
https://PragmaticWeb Security.com

DR. PHILIPPE DE RYCK

INTRODUCTION TO
OAUTH 2.0 AND OPENID CONNECT

@PhilippeDeRyck

@PhilippeDeRyck

Authenticate the user for me?

OpenID Connect

@PhilippeDeRyck

@PhilippeDeRyck

Authenticate the user for me?

Can I access an API please?

Request with an access token

Help me out here,
is this access token valid?

OpenID Connect

OAuth 2.0

OAuth 2.0

OAuth 2.0

@PhilippeDeRyck

TERMINOLOGY

Security Token Service (STS) Authorization Server OpenID Provider

API Resource Server

User Resource Owner End-User

Client Client Relying Party

This session OAuth 2.0 OpenID Connect

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

@PhilippeDeRyck

THE CLIENT'S PERSPECTIVE

@PhilippeDeRyck

@PhilippeDeRyck

Augment your user
management service

with OAuth 2.0 & OIDC

Offload all
responsibilities to

"Identity as a Service"

A standalone service
handling OAuth 2.0, OIDC,

and user management

@PhilippeDeRyck

The API of a restaurant
review application

A service retrieving a daily
count of # of new reviews

per restaurant

The OAuth 2.0
client application

@PhilippeDeRyck

Clients are registered with
the STS with an ID and a

secret

APIs have a meaningful
identifier and are
known by the STS

@PhilippeDeRyck

2 Access token

3 Request with
access token

4 Response

1Request access token
with client authentication

Scenarios that do not involve
user-based access rely on the

Client Credentials grant

@PhilippeDeRyck

The request to obtain an access token

1
2
3
4
5
7
8

POST /oauth/token
Host: sts.restograde.com

grant_type=client_credentials
&client_id=8LTzNhXjULgOpMeAylvhmbgpdZinK54Z
&client_secret=xEJRXoe…Vd_BjB
&audience=https://api.restograde.com

1

Indicates the client credentials flow
The client exchanging the code
The client needs to authenticate to the STS
Optional indication of the target API

Running the Client Credentials flow

Full disclosure: I am a happy Auth0 user. I am also working closely with the Auth0 developer advocates as an
Ambassador. I am not paid by Auth0, nor do I benefit from recommending Auth0 to others.

Running the Client Credentials flow

@PhilippeDeRyck

THE CLIENT CREDENTIALS GRANT ENABLES M2M ACCESS

The client credentials grant supports direct machine-to-
machine access.

The grant relies on client credentials which have to be kept
in a secure location (i.e., not on an untrusted device)

@PhilippeDeRyck

The API of a restaurant
review application

A review scheduling tool
that creates reviews at given

time for max influence

The OAuth 2.0
client application

@PhilippeDeRyck

The redirect URI restricts how the STS can send data
through the browser to the client, preventing an

attacker from hijacking valuable resources

@PhilippeDeRyck

2 Initialize the flow with a redirect

1 Connect my account (e.g., Twitter)

@PhilippeDeRyck

The initialization request

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://schedule.restograde.com/callback
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the STS should send the code

2 3

@PhilippeDeRyck

3Follow redirect to the STS

2 Initialize the flow with a redirect

1 Connect my account (e.g., Twitter)

If the browser already has an
authenticated session with the STS, it
will include a cookie on this request

@PhilippeDeRyck

3Follow redirect to the STS

2 Initialize the flow with a redirect

1 Connect my account (e.g., Twitter)

4 Handle user authentication / consent

6 Follow redirect with authorization code

5 Redirect to backend
with authorization code

@PhilippeDeRyck

The callback URI

1
2

https://schedule.restograde.com/callback
?code=SplxlOBeZQQYbYS6WxSbIA

5 6

The authorization code
The callback URI from before

@PhilippeDeRyck

3Follow redirect to the STS

2 Initialize the flow with a redirect

1 Connect my account (e.g., Twitter)

4 Handle user authentication / consent

6 Follow redirect with authorization code

7
Exchange

authorization code
with client authentication

5 Redirect to backend
with authorization code

@PhilippeDeRyck

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://schedule.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

7

Indicates the code exchange request
The client exchanging the code

The code received in step 6
The redirect URI used before

The code verifier from step 1

@PhilippeDeRyck

3Follow redirect to the STS

2 Initialize the flow with a redirect

1 Connect my account (e.g., Twitter)

4 Handle user authentication / consent

6 Follow redirect with authorization code

7
Exchange

authorization code
with client authentication

8 Access token & refresh token

5 Redirect to backend
with authorization code

9 Request with
access token

10 Response

THE OAUTH 2.0 AUTHORIZATION CODE FLOW

• The client is a backend web application, running in a secure environment
• The user authorizes the client to access APIs on their behalf
• The Authorization Code flow gives the client an access token and refresh token

• The access token is used by the client to access APIs on behalf of the user
• The refresh token allows the client to obtain new access tokens, without user involvement

• The Authorization Code flow has several security measures built-in
• The client needs to be registered with the proper redirect URIs
• The client needs to authenticate on backchannel requests to the STS

• Concretely, client authentication is needed to exhange an authorization code or refresh token
• Authorization codes can only be used once in a very limited time window

! Modern best practices
require the use of PKCE

? WTF is PKCE?

@PhilippeDeRyck

5Redirect to the STS with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Connect my account (e.g., Twitter)

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

@PhilippeDeRyck

The initialization request

1
2
3
4
5
6
7

https://sts.restograde.com/authorize
?response_type=code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&scope=read
&redirect_uri=https://schedule.restograde.com/callback
&code_challenge=JhEN0Amnj7B…Wh5PxWitZYK1woWh5PxWitZY
&code_challenge_method=S256

Indicates the authorization code flow
The client requesting access

Where the STS should send the code

4 5

The PKCE code challenge
The PKCE hash function

@PhilippeDeRyck

The request to exchange the authorization code

1
2
3
4
5
7
8
9

POST /oauth/token
Host: sts.restograde.com

grant_type=authorization_code
&client_id=lY5g0BKB7Mow4yDlb6rdGPsO2i1g7Osv
&redirect_uri=https://schedule.restograde.com/callback
&code=SplxlOBeZQQYbYS6WxSbIA
&code_verifier=lT5q6nbPQRtdj…~IUdkErVDFG.fF4z7CzCxo

10

Indicates the code exchange request
The client exchanging the code

The code received in step 9
The redirect URI used before

The code verifier from step 1

PROOF KEY FOR CODE EXCHANGE (PKCE)

• PKCE ensures that the same client intializes and finalizes the flow
• The main use case for PKCE is to prevent authorization code theft in public clients
• PKCE acts as a one-time password for a particular client instance

• PKCE consists of a code verifier and a code challenge
• The code verifier is a cryptographically secure random string

• Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] - . _ ~
• The code challenge is a base64 urlencoded SHA256 hash of the code verifier

• The hash function uniquely connects the code challenge to the code verifier
• The code verifier cannot be derived from the code challenge

• PKCE is a current best practice for all types of clients

? What about frontend applications?

@PhilippeDeRyck

5Redirect to the STS with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Connect my account (e.g., Twitter)

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

@PhilippeDeRyck

5Redirect to the STS with the
code challenge in the URL

4 Initialize the flow using the code challenge

1 Connect my account (e.g., Twitter)

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Access token & refresh token

8 Redirect to backend
with authorization code

13 Request with
access token

14 Response

2
Generate a random value
(code verifier) and associate it
with the user's browser (e.g., cookie)

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

Running the Authorization Code flow with PKCE

THE AUTHORIZATION CODE FLOW WITH PKCE FOR FRONTENDS

• The client is a public frontend web application, running in the user's browser
• OAuth 2.0 enables the user to authorize the client to access APIs on their behalf
• OIDC allows the client to obtain authentication information about the user
• Both modern Single Page Applications as legacy JS pages can use this new flow

• Web frontends cannot rely on client authentication
• The authorization code is exchanged without client credentials
• The security of the flow relies on PKCE and pre-registered redirect URIs
• Redirect URIs should use exact string matching, not dynamic matching with regexes

• Additional security requirements are needed for frontend OAuth 2.0 clients
• Attackers succeeding in executing JS code (e.g., XSS) can fully compromise the client

@PhilippeDeRyck

THE AUTHORIZATION CODE GRANT ENABLES
ACCESS ON BEHALF OF A USER

The authorization code grant with PKCE
allows the user to delegate authority

to an application to access APIs on their behalf

@PhilippeDeRyck

3
Request new access token

with refresh token
and client authentication

4 Access token

1 Request with
access token

2 Token expired

5 Request with
new access token

6 Response

@PhilippeDeRyck

REFRESH TOKENS ALLOW LONG-TERM ACCESS

Refresh tokens allow a client to obtain fresh access
tokens without user interactions.

Refresh tokens are crucial to keep access tokens short-
lived to reduce the window of abuse for stolen tokens.

@PhilippeDeRyck

THE API'S PERSPECTIVE

@PhilippeDeRyck

A self-contained access token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZC
I6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBR
VVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc
3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZ
jIwMzY2YzYiLCJhdWQiOlsiaHR0cHM6Ly9hcGkucmV
zdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZ
GUuZXUuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI
6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhe
nAiOiJPTEtObjM4OVNVSW11ZkV4Z1JHMVJpbExTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZ
W1haWwgb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOS
bCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-u8h11e
lcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8Ql
TWOURPembVKZOhNi8kN-1j0pyc0uzve7Jib5vcxmkP
wqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNM
TFzGJCT9ipCcNXaVGdksojYGqQzezjpzzzwrtPEkiy
FLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK
0WH47AwFrRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0
rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

A reference access token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

@PhilippeDeRyck

A reference access token

vSvhNDeQLqrzRbvA2eeYE2PthB1cBimS

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 Reference access token
and refresh token

6Request with
access token

4Token introspection
for reference token

5 Introspection response with the
claims associated with the token7Token introspection

for reference token

8 Introspection response with the
claims associated with the token

The authorization server is in full control
over reference access tokens, enabling token

revocation if desired

Reference tokens cannot be interpreted
without token introspection, causing

significant overhead

@PhilippeDeRyck

A self-contained access token

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZC
I6Ik5UVkJPVFUzTXpCQk9FVXdOemhCUTBWR01rUTBR
VVU1UVRZeFFVVXlPVU5FUVVVeE5qRXlNdyJ9.eyJpc
3MiOiJodHRwczovL3N0cy5yZXN0b2dyYWRlLmNvbS8
iLCJzdWIiOiJhdXRoMHw1ZWI5MTZjMjU4YmRiNTBiZ
jIwMzY2YzYiLCJhdWQiOlsiaHR0cHM6Ly9hcGkucmV
zdG9ncmFkZS5jb20iLCJodHRwczovL3Jlc3RvZ3JhZ
GUuZXUuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI
6MTU4OTc3NTA3MiwiZXhwIjoxNTg5ODYxNDcyLCJhe
nAiOiJPTEtObjM4OVNVSW11ZkV4Z1JHMVJpbExTZ2R
ZeHdFcCIsInNjb3BlIjoib3BlbmlkIHByb2ZpbGUgZ
W1haWwgb2ZmbGluZV9hY2Nlc3MifQ.XzJOXtTXOGOS
bCFvp4yZGJzh7XhMmOmI2XxtjWdlODz_siI-u8h11e
lcr8LwX6-hL20QOW0eStzBzmm1FM_tS7MxuKkYx8Ql
TWOURPembVKZOhNi8kN-1j0pyc0uzve7Jib5vcxmkP
wqpcVDFACgP85_0NYe4zXHKxCA5_8VOn05cRCDSkNM
TFzGJCT9ipCcNXaVGdksojYGqQzezjpzzzwrtPEkiy
FLFtDPZAl0MleF3oFAOCBK0UKuNjJ_cSBbUsaIwfvK
0WH47AwFrRn_TxL4S1P3j3b1GgBm8tAqXysY84VZu0
rSg3zrZj1PnoqPD4mbOXds20xafCr9wR4WTQ

@PhilippeDeRyck

3Request with
access token

1 Run an OAuth 2.0 flow

2 JWT access token and refresh token

4Request with
access token

The JWT access token contains all
relevant claims about the user

and the client

The authorization server remains in full
control over the refresh token, enabling

revocation if desired

Only the refresh token can be revoked. Self-
contained (JWT) access tokens typically

remain valid for their entire lifetime

@PhilippeDeRyck

REVOCATION VS PERFORMANCE

Token security is often a trade-off between
performance and security. Short-lived self-contained

access tokens typically offer a good balance

@PhilippeDeRyck

The payload of a JWT-based access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"exp": 1589861472,

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The claims obtained via token introspection

{
"active": true,

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"client_id": "OLKNn389SU…ilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

@PhilippeDeRyck

The payload of a JWT-based access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"exp": 1589861472,

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The claims obtained via token introspection

{
"active": true,

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"client_id": "OLKNn389SU…ilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

Token introspection responses
contain an active claim

JWT tokens include an expiration
timestamp (and optionally

issued at (iat) / not before (nbf))

@PhilippeDeRyck

The payload of a JWT-based access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"exp": 1589861472,

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The claims obtained via token introspection

{
"active": true,

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"client_id": "OLKNn389SU…ilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The iss claim indicates which service issued the token.

The aud claim indicates which API is supposed to consume the token.

@PhilippeDeRyck

The payload of a JWT-based access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"exp": 1589861472,

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The claims obtained via token introspection

{
"active": true,

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"client_id": "OLKNn389SU…ilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The client_id/azp claim indicates which client is authorized to use the token

@PhilippeDeRyck

MAKE SURE THE ACCESS TOKEN IS ACCEPTABLE

Access tokens have various claims that describe the
token metadata (e.g., issuer, audience). Make sure

these values make sense to your API.

@PhilippeDeRyck

The payload of a JWT-based access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"exp": 1589861472,

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The claims obtained via token introspection

{
"active": true,

"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",
"scope": "reviews:read reviews:write"

}

The scope represents the authority that
the user has delegated to the client

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

USE SCOPES FOR FUNCTION-LEVEL ACCESS CONTROL

Scopes define the authority to perform certain operations.

The API can rely on the presence of a certain scope in the
access token claims for authorization purposes.

@PhilippeDeRyck

The use of custom permission claims

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",

"permissions": ["reviews:fullaccess"]
}

OAuth 2.0 supports the use of custom
claims in access tokens. A permissions

claim is quite common to include concrete
user or client permissions in a token

Permissions are typically used in a
first-party scenario, where the
authorization server enforces a

specific authorization policy

@PhilippeDeRyck

CUSTOM PERMISSION CLAIMS OFFER MORE FLEXIBILITY

When the entire ecosystem is tightly controlled, the
access token often includes client/user-specific
permissions instead of coarse-grained scopes.

@PhilippeDeRyck

A user-specific access token

{
"iss": "https://sts.restograde.com",

"aud": "https://api.restograde.com",

"sub": "5eb916c258bdb50bf20366c6",

"azp": "OLKNn389SUufExgRG1RilLSgdYxwEp",

"permissions": ["reviews:read"]
}

The user has permission to read
reviews, but the permission does

not specify which reviews

The sub claim contains the
unique identifier of the user

associated with the access token

Use the user's identifier to make access
control decisions (e.g., author of the review)
or to collect additional information for more

advanced authorization decisions

@PhilippeDeRyck

PERFORM OBJECT-LEVEL AUTHORIZATION CHECKS

Broken Object-Level Authorization is the #1 API security
failure. Use the sub claim to establish the user's identity

and make sure the user is allowed to perform the
requested operation on the specified object.

@PhilippeDeRyck

USER AUTHENTICATION WITH OIDC

@PhilippeDeRyck

@PhilippeDeRyck

5Redirect to the STS with the
openid scope in the URL

4 Initialize the flow using the openid scope

1 Sign in with *

6 Handle user authentication / consent

9 Follow redirect with authorization code

10

Exchange
authorization code

with client credentials
and the code verifier

12 Identity token

8 Redirect to backend
with authorization code

2 Generate a random value
(code verifier) and store it

3Calculate the SHA256 of the
code verifier (code challenge)

7 Store the code challenge along
with the authorization code

11
Recalculate the hash of the
code verifier and compare to the
stored code challenge

13
Use the claims from the
identity token to look up an
internal user account

@PhilippeDeRyck

The identity token payload

1
2
3
4
5
6
7

{
"iss": "https://sts.restograde.com/",
"sub": "auth0|5eb916c258bdb50bf20366c6",
"aud": "FN983CEYgx4mdUg3NKNKHjwfNAL5Fb42",
"iat": 1591676290,
"exp": 1591712290

}

The application's internal user database

The sub claim is guaranteed to be
unique and immutable

ID Name Sub

1 Alice auth0|8c34361ea1c8bff697e3a81e

2 Philippe auth0|5eb916c258bdb50bf20366c6

The sub value is used to
find the authenticated
user in the application

database

The session is
populated with the

information about the
authenticated user

OpenID Connect in action

@PhilippeDeRyck

OIDC SUPPORTS OFFLOADING USER AUTHENTICATION

Standalone applications can offload user
authentication to a central provider.

The authenticated user is matched against an internal
user in the system maintained in a "session".

@PhilippeDeRyck

The client relies
on a single STS

The STS allows brokering
to social identity providers

Many STS implementations
offer social login as a core
feature and handle all low-

level implementation
details

1 Authenticate
the user for me

Restograde users Restograde employees

2 Identity brokering

A Authenticate
the employee for me

Identity brokering allows employees
to login with their employee account

through the "user STS"

@PhilippeDeRyck

IDENTITY BROKERING IS A POWERFUL FEATURE

Identity brokering allows one STS to offload the
authentication to another STS, and so on.

It offers a lot of flexibility while hiding the complexity
from the client applications.

Introduction to OAuth 2.0 and OIDC

@PhilippeDeRyck

RECAP

• OAuth 2.0 is not about authentication or authorization, but delegation
• Access tokens represent authority given to a client by the STS
• The API relies on the access token to make authorization decisions

• OpenID Connect is about delegating authentication to a third-party
• OIDC flows result in an identity token containing properties about the authentication
• OIDC combines with OAuth 2.0, as the same flow can also issue access tokens

• Authorization is the responsibility of the resource server
• The authorization server has to properly verify incoming access tokens
• The claims in the access token support function-level and object-level authorization

@PhilippeDeRyck

BEST PRACTICES

• OAuth 2.0 best practices only support three flows
• The Client Credentials grant supports direct machine-to-machine access
• The Authorization Code flow with PKCE supports user-based access
• The Device flow supports OAuth 2.0 on input-constrained devices

• OpenID Connect is the current standard for implementing authentication
• OIDC relies on the same flows as OAuth 2.0, with the same best practices

• Minimize the attack surface following from using OAuth 2.0
• Use least-privilege scopes to limit the power of an access token
• Use strict redirect URIs to prevent token stealing attacks
• Use PKCE in all occurrences of the Authorization Code flow to preserve flow integrity

Thank you!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

