E

INTRODUCTION TO
OAUTH 2.0 AND OPENID CONNECT

https://Pragmatic Web Security.com

Email Address

L |Emai| Address J

Password Forgot password?

‘ Password

By signing in, | agree to the Zoom's Privacy Statement and Terms
of Service.

Stay signed in ©

Or sign in with

SSO Apple Google Facebook

’ @PhilippeDeRyck

OpenlID Connect

SECURITY
TOKEN

l Authenticate the user for me? SERVICE

CLIENT

®

BACKEND

, @PhilippeDeRyck

’ @PhilippeDeRyck

Zoom wants access to your
Google Account

@ philippe@pragmaticwebsecurity.com

When you allow this access, Zoom will be able to

i View and edit events on all your calendars.
Learn more

Make sure you trust Zoom

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Zoom'’s Privacy Policy and Terms of Service.

Cancel Continue

OpenlID Connect

SECURITY
TOKEN
SERVICE

OAuth 2.0

l Authenticate the user for me? l
Help me out here,
is this access token valid?

¢ Can | access an API please?

OAuth 2.0

o

CLIENT API

®

BACKEND

Request with an access token API API

I o4

OAuth 2.0 API

, @PhilippeDeRyck

TERMINOLOGY

This session
User
£
1, API

Security Token Service (STS)

g Client

y @PhilippeDeRyck

OAuth 2.0

Resource Owner

Resource Server

Authorization Server

Client

OpenlD Connect

End-User

OpenlD Provider

Relying Party

| am Dr. Philippe De Ryck

@ Fragmatic Heh securty Founder of Pragmatic Web Security

Security for developers

) 4 ExngeHs Google Developer Expert

AMBASSADOR Auth0 Ambassador

R (o] G R A M

4D Sccure

[N Aopli . .
- D ment SecAppDev organizer

| help developers with security

@ Hands-on in-depth security training

@ Advanced online security courses

Security advisory services

https://pragmaticwebsecurity.com

THE CLIENT'S PERSPECTIVE

’ @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

, @PhilippeDeRyck

o

SECURITY

TOKEN
SERVICE

EYCLOAK

[

A standalone service
handling OAuth 2.0, OIDC,
and user management

Azure
Active Directory

I

’ @PhilippeDeRyck

Offload all
responsibilities to
"ldentity as a Service"

ASP.NET Core Application

(r)

login
logout
Your code
-
_ Y,

authorize r N
o token IdentityServer
o discovery middleware

\ 2
I

Augment your user
management service

with OAuth 2.0 & OIDC

, @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

A service retrieving a daily
count of # of new reviews
per restaurant

The OAuth 2.0
client application

The API of a restaurant
review application

!
3
o

API

Name *

M2M Client 'n
Domain
‘ restograde.eu.auth@.com (O |
Client ID
‘ 8LTzNhXjULgOpMeAylvhmbgpdZinK54Z S| |

Client Secret

APIs have a meaningful
| identifier and are
known by the STS

l

Clients are registered with Restog rad e API

the STS with an ID and a
secret Custom APl Identifier https://api.restograde.com

‘ MLbCxj7kQyRwWKEkhxzmejeEEe@U75qJnhvgHDDHLX4tRVKUI2HIs X [

The Client Secret is not base64 encoded.

y @PhilippeDeRyck

Scenarios that do not involve
user-based access rely on the
Client Credentials grant

SECURITY
TOKEN
SERVICE

Request access token o

o > HOK A
with client authentication e ccess token

e Request with Q
access token

SERVICE e Response API

, @PhilippeDeRyck

€ 7he request to obtain an access token

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=client_credentials e Indicates the client credentials flow

5 &client_i1d=8LTzNhXjULgOpMeAylvhmbgpdZinK54Z e The client exchanging the code

7 &client_secret=xEJRXoe..Vd_BjB e The client needs to authenticate to the STS
8 &audience=https://api.restograde.com e Optional indication of the target API

’ @PhilippeDeRyck

|:| Running the Client Credentials flow

AMBASSADOR

Al.l S

Full disclosure: | am a happy AuthO user. | am also working closely with the AuthO developer advocates as an
Ambassador. | am not paid by AuthO, nor do | benefit from recommending AuthO to others.

|:| Running the Client Credentials flow

The client credentials grant supports direct machine-to-
machine access.

The grant relies on client credentials which have to be kept
in a secure location (i.e., not on an untrusted device)

y @PhilippeDeRyck

, @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

A review scheduling tool
that creates reviews at given
time for max influence

The OAuth 2.0
client application

BACKEND

The API of a restaurant
review application

o

API

Allowed Callback URLs

https://schedule.restograde.com/callback

After the user authenticates we will only call back to any of these URLs. You
can specify multiple valid URLs by comma-separating them (typically to handle
different environments like QA or testing). Make sure to specify the protocol

(https://) otherwise the callback may fail in some cases. With the exception
of custom URI schemes for native clients, all callbacks should use protocol

https:// . You can use Organization URL parameters in these URLSs.

The redirect URI restricts how the STS can send data
through the browser to the client, preventing an
attacker from hijacking valuable resources

y @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

0 Connect my account (e.g., Twitter) g
E Q Initialize the flow with a redirect

BROWSER BACKEND API

, @PhilippeDeRyck

oo The initialization request

https://sts.restograde.com/authorize
?response_type=code e Indicates the authorization code flow
&client_i1d=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e The client requesting access

1
2
3
4
5 &redirect_uri=https://schedule.restograde.com/callbacke- Where the STS should send the code
6

7

’ @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

If the browser already has an
authenticated session with the STS, it
will include a cookie on this request

Follow redirect to the STS e

a Connect my account (e.g., Twitter)

]

BROWSER

a Initialize the flow with a redirect

BACKEND API

, @PhilippeDeRyck

E o Handle user authentication / consent

USER

Follow redirect to the STS o

Redirect to backend
with authorization code

0 Connect my account (e.g., Twitter)

Q Initialize the flow with a redirect

2%
i,

TOKEN
SERVICE

BROWSER e Follow redirect with authorization code

s\ BACKEND

, @PhilippeDeRyck

API

© O 7hecaliback URI

1 https://schedule.restograde.com/callback e——— The callback URI from before
2 ?7code=Sp1x10BeZQQYbYSO6WXSbIA e The authorization code

’ @PhilippeDeRyck

E o Handle user authentication / consent Oﬁ

SECURITY
USER TOKEN
SERVICE
A
Exchange
authorization code
Follow redirect to the STS o with client authentication

Redirect to backend
with authorization code

0 Connect my account (e.g., Twitter)

Q Initialize the flow with a redirect

BROWSER e Follow redirect with authorization code A BACKEND API

, @PhilippeDeRyck

€© 7he request to exchange the authorization code

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=authorization_code e Indicates the code exchange request
5 &client_id=1Y590BKB7Mow4yD1b6rdGPs02ilg70sv e The client exchanging the code

7 &redirect_uri=https://schedule.restograde.com/callback =— The redirect URI used before

8 &code=Sp1lx10BeZQQYbYS6WXSbIA e The code received in step 6

9

o——— The code verifier from step 1

’ @PhilippeDeRyck

E o Handle user authentication / consent

USER

SECURITY
TOKEN
SERVICE

Exchange
authorization code 0 e Access token & refresh token

Follow redirect to the STS o with client authentication

Redirect to backend
with authorization code

0 Connect my account (e.g., Twitter)

Q Initialize the flow with a redirect

\ 4
e Request with Q
access token

e Follow redirect with authorization code \ BACKEND @ Response API

BROWSER

, @PhilippeDeRyck

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

* The client is a backend web application, running in a secure environment
* The user authorizes the client to access APIs on their behalf

* The Authorization Code flow gives the client an access token and refresh token
* The access token is used by the client to access APls on behalf of the user
* The refresh token allows the client to obtain new access tokens, without user involvement

* The Authorization Code flow has several security measures built-in
* The client needs to be registered with the proper redirect URIs

* The client needs to authenticate on backchannel requests to the STS
* Concretely, client authentication is needed to exhange an authorization code or refresh token
e Authorization codes can only be used once in a very limited time window

Modern best practices

require the use of PKCE

WTF is PKCE?

e Store the code challenge along
with the authorization code

E e Handle user authentication / consent

USER

SECURITY
TOKEN
SERVICE

Recalculate the hash of the
code verifier and compare to the
stored code challenge

Exchange

authorization code

with client credentials
and the code verifier

Redirect to backend

with authorization code

A4
o Connect my account (e.g., Twitter) S \ @ Request with Q
o Initialize the flow using the code challenge access token Q

e Follow redirect with authorization code) BACKEND @ Response API

Redirect to the STS with the e @ Access token & refresh token

code challenge in the URL

]

BROWSER

Generate a random value
Calcula.tc.a the SHA256 of the e (code verifier) and associate it
code verifier (code challenge)

, @PhilippeDeRyck with the user's browser (e.g., cookie)

06 The initialization request

https://sts.restograde.com/authorize
?response_type=code e Indicates the authorization code flow
&client_i1d=1Y590BKB7Mow4yD1b6rdGPs0211g70sv e The client requesting access

&redirect_uri=https://schedule.restograde.com/callbacke- Where the STS should send the code
&code_challenge=JhEN@OAmMNj 7B..Wh5PxWitZYK1woWh5PxWitZY e— The PKCE code challenge

1
2
3
4
5
6
7 &code_challenge_method=S256 e The PKCE hash function

, @PhilippeDeRyck

€@ The request to exchange the authorization code

1 POST /oauth/token

2 Host: sts.restograde.com

3

4 grant_type=authorization_code e Indicates the code exchange request
5 &client_id=1Y590BKB7Mow4yD1b6rdGPs02ilg70sv e The client exchanging the code

7 &redirect_uri=https://schedule.restograde.com/callback =— The redirect URI used before

8 &code=Sp1lx10BeZQQYbYS6WXSbIA e The code received in step 9

9

&code_verifier=1T5q6nbPQRtdj..~IUdKErVDFG. fF4z7CzCxo *—— The code verifier from step 1

, @PhilippeDeRyck

PROOF KEY FOR CODE EXCHANGE (PKCE)

* PKCE ensures that the same client intializes and finalizes the flow
* The main use case for PKCE is to prevent authorization code theft in public clients
* PKCE acts as a one-time password for a particular client instance

* PKCE consists of a code verifier and a code challenge

* The code verifier is a cryptographically secure random string
* Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] -. ~

* The code challenge is a base64 urlencoded SHA256 hash of the code verifier
* The hash function uniquely connects the code challenge to the code verifier
* The code verifier cannot be derived from the code challenge

* PKCE is a current best practice for all types of clients

What about frontend applications?

e Store the code challenge along
with the authorization code

E e Handle user authentication / consent

USER

SECURITY
TOKEN
SERVICE

Recalculate the hash of the
code verifier and compare to the
stored code challenge

Exchange

authorization code

with client credentials
and the code verifier

Redirect to backend

with authorization code

A4
o Connect my account (e.g., Twitter) S \ @ Request with Q
o Initialize the flow using the code challenge access token Q

e Follow redirect with authorization code) BACKEND @ Response API

Redirect to the STS with the e @ Access token & refresh token

code challenge in the URL

]

BROWSER

Generate a random value
Calcula.tc.a the SHA256 of the e (code verifier) and associate it
code verifier (code challenge)

, @PhilippeDeRyck with the user's browser (e.g., cookie)

e Store the code challenge along
with the authorization code

E e Handle user authentication / consent

USER

SECURITY
TOKEN
SERVICE

Recalculate the hash of the
code verifier and compare to the
stored code challenge

Exchange
authorization code @

Redirect to the STS with the e @ Access token & refresh token

code challenge in the URL

and the code verifier

Redirect to backend
with authorization code

A 4

o Connect my account (e.g., Twitter)

> e @ Request with Q
o Initialize the flow using the code challenge m access token Q

e Follow redirect with authorization code Al FRONTEND @ Response API

]

BROWSER

Generate a random value
Calcula.tc.a the SHA256 of the e (code verifier) and associate it
code verifier (code challenge)

, @PhilippeDeRyck with the user's browser (e.g., cookie)

D Running the Authorization Code flow with PKCE

THE AUTHORIZATION CODE FLOW WITH PKCE FOR FRONTENDS

* The client is a public frontend web application, running in the user's browser
* OAuth 2.0 enables the user to authorize the client to access APls on their behalf
* OIDC allows the client to obtain authentication information about the user
* Both modern Single Page Applications as legacy JS pages can use this new flow

* Web frontends cannot rely on client authentication
* The authorization code is exchanged without client credentials
* The security of the flow relies on PKCE and pre-registered redirect URIs
e Redirect URIs should use exact string matching, not dynamic matching with regexes

e Additional security requirements are needed for frontend OAuth 2.0 clients
» Attackers succeeding in executing JS code (e.g., XSS) can fully compromise the client

The authorization code grant with PKCE
allows the user to delegate authority
to an application to access APIs on their behalf

, @PhilippeDeRyck

SECURITY
TOKEN
SERVICE

Request new access token
with refresh token e e Access token
and client authentication

\ 4 e Request with
new access token

a Request with Q
access token :

BACKEND a Token expired API

e Response

, @PhilippeDeRyck

Refresh tokens allow a client to obtain fresh access
tokens without user interactions.

Refresh tokens are crucial to keep access tokens short-
lived to reduce the window of abuse for stolen tokens.

, @PhilippeDeRyck

THE API'S PERSPECTIVE

’ @PhilippeDeRyck

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

’ @PhilippeDeRyck

eyJhbGci01JSUzIINiIsInR5cCI6IkpXVCIsImtpZC
I6IK5UVKIPVFUzTXpCQk9FVXd0emhCUTBWRA1rUTBR
VVU1UVRZeFFVVX1PVU5FUVVVeE5gRXINdyJ9.eyJpc
3Mi1i0iJodHRwczovL3NOcy5yZXNOb2dyYWR1LmNvbS8
iLCIzdWIi0iJhdXROMHW1ZWISMTZjMjU4YmMRINTB1Z
jIwMzY2YZzY1iLCJhdWQi01lsiaHROcHM6LY9hcGkucmV
zdGI9ncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3IhZ
GUUZXUuYXV@aDAuY29tL3VzZXJpbmZvI1@sImlhdCI
6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCJhe
NA101iJPTEtObjM40VNVSW11ZkV4Z1IHMVIpbEXTZ2R
ZeHdFcCIsInNjb3B1lIjoib3BlbmlkIHBYyb2ZpbGUgZ
W1lhaWwgb2ZmbGluZV9hY2N1c3MifQ.XzJOXtTX0GOS
bCFvp4yZGIzh7XhMmOmI2XxtjWd10Dz_siI-u8hlle
lcr8LwX6-hL20Q0W0eStzBzmm1FM_tS7MxuKKkYx8Q1l
TWOURPembVKZOhNi8kN-1j@pyc@Quzve7Jib5vcxmkP
wgpcVDFACgP85_0ONYe4zXHKxCAS5_8V0On@5cRCDSKNM
TFzGJCT9ipCcNXaVGdksojYGgQzezjpzzzwrtPEKiy
FLFtDPZA1OM1eF30FAOCBKOUKuUNjJ_cSBbUsalIwfvK
OWH47AwFrRn_TxL4S1P3j3b1GgBm8tAgXysY84VZu@d
rsg3zrZj1PnoqPD4mb0Xds20xafCr9wR4WTQ

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

y @PhilippeDeRyck

Request with
access token

Request with
access token

, @PhilippeDeRyck

CLIENT a Reference access token

0 Run an OAuth 2.0 flow

SECURITY
TOKEN

and refresh token SERVICE

Token introspection °

The authorization server is in full control
over reference access tokens, enabling token

revocation if desired

for reference token

Token introspection a

e Introspection response with the
for reference token

claims associated with the token

A Q Introspection response with the
claims associated with the token

Reference tokens cannot be interpreted
without token introspection, causing
significant overhead

’ @PhilippeDeRyck

eyJhbGci01JSUzIINiIsInR5cCI6IkpXVCIsImtpZC
I6IK5UVKIPVFUzTXpCQk9FVXd0emhCUTBWRA1rUTBR
VVU1UVRZeFFVVX1PVU5FUVVVeE5gRXINdyJ9.eyJpc
3Mi1i0iJodHRwczovL3NOcy5yZXNOb2dyYWR1LmNvbS8
iLCIzdWIi0iJhdXROMHW1ZWISMTZjMjU4YmMRINTB1Z
jIwMzY2YZzY1iLCJhdWQi01lsiaHROcHM6LY9hcGkucmV
zdGI9ncmFkZS5jb20iLCJodHRwczovL3J1c3RvZ3IhZ
GUUZXUuYXV@aDAuY29tL3VzZXJpbmZvI1@sImlhdCI
6MTU40Tc3NTA3MiwiZXhwIjoxNTg50DYXNDcyLCJhe
NA101iJPTEtObjM40VNVSW11ZkV4Z1IHMVIpbEXTZ2R
ZeHdFcCIsInNjb3B1lIjoib3BlbmlkIHBYyb2ZpbGUgZ
W1lhaWwgb2ZmbGluZV9hY2N1c3MifQ.XzJOXtTX0GOS
bCFvp4yZGIzh7XhMmOmI2XxtjWd10Dz_siI-u8hlle
lcr8LwX6-hL20Q0W0eStzBzmm1FM_tS7MxuKKkYx8Q1l
TWOURPembVKZOhNi8kN-1j@pyc@Quzve7Jib5vcxmkP
wgpcVDFACgP85_0ONYe4zXHKxCAS5_8V0On@5cRCDSKNM
TFzGJCT9ipCcNXaVGdksojYGgQzezjpzzzwrtPEKiy
FLFtDPZA1OM1eF30FAOCBKOUKuUNjJ_cSBbUsalIwfvK
OWH47AwFrRn_TxL4S1P3j3b1GgBm8tAgXysY84VZu@d
rsg3zrZj1PnoqPD4mb0Xds20xafCr9wR4WTQ

CLIENT

Request with
access token e

Request with
access token e

\ 4

o

API

, @PhilippeDeRyck

0 Run an OAuth 2.0 flow

SECURITY
® a JWT access token and refresh token TOKEN
SERVICE

The JWT access token contains all The authorization server remains in full
relevant claims about the user control over the refresh token, enabling
and the client revocation if desired
®

Only the refresh token can be revoked. Self-
contained (JWT) access tokens typically
remain valid for their entire lifetime

Token security is often a trade-off between
performance and security. Short-lived self-contained
access tokens typically offer a good balance

, @PhilippeDeRyck

The claims obtained via token introspection The payload of a JWT-based access token

{ {
"active": true, "iss": "https://sts.restograde.com",
"iss": "https://sts.restograde.com", "aud": "https://api.restograde.com",
"aud": "https://api.restograde.com", "sub": "5eb916c258bdb50bf20366¢c6",
"sub": "5eb916c258bdb50bf20366¢c6", "exp'": 1589861472,
"client_id": "OLKNn389SU..ilLSgdYxwEp", "azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope'": "reviews:read reviews:write" "scope": "reviews:read reviews:write"

Iy Iy

, @PhilippeDeRyck

The claims obtained via token introspection The payload of a JWT-based access token

{ {
"active'": true, "iss": "https://sts.restograde.com"”,
"iss": "https://sts.restograde.com"”, "aud": "https://api.restograde.com"”,
"aud": "https://api.restograde.com"”, "sub": "5eb916c258bdb50bf20366c6",
"sub": "5eb916c258bdb50bf20366c6", "exp": 1589861472,
"client_id": "OLKNNn389SU..ilLSgdYxwEp", "azp'": "OLKNn389SUufExgRG1R1ilLSgdYxwEp",
"scope": "reviews:read reviews:write" "scope'": "reviews:read reviews:write"
s s
Token introspection responses JWT tokens include an expiration
contain an active claim timestamp (and optionally
issued at (iat) / not before (nbf))

y @PhilippeDeRyck

The claims obtained via token introspection The payload of a JWT-based access token

{ {

iss": "https://sts.restograde.com",

iss": "https://sts.restograde.com", "aud": "https://api.restograde.com",

"aud": "https://api.restograde.com",

The iss claim indicates which service issued the token.

The aud claim indicates which API is supposed to consume the token.

, @PhilippeDeRyck

The claims obtained via token introspection The payload of a JWT-based access token

{ {
"client_id": "OLKNn389SU..ilLSgdYxwEp", "azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
9
Iy I3
I The client_id/azp claim indicates which client is authorized to use the token

, @PhilippeDeRyck

Access tokens have various claims that describe the
token metadata (e.q., issuer, audience). Make sure
these values make sense to your API.

, @PhilippeDeRyck

The claims obtained via token introspection The payload of a JWT-based access token

{ {
"active": true, "iss": "https://sts.restograde.com"”,
"iss": "https://sts.restograde.com"”, "aud": "https://api.restograde.com"”,
"aud": "https://api.restograde.com"”, "sub": "5eb916c258bdb50bf20366c6",
"sub": "5eb916c258bdb50bf20366¢c6", "exp": 1589861472,
"azp": "OLKNNn389SUufExgRG1RilLSgdYxwEp", "azp": "OLKNNn389SUufExgRG1RilLSgdYxwEp",
"scope'": "reviews:read reviews:write" "scope'": "reviews:read reviews:write"

} ®)

The scope represents the authority that
the user has delegated to the client

y @PhilippeDeRyck

’ @PhilippeDeRyck

Zoom wants access to your
Google Account

"@ philippe@pragmaticwebsecurity.com

When you allow this access, Zoom will be able to

[i7 View and edit events on all your calendars.
Learn more

Make sure you trust Zoom

You may be sharing sensitive info with this site or app. You
can always see or remove access in your Google Account.

Learn how Google helps you share data safely.

See Zoom's Privacy Policy and Terms of Service.

Cancel Continue

y @PhilippeDeRyck

Gmail API, v1

Scopes

https://mail.google.com/

https://www.googleapis.com/auth/gmail.addons.current.action.compose

https://www.googleapis.com/auth/gmail.addons.current. message.action

https://www.googleapis.com/auth/gmail.addons.current. message.metadata

https://www.googleapis.com/auth/gmail.addons.current. message.readonly

https://www.googleapis.com/auth/gmail.compose
https://www.googleapis.com/auth/gmail.insert
https://www.googleapis.com/auth/gmail.labels

https://www.googleapis.com/auth/gmail.metadata

https://www.googleapis.com/auth/gmail.modify
https://www.googleapis.com/auth/gmail.readonly
https://www.googleapis.com/auth/gmail.send
https://www.googleapis.com/auth/gmail.settings.basic

https://www.googleapis.com/auth/gmail.settings.sharing

Google Analytics API, v3

Scopes

https://www.googleapis.com/auth/analytics
https://www.googleapis.com/auth/analytics.edit
https://www.googleapis.com/auth/analytics. manage.users
https://www.googleapis.com/auth/analytics.manage.users.readonly

https://www.googleapis.com/auth/analytics.provision

https://www.googleapis.com/auth/analytics.readonly

https://www.googleapis.com/auth/analytics.user.deletion

Read, compose, send, and permanently delete all your
email from Gmail

Manage drafts and send emails when you interact with
the add-on

View your email messages when you interact with the
add-on

View your email message metadata when the add-on is
running

View your email messages when the add-on is running
Manage drafts and send emails

Insert mail into your mailbox

Manage mailbox labels

View your email message metadata such as labels and
headers, but not the email body

View and modify but not delete your email
View your email messages and settings
Send email on your behalf

Manage your basic mail settings

Manage your sensitive mail settings, including who can
manage your mail

View and manage your Google Analytics data

Edit Google Analytics management entities

Manage Google Analytics Account users by email address
View Google Analytics user permissions

Create a new Google Analytics account along with its default
property and view

View your Google Analytics data

Manage Google Analytics user deletion requests

Google Sheets API, v4

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive.file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

Google Sign-In

Scopes

profile
email

openid

Google Site Verification API, v1

Scopes

https://www.googleapis.com/auth/siteverification

https://www.googleapis.com/auth/siteverification.verify_only

Google Slides API, v1

Scopes

https://www.googleapis.com/auth/drive

https://www.googleapis.com/auth/drive.file

https://www.googleapis.com/auth/drive.readonly
https://www.googleapis.com/auth/presentations
https://www.googleapis.com/auth/presentations.readonly
https://www.googleapis.com/auth/spreadsheets

https://www.googleapis.com/auth/spreadsheets.readonly

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files
See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

View your basic profile info
View your email address

Authenticate using OpenlID Connect

Manage the list of sites and domains you control

Manage your new site verifications with Google

See, edit, create, and delete all of your Google Drive files

View and manage Google Drive files and folders that you have opened or
created with this app

See and download all your Google Drive files

View and manage your Google Slides presentations

View your Google Slides presentations

See, edit, create, and delete your spreadsheets in Google Drive

View your Google Spreadsheets

GitHub

y @PhilippeDeRyck

Available scopes

Name

(no scope)

repo

repo:status

repo_deployment

public_repo

repo:invite

security_events

admin: repo_hook

write:repo_hook
read: repo_hook

admin:org

write:org

read:org

Description

Grants read-only access to public information (includes public user
profile info, public repository info, and gists)

Grants full access to private and public repositories. That includes
read/write access to code, commit statuses, repository and organization
projects, invitations, collaborators, adding team memberships,
deployment statuses, and repository webhooks for public and private
repositories and organizations. Also grants ability to manage user
projects.

Grants read/write access to public and private repository commit
statuses. This scope is only necessary to grant other users or services
access to private repository commit statuses without granting access to
the code.

Grants access to deployment statuses for public and private repositories.
This scope is only necessary to grant other users or services access to
deployment statuses, without granting access to the code.

Limits access to public repositories. That includes read/write access to
code, commit statuses, repository projects, collaborators, and
deployment statuses for public repositories and organizations. Also
required for starring public repositories.

Grants accept/decline abilities for invitations to collaborate on a
repository. This scope is only necessary to grant other users or services
access to invites without granting access to the code.

Grants read and write access to security events in the code scanning API.

Grants read, write, ping, and delete access to repository hooks in public
and private repositories. The repo and public_repo scopes grants full

access to repositories, including repository hooks. Use the
admin: repo_hook scope to limit access to only repository hooks.

Grants read, write, and ping access to hooks in public or private
repositories.

Grants read and ping access to hooks in public or private repositories.
Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

admin:org

write:org

read:org

admin:public_key

write:public_key

read:public_key

admin:org_hook

gist

notifications

user

read:user

user:email

user:follow
delete_repo

write:discussion

read:discussion

write:packages

read:packages

delete:packages

Fully manage the organization and its teams, projects, and memberships.

Read and write access to organization membership, organization
projects, and team membership.

Read-only access to organization membership, organization projects,
and team membership.

Fully manage public keys.

Create, list, and view details for public keys.

List and view details for public keys.

Grants read, write, ping, and delete access to organization hooks. Note:
OAuth tokens will only be able to perform these actions on organization
hooks which were created by the OAuth App. Personal access tokens will
only be able to perform these actions on organization hooks created by a
user.

Grants write access to gists.

Grants:

* read access to a user's notifications

* mark as read access to threads

* watch and unwatch access to a repository, and

* read, write, and delete access to thread subscriptions.

Grants read/write access to profile info only. Note that this scope
includes user:email and user:follow .

Grants access to read a user's profile data.

Grants read access to a user's email addresses.
Grants access to follow or unfollow other users.
Grants access to delete adminable repositories.

Allows read and write access for team discussions.

Allows read access for team discussions.

Grants access to upload or publish a package in GitHub Packages. For
more information, see "Publishing a package" in the GitHub Help
documentation.

Grants access to download or install packages from GitHub Packages.
For more information, see "Installing a package" in the GitHub Help
documentation.

Grants access to delete packages from GitHub Packages. For more
information, see "Deleting packages" in the GitHub Help documentation.

Scopes define the authority to perform certain operations.

The API can rely on the presence of a certain scope in the
access token claims for authorization purposes.

, @PhilippeDeRyck

The use of custom permission claims

{

"permissions": ["reviews:fullaccess"] e

} ®

OAuth 2.0 supports the use of custom
claims in access tokens. A permissions
claim is quite common to include concrete
user or client permissions in a token

, @PhilippeDeRyck

Permissions are typically used in a
first-party scenario, where the
authorization server enforces a

specific authorization policy

When the entire ecosystem is tightly controlled, the
access token often includes client/user-specific
permissions instead of coarse-grained scopes.

, @PhilippeDeRyck

A user-specific access token

{
The sub claim contains the
"sub": "5eb916c258bdb50bf20366c6", @ unique identifier of the user
associated with the access token
"permissions": ["reviews:read"]
I3
T Use the user's identifier to make access
The user has permission to read control decisions (e.g., author of the review)
reviews, but the permission does or to collect additional information for more
not specify which reviews advanced authorization decisions

’ @PhilippeDeRyck

Broken Object-Level Authorization is the #1 API security
failure. Use the sub claim to establish the user's identity
and make sure the user is allowed to perform the
requested operation on the specified object.

y @PhilippeDeRyck

USER AUTHENTICATION WITH OIDC

’ @PhilippeDeRyck

Email Address

L |Emai| Address J

Password Forgot password?

‘ Password

By signing in, | agree to the Zoom's Privacy Statement and Terms
of Service.

Stay signed in ©

Or sign in with

SSO Apple Google Facebook

’ @PhilippeDeRyck

e Store the code challenge along
with the authorization code

E e Handle user authentication / consent

USER

SECURITY
TOKEN
SERVICE

Recalculate the hash of the
code verifier and compare to the
stored code challenge

Exchange
authorization code
with client credentials

and the code verifier

Redirect to backend
with authorization code

Redirect to the STS with the e @ Identity token

openid scope in the URL

Use the claims from the

o Sign in with * @ identity token to look up an

> internal user account
o Initialize the flow using the openid scope
BROWSER e Follow redirect with authorization code A BACKEND
Calculate the SHA256 of the e e Generate a random value
code verifier (code challenge) (code verifier) and store it

, @PhilippeDeRyck

The application’s internal user database

1 Alice
2 Philippe

The identity token payload

|

auth0|8c34361ealc8bff697e3a81e
auth0|5eb916c258bdb50bf20366¢6

|

The session is
populated with the
information about the
authenticated user

The sub value is used to
find the authenticated
user in the application

database

1A

2 "iss'":
3 "sub"':
4 "aud":
5 "iat":
6 "exp":
7}

"https://sts.restograde.com/",

"autho|5eb916c258bdb50bT20366c6", ®
"FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
1591676290,
1591712290

The sub claim is guaranteed to be
unique and immutable

y @PhilippeDeRyck

D OpenlD Connect in action

Standalone applications can offload user
authentication to a central provider.

The authenticated user is matched against an internal
user in the system maintained in a "session".

, @PhilippeDeRyck

CLIENT

The client relies
on a single STS

, @PhilippeDeRyck

SECURITY

The STS allows brokering
to social identity providers

TOKEN
SERVICE

Many STS implementations
offer social login as a core
feature and handle all low-
level implementation
details

Restograde users Restograde employees

a Identity brokering

[

Identity brokering allows employees
to login with their employee account
through the "user STS"

SECURITY
TOKEN
SERVICE

SECURITY
TOKEN
SERVICE

Authenticate
the employee for me

0 Authenticate
the user for me

CLIENT

BACKEND

Identity brokering allows one STS to offload the
authentication to another STS, and so on.

It offers a lot of flexibility while hiding the complexity
from the client applications.

, @PhilippeDeRyck

Introduction to OAuth 2.0 and OIDC

RECAP

* OAuth 2.0 is not about authentication or authorization, but delegation
* Access tokens represent authority given to a client by the STS
* The API relies on the access token to make authorization decisions

* OpenlD Connect is about delegating authentication to a third-party
* OIDC flows result in an identity token containing properties about the authentication
 OIDC combines with OAuth 2.0, as the same flow can also issue access tokens

e Authorization is the responsibility of the resource server
* The authorization server has to properly verify incoming access tokens
* The claims in the access token support function-level and object-level authorization

y @PhilippeDeRyck

BEST PRACTICES

* OAuth 2.0 best practices only support three flows
* The Client Credentials grant supports direct machine-to-machine access
* The Authorization Code flow with PKCE supports user-based access
* The Device flow supports OAuth 2.0 on input-constrained devices

* OpenlD Connect is the current standard for implementing authentication
* OIDC relies on the same flows as OAuth 2.0, with the same best practices

* Minimize the attack surface following from using OAuth 2.0
* Use least-privilege scopes to limit the power of an access token
* Use strict redirect URIs to prevent token stealing attacks
* Use PKCE in all occurrences of the Authorization Code flow to preserve flow integrity

y @PhilippeDeRyck

Thank youl!

Connect on social media for more
in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

