
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

SECURING OAUTH 2.0 AND OIDC
IN FRONTENDS

@PhilippeDeRyck

Can I access an API please?

Request with an access token

Help me out here,
is this access token valid?

OAuth 2.0

OAuth 2.0

OAuth 2.0

Authenticate the user for me?

OpenID Connect

@PhilippeDeRyck

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

? How do you secure tokens in the frontend?

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

@PhilippeDeRyck

OAUTH 2.0 AND OIDC IN SPAS

@PhilippeDeRyck

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

@PhilippeDeRyck

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

Access tokens are sent in the insecure
frontchannel. Refresh tokens are not

allowed in the Implicit flow.

@PhilippeDeRyck

2
Follow redirect to

restograde.com

1 Navigate browser to restograde.com

3 Who are you? Authenticate please!

5 Allow the restograde app access?

6 Authorize access

4 Authenticate to restograde.com

8 Reload application with access token

7 Redirect to the restograde app
with access token

9 Request with
access token

10 Response

THE IMPLICIT FLOW

Applications typically rewrite the URL
to remove the access token from the

fragment to prevent leakage.

! The OAuth 2.0 Security Best Practices
and OAuth 2.1 specifications deprecate
the Implicit flow

@PhilippeDeRyck

5Redirect to the STS

4 Initialize the flow

1 Sign in with *

6 Handle user authentication / consent

9 Follow redirect with authorization code

10
Exchange

authorization code
and the code verifier

12 Identity token, access token ,and
refresh token

8 Redirect to backend
with authorization code

2 Generate a random value
(code verifier) and store it

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

13
Use the claims from the
identity token to
"authenticate" the user

14 Request with
access token

15 Response

@PhilippeDeRyck 12

FRONTENDS USE THE AUTHORIZATION CODE FLOW

The authorization code flow with PKCE
allows the user to delegate authority

to an application to access APIs on their behalf

@PhilippeDeRyck

USING REFRESH TOKENS

@PhilippeDeRyck

THE REFRESH TOKEN FLOW

2Request new access token
with refresh token

3 Access token & refresh token

4 Request with
access token

5 Response1
Frontend has an access token

and refresh token, and monitors
access token expiration

There is no client authentication,
so refresh tokens are effectively

bearer tokens

The specifications require the use
of refresh token rotation as a

security mechanism

Refresh tokens enable short-lived
access tokens (e.g., 5 – 10 min)

@PhilippeDeRyck

REFRESH TOKEN ROTATION

• Refresh token rotation is required for using refresh tokens in the browser
• Part of the OAuth 2.0 for Browser-Based Apps proposal
• Refresh tokens are used once to obtain a new access token and new refresh token
• Previously used refresh tokens become invalid

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

App refreshes tokens
Use RT3
Receive AT4 and RT4

@PhilippeDeRyck

REFRESH TOKEN ROTATION

The response from the Security Token Service

1
2
3
4
5
6

{
"access_token": "eyJhbGciO...du6TY9w",
"token_type": "Bearer",
"expires_in": 3600,
"refresh_token": "mTVeKoIZYy",

}

3

A new access token

A new refresh token to be used in the next flow

The request to exchange a refresh token

1
2
3
4
5

POST https://sts.restograde.com/oauth/token

grant_type=refresh_token
&client_id=DtsTliLAWq3JXIwaoPQzl8vXhNI6qGnb
&refresh_token=8xLOxBtZp8

2

The latest refresh token obtained from the STS

D

? A

B

C

Revoke all tokens associated with the re-used refresh token

What should the STS do when it detects
refresh token re-use?

Nothing

Issue a new access token, but not a new refresh token

Not issue new tokens

@PhilippeDeRyck

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

DETECTING REFRESH TOKEN ABUSE

• When the STS detects the re-use of a refresh token, something is wrong
• The refresh token is immediately revoked, preventing abuse

• To ensure security, the STS revokes the entire token chain of this refresh token
• The abuse of RT2 leads to the revocation of RT3, RT4, …

AT2 expires

App refreshes tokens
Use RT2

Attacker steals RT2

Attacker uses RT2
Receive AT3 and RT3 STS notices reuse of RT2

No tokens are issued
RT3 is revoked

@PhilippeDeRyck

DETECTING REFRESH TOKEN ABUSE

• When the STS detects the re-use of a refresh token, something is wrong
• The refresh token is immediately revoked, preventing immediate abuse

• To ensure security, the STS revokes the entire token chain of this refresh token
• The abuse of RT2 leads to the revocation of RT3, RT4, …

App obtains tokens
AT1 and RT1

AT1 expires

App refreshes tokens
Use RT1
Receive AT2 and RT2

AT2 expires

App refreshes tokens
Use RT2
Receive AT3 and RT3

AT3 expires

Attacker steals RT2
Attacker uses RT2

STS notices reuse of RT2
No tokens are issued
RT3 is revoked

Refresh token rotation in action

@PhilippeDeRyck

ATTACKING OAUTH 2.0 IN FRONTENDS

THE COMMON PERCEPTION OF MALICIOUS JAVASCRIPT

https://app.restograde.com

1

1 Request all data from localStorage/sessionStorage

2 Return all data to the JS code requesting it

2

3

3 Send data to a server controlled by the attacker

4

4 Abuse the stolen data (access token, refresh token)

Short-lived access tokens
reduce the impact of
stolen access tokens

Refresh token rotation
prevents re-use of stolen

refresh tokens

@PhilippeDeRyck

THE UNDERESTIMATED THREAT MODEL OF MALICIOUS JS

• Malicious JS code runs in the same environment as the application code
• All code running in that environment has the same privileges
• The browser does not and cannot differentiate between code sources

• When the browser executes malicious JS, the attacker controls the application
• Stealing data from storage areas is a simplistic attack payload

• The malicious code can perform any action the legitimate application can
• Any storage area reachable to the application is reachable to the attacker
• Function definitions in the runtime environment can be manipulated
• Iframe-based flows relying on cookies in the browser can be executed by the attacker
• API requests sent by the malicious code are indistinguishable from legitimate requests

STEALING ACCESS TOKENS WITH THE IMPLICIT SILENT RENEW

https://app.restograde.com

hidden iframe
1

2

3

1 Load a silent Implicit flow in an iframe

2 Request to the STS, with cookies if available

3 Redirect the frame back to the app, with tokens in URL

4 Use postMessage to send tokens to parent frame

4

5

5 Send tokens to a server controlled by the attacker

SIDESTEPPING REFRESH TOKEN ROTATION

https://app.restograde.com

1

2

3

3 Return new access tokens and refresh tokens

1 Monitor the app for refresh tokens (if available)

2 Keep running the refresh flow when needed

4 4 Send tokens to a server controlled by the attacker

The SDK using refresh
tokens to renew

access tokens

5

5 Wait for the app to become inactive to use RT

STEALING ACCESS TOKENS FROM THE LEGITIMATE SDK

https://app.restograde.com

3

1

2

3 Extract accessible tokens from the JS environment

1 Run the refresh token flow to get fresh tokens

2 The tokens returned by the STS

4 4 Send tokens to a server controlled by the attacker

The SDK using refresh
tokens to renew

access tokens

https://app.restograde.com

1

1 The SDK running legitimate OAuth 2.0 flows

Legitimate application code
handling access and refresh tokens

sts.restograde.com: SessID

3

2 Setup a listener to receive messages from a frame

3 Load a hidden iframe in the application's page

4

2

4 Run a silent OAuth 2.0 flow in the hidden iframe

5 Receive the response from the iframe

5

6 Extract new tokens associated with the user

Because the browser already has an
authenticated session from step 1, the

malicious flow reuses the existing session

6

STEALING ALL TOKENS WITH THE SILENT RENEW

? A

B

So, are we screwed?

Yes

No

! Yes. XSS is game over!

@PhilippeDeRyck

ON THE SECURITY OF TOKENS IN BROWSER-BASED APPLICATIONS

• Refresh token rotation is a great and clean feature
• Eliminates the need for messy iframe-based patterns
• In light of malicious JavaScript, refresh token rotation is not a security measure

• An isolation mechanism with workers addresses some scenarios
• JavaScript needs to "tunnel" all requests through the worker
• Malicious code would still be able to send requests through the worker
• Attackers can always request an independent set of tokens

• Restricting access tokens with proof-of-possession does not work in browsers
• Legitimate JavaScript needs access to the tokens, also exposing them to malicious code
• Attackers can always request an independent set of tokens using their own secret

@PhilippeDeRyck

THE BACKEND-FOR-FRONTEND PATTERN

@PhilippeDeRyck

THE CONCEPT OF A BACKEND-FOR-FRONTEND

Traditional session

The OAuth 2.0 client
application

The Restograde application
1

Run the Authorization Code flow
with client authentication

2 Issue access token and refresh token

3 Proxy API requests with access token
retrieved from session

The client can follow best practices for
backend applications (client authentication,

sender constrained tokens, …)

4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange

authorization code
with client authentication

9 Identity token, access token, & refresh token

6 Redirect to BFF with code

14 Request with
access token

15 Response

THE DETAILS OF A BACKEND-FOR-FRONTEND

10 Use information from identity
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session

@PhilippeDeRyck

THE BACKEND-FOR-FRONTEND PATTERN

• The frontend uses a dedicated backend-for-frontend (BFF) for API access
• The BFF mainly forwards calls to the actual APIs
• The BFF attaches access tokens to outgoing requests to authorize the API calls

• BFFs are already used to aggregate different backend systems in a single API
• Common pattern to join various microservices into a single frontend-specific API
• Useful to chain different operations together without pushing that to the client
• From a security perspective, BFFs make a lot of sense

• The BFF becomes the OAuth 2.0 / OIDC client application
• The BFF runs on a server, so it acts as a confidential client
• The BFF can apply all security best practices for backend client applications

@PhilippeDeRyck

BFF IMPLEMENTATION DETAILS

FITTING A BFF INTO THE ARCHITECTURE

API requests Proxy API requests
to the actual APIs

https://www.restograde.com/api

https://sts.restograde.com

https://www.restograde.com/
https://api1.restograde.com/

https://api.example.com

@PhilippeDeRyck

A BFF TRANSLATES SESSIONS INTO ACCESS TOKENS

API requests Proxy API requests
to the actual APIs

The BFF and the
frontend run in the

same origin. For
security considerations,

the BFF should reject
every cross-origin

request

The BFF is not responsible for
authorization, as it only

forwards requests with proper
access tokens

The APIs enforce
authorization using the
access token from the
request, just like they

would without a BFF in
the middle

@PhilippeDeRyck

4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange

authorization code
with client authentication

9 Identity token, access token, & refresh token

6 Redirect to BFF with code

14 Request with
access token

15 Response

SESSIONS BETWEEN THE FRONTEND AND THE BFF

10 Use information from identity
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session

@PhilippeDeRyck

COOKIE SECURITY SETTINGS

• The BFF uses cookies to manage the session with the frontend
• Cookies work perfectly when frontend and BFF are deployed in the same domain
• Browsers handle cookies automatically, so no need to write code in the frontend

• Modern best practices for cookies require the following settings
• Enable the Secure flag to restrict the cookie for HTTPS use only
• Enable the HttpOnly flag to prevent JS-based access and memory-level attacks
• Enable the SameSite=strict flag to prevent CSRF attacks
• Add the __Host- attribute to the name of the cookie to prevent subdomain-based attacks

Security best practices for setting a cookie

1 Set-Cookie: __Host-session=…; Secure; HttpOnly; SameSite=strict

@PhilippeDeRyck

REJECTING MALICIOUS REQUESTS

• Attackers can attempt sending CSRF requests from the victim's browser
• A fraudulent request from a different domain to the BFF carrying cookies
• The SameSite flag stops most of these scenarios, but not from malicious subdomains

• An API following security best practices is unlikely to suffer from this problem
• Carefully respect the semantics of HTTP verbs (GET vs POST vs …)
• Always enforce a proper non-form content type on incoming request bodies

• It is recommended to use CORS as a secondary defense to stop potential attacks
• Include a request header to force attackers to send requests from JavaScript

• E.g., include a static BFF: rocks header
• The browser will always send a preflight with Origin header on cross-origin requests to your API
• Your API's CORS configuration will reject any requests coming from different origins

? Is a BFF stateful or stateless?

@PhilippeDeRyck

A BFF CAN BE STATEFUL OR STATELESS

• BFF sessions can be implemented with or without server-side state
• Server-side state keeps tokens on the server and issues a session ID in a cookie
• Client-side state puts tokens into a session object and stores the object in a cookie

• Client-side sessions are often not recommended, due to lack of control
• The session cookie has bearer token properties, so theft leads to abuse
• Revoking existing state becomes difficult without server-side control over the session
• In a BFF scenario, revocation is available through the OAuth 2.0 refresh tokens

• Client-side sessions in a BFF have strict security requirements
• Integrity protection of the data is crucial to avoid attacks
• Confidentiality (i.e., encryption) is not mandatory, but strongly recommended

? That’s great Philippe, but what about XSS?

@PhilippeDeRyck

A BFF CANNOT STOP XSS ATTACKS EITHER

API requests Proxy API requests
to the actual APIs

A compromised frontend
application can still send
requests through the BFF

Only endpoints exposed by the BFF
can be abused. The attacker never
has unfettered access to the APIs

@PhilippeDeRyck

A BFF CAN ACT AS AN ADDITIONAL LAYER OF DEFENSE

API requests Proxy API requests
to the actual APIs

The BFF observes all the API requests from a
client, and can perform rate-limiting, anomaly

detection, preventing data extraction, …

@PhilippeDeRyck

BFFS RELY ON CORE BUILDING BLOCKS OF THE WEB

• Same-origin requests between a frontend and a backend are straightforward
• Browsers do not restrict same-origin requests
• The BFF can reject all cross-origin requests to avoid Cross-Site Request Forgery attacks

• Cookies work well within the same origin, even with privacy-sensitive browsers
• The cookie is essential for the BFF to track the user's state (which contains access tokens)
• Cookies will always be present on same-origin requests, regardless of how they are sent

• BFFs see all requests from the frontend and can detect malicious behavior
• A BFF can correlate requests to a single frontend, enabling additional checks
• Examples include rate limiting, anomaly detection, preventing data extraction, …

https://docs.duendesoftware.com/identityserver/v5/bff/

https://github.com/manfredsteyer/yarp-auth-proxy

@PhilippeDeRyck

OAUTH 2.0 SECURITY BENEFITS OF A BFF

4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange

authorization code
with client authentication

9 Identity token, access token, & refresh token

6 Redirect to BFF with code

14 Request with
access token

15 Response

CLIENT AUTHENTICATION WITH A BFF

10 Use information from identity
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session

@PhilippeDeRyck

CLIENT AUTHENTICATION AS THE BFF

• The BFF is the client application authenticating to the STS
• Typical client authentication involves using a string-based shared secret
• Backend clients can use more advanced key-based authentication mechanisms

• Instead of a shared secret, the client has the private key and the STS has the public key
• The secret is only exposed to one party, reducing the attack surface

• The specifications define two key-based options
• mTLS uses client-side TLS certificates to implement authentication (RFC 8705)
• JWT bearer tokens illustrate possession of a key to implement authentication (RFC 7523)

• Client authentication mitigates two potential attacks against the frontend
• Stolen authorization codes become useless without client credentials or the PKCE verifier
• Stolen refresh tokens cannot be used without authenticating as the BFF client

@PhilippeDeRyck

REFRESH TOKENS IN A BFF

• Confidential clients need to authenticate when using refresh tokens
• Even though a BFF's refresh tokens are not bearer tokens, they should be well-protected
• Key-based client authentication with proper key management is an important defense
• Refresh token rotation can be used to ensure the continuous renewal of refresh tokens

• The BFF has a session with the frontend and associates tokens with the session
• Sessions often have a limited lifetime and timeout after inactivity
• When a session expires, the BFF can no longer use the associated tokens
• There is no need for refresh tokens to have longer lifetimes or less strict properties

• The secure use of refresh tokens allows for shorter lifetimes for access tokens
• With a short lifetime, the window of abuse for a stolen access token can be reduced

4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange

authorization code
with client authentication

9 Identity token, access token, & refresh token

6 Redirect to BFF with code

14 Request with
access token

15 Response

SENDER CONSTRAINED TOKENS WITH A BFF

10 Use information from identity
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session

@PhilippeDeRyck

SENDER CONSTRAINED TOKENS WITH A BFF

• Whenever possible, access tokens should not be bearer tokens
• A BFF has enough control over its environment to use sender constrained access tokens
• Such tokens can only be used when the holder illustrates possession of a secret

• Multiple proposals attempted to solve the bearer token problem
• Various specs in the OAuth 2.0 world discuss proof-of-possession mechanisms
• Browsers played around with offering token binding using TLS channels

• Currently, two important mechanisms for sender constrained tokens exist
• Tokens can be tied to a TLS certificate, which requires the client to use mTLS

• mTLS is well-understood and supported by many STS products
• Demonstration of Proof-of-Possession offers a similar application-layer mechanism

• dPoP is still experimental and not widely supported

4Follow redirect to restograde.com

2 Login

5 Authentication / client authorization

11 Logged in

8
Exchange

authorization code
with client authentication

9 Identity token, access token, & refresh token

6 Redirect to BFF with code

14 Request with
access token

15 Response

SENDER CONSTRAINED TOKENS WITH A BFF AND MTLS

10 Use information from identity
token to "authenticate" the user

1 Login to Restograde

3 Initialize the code flow

7 Redirect with authorization code

16 API data

12 API request

13Lookup tokens with session

Use a client TLS certificate for
authenticating to the STS

Use a client TLS certificate
to connect to the API

@PhilippeDeRyck

SENDER CONSTRAINED TOKENS WITH A BFF AND MTLS

A JWT access token with an embedded certificate fingerprint

1
2
3
4
5
6
7
8
9
10
11
12

{
"sub": "b6rdGPsO2iBKB7sO2i",
"aud": "https://api.example.com",
"azp": "lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv",
"iss": "https://sts.restograde.com/",
"exp": 1419356238,
"iat": 1419350238,
"scope": "read write",
"cnf": {
"x5t#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"

}
}

The fingerprint of the cert

@PhilippeDeRyck

SENDER CONSTRAINED TOKENS WITH A BFF AND MTLS

• The cnf claim contains information about the proof-of-possession key
• JWT access tokens directly embed the cnf claim in the token
• For reference access tokens, the STS provides the cnf claim during introspection

• The only responsibility for a client is using mTLS with a client certificate
• An STS that supports sender constrained access tokens will use the certificate fingerprint

• The hash in the x5t#S256 value uniquely identifies the certificate and its public key
• An API enforcing proof-of-possession will look for the cnf claim can verify the fingerprint

• If the connection is setup with the right certificate, the client must possess the private key

• Sender constrained access tokens are much harder to abuse
• An attacker would need to completely compromise a client to abuse access tokens

@PhilippeDeRyck

SECURITY BEST PRACTICES FOR BFFS

• Use a cryptographic client authentication mechanism for the BFF
• mTLS is well supported by server-side frameworks and STS implementations

• The use of mTLS enables using sender constrained access tokens
• Ensure that the APIs support the use of mTLS and sender constrained access tokens
• Make this proof-of-possession mechanism mandatory for all BFFs

• Keep token lifetimes as short as possible
• Access tokens should be short-lived, since refresh tokens are available to a BFF
• Refresh tokens should not extend the expected lifetime of a session

• Cookie-based sessions should apply the latest cookie security settings
• Use the __Host- prefix and the Secure, HttpOnly, and SameSite cookie flags
• Ensure confidentiality and integrity of client-side session data

@PhilippeDeRyck

IS A BFF THE RIGHT CHOICE?

@PhilippeDeRyck

USING A BFF IS A TRADE-OFF

Benefits Drawbacks

No tokens in the browser

The frontend becomes easier

Less issues with third-party cookie blocking

OAuth 2.0 flows with a confidential client

Ability to use sender constrained tokens

Minimal server-side attack surface

Every frontend needs a BFF

More development and maintenance effort

Non-believers hate BFFs

! Sensitive Single Page Applications should
definitely consider using a BFF

@PhilippeDeRyck

SUMMARY

Securing OAuth 2.0 in SPAs

@PhilippeDeRyck

BFFS FOR SENSITIVE SINGLE PAGE APPLICATIONS

• Single Page Applications struggle with OAuth 2.0 security best practices
• Public clients cannot authenticate to the STS
• Tokens cannot be adequately protected against theft
• Proof-of-possession mechanisms are more difficult to implement in the browser

• A Backend-For-Frontend moves OAuth 2.0 aspects into a backend
• The BFF is the OAuth 2.0 client application, following backend security best practices
• The frontend maintains a session with the BFF, which keeps tokens in a session
• The BFF forwards requests to the API and attaches user-specific tokens

• A BFF has numerous security benefits for sensitive frontend web applications
• OAuth 2.0 requires client authentication and tokens are not available in the browser
• Additional defenses can be deployed at the BFF level

Thank you!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

