN=t

Analyzing the OAULh 2.0 Ecosystem

wWhat we did

» We tested 100 OAUth iImplementations
» 80 API providers, 20 OIDC providers

» 75 sites from Top 10000

» All publicly avallable (so they should be secure)

y We drew statistics over the sites and over the individual
countermeasures/threats

= DistriN=t

Results - Failure Rates

D

Overall: 33% FR

O

|

Must: 20% FR Should: 56% FR May: 81% FR

= DistriN=t

)

Results - Partially Mitigated Threats

30

25

0
1 2 3 4 5 6 7 8 9 10 11 12 13

Partially mitigated threats

= DistriN=t

Results - Unmitigated Threats

30

25

|

——

11

12 13

1

2

3

4

5 6 7 8
Unmitigated threats

9

10

= DistriN=t

Confirming the Results

» 1o validate the results, we used OQAuch as an offensive
tool

1. Choose an attack vector
2. Use QAuch to list all vulnerable sites

3. Tryto write a proof-of-concept exploit

= DistriN=t

Confirming the Results - Clickjacking Attack

x 2

«>C

\ \ |

/ |

| [N (R (Y B 4

|

|||||*'

= DistriN=t

Confirming the Results - Clickjacking Attack

y OQAuch identified 22 sites that could be vulnerable to this
threat

» After manual verification, 19 could be exploited (86% success rate)
» 2 sites used JavaScript to redirect to a secure page

» 1 site used frame-busting Javascript

= DistriN=t

Confirming the Results - Authorization Code

njection

—T
{ E. navigate +o Porgecl callbock

[cede.

(1. owccess +oken

€. owtherized o User

— =

1

)

= DistriN=t

Confirming the Results - Authorization Code
njection

» Focus on the OIDC providers

» Found clients for 12 OIDC providers

» These clients were tested for this vulnerability
mMost clients were vulnerable

mFor each provider, at least one vulnerable client was found (100%

success rate)

= DistriN=t

Is it really that bad?”

s it really that bad?

y Yes and no.

» Yes, the servers do not (fully) mitigate certain threats

» No, the threat model assumes a powerful attacker

» Often complex exploitability

» No, OAuch assumes no client mitigations

= DistriN=t

‘Why are OAuth implementations
lacRINg SO Many counter-
measures?”

Why are implementations non-compliant?

» The provider knows about it, but.

» . wants to maintain backward compatibility
» . some countermeasures cannot be efficiently implemented
» . they have other development priorities

» . doesnt care, because ‘it can be mitigated on the client side’

= DistriN=t

Why are implementations non-compliant?

» The provider may not know about It, because.
» . the original OAuth standard is outdated
» . they make invalid assumptions
» . they assume the OAuth library handles everything

» . OAuth looks deceptively easy to implement

= DistriN=t

Concluding Thougnts

| essons Learned?

» It's hard to use these results to create generally applicable
advice

» Everyone makes different mistakes

» OAuch gives taillor-made advice per site

= DistriN=t

| essons Learnead

» Do not assume that a library Is safe. Verify that it is.

» Update your packages regularly. Security protocols

evolve.

» Do not rely on clients making great security decisions.

Enforce them

= DistriN=t

| essons Learnead

» Having a formal verification of the OAuth2 protocol is great

» . but we also need tools to verity practical implementations

» A lot of sites can benefit from implementing missing

countermeasures

= DistriN=t

The tool Is avallable on

» et us know If we can improve something

B DistriN=t

https://oauch.io/

DistriN=t

https./ /distrinet.cs kuleuven.be/
Pieter Philippaerts@kuleuven be

