
JIM MANICO Secure Coding Instructor www.manicode.com

The OWASP Top Ten 2021-2022

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 – 2021 Learning Objectives

2

What is OWASP – What are the OWASP Top 10 Risks

Best Protection Strategies

Key Concepts and Definition

For Each of OWASP Top 10 – 2021

Challenges with this Risk

Examples – Good & Bad Code in Pseudocode

In this Course you will Learn:

COPYRIGHT ©2022 MANICODE SECURITY

@manicode
Former OWASP Global Board Member

§ 20+ years of software
development experience

§ Author – "Iron-Clad Java,
Building Secure Web Applications”
§ McGraw-Hill/Oracle-Press

§ OWASP Project Leader
§ Cheat Sheet Series
§ Java Encoder / HTML Sanitizer
§ Application Security Verification Standard

3

COPYRIGHT ©2022 MANICODE SECURITY

What is the OWASP Top Ten?

4

COPYRIGHT ©2022 MANICODE SECURITY

What is OWASP?
The Open Web Application Security Project (OWASP):

Is a web application security online community – anyone can join

Produces freely-available methods, articles, tools

Is lead by the non-profit OWASP Foundation

• Established as a 501(c) 3 is the US in 2004

• Established as OWASP Europe VZW in Belgium in 2011

• Has a number of key projects and chapters around the world

5

COPYRIGHT ©2022 MANICODE SECURITY

Brief History of the OWASP Top 10
Is a Flagship Project, first published in 2003

Aims to raise awareness on critical application security risks

Ranks the top 10 application security risks in its year of publication

OWASP Top 10 - 2021 is based on data from over 40 organizations

Previous editions include 2017, 2010, 2007

Is referenced in many standards, such as

6

• MITRE • Defense Information Systems Agency (DISA-STIG)
• PCI DSS • Federal Trade Commission (FTC)

COPYRIGHT ©2022 MANICODE SECURITY

Making the OWASP Top 10 – 2021

Data call – Identifies 8 of the 10 risks

7

§ Allows information security practitioners in the front lines to vote

§ Catches highest risks that might not be represented in the data

§ Organizations asked to contribute their vulnerability data

§ Web application vulnerabilities found in various processes

Industry survey – identifies remaining 2 of the 10

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top Ten
2021

COPYRIGHT ©2022 MANICODE SECURITY

Learning the OWASP Top 10 – 2021

• Key Concepts – Information security terms you need to know

• Definition – The definition using the concepts previously introduced

• Challenges – The root causes behind this risk

• Example – Pseudocode of good example and bad example

• Best Protection Strategies – How to best prevent this risk

9

COPYRIGHT ©2022 MANICODE SECURITY 10

COPYRIGHT ©2022 MANICODE SECURITY

A1: Broken Access Control

11

COPYRIGHT ©2022 MANICODE SECURITY

A01:2021-Broken Access Control moves
up from the fifth position; 94% of applications
were tested for some form of broken access
control. The 34 Common Weakness
Enumerations (CWEs) mapped to Broken
Access Control had more occurrences in
applications than any other category.

https://owasp.org/www-project-top-ten/

12

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

2 Key Concepts for
A01:2021 – Broken Access Control
Access Control

• Selectively restricting access

• Features or data require permission to access

Authorization

• Permission to access certain features or data is called authorization

13

COPYRIGHT ©2022 MANICODE SECURITY

Definition
A01:2021 – Broken Access Control

• Users of the application can operate outside their defined
permissions

• This typically leads to unauthorized information or features
being processed

• Violation of the principle of least privilege or least authority

14

COPYRIGHT ©2022 MANICODE SECURITY

Example A01:2021 – Broken Access Control

15

adminReport(param) {
if (user.isRole("USER"), param)
{
//execute admin activity on param

}
}

adminReport(param) {
if (user.isAuthorized("ADMIN"), param)
{
//execute admin activity on param

}
}

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Indirect Object References (IDOR)
Horizontal Access Control
Example Feature
https://mail.example.com/message/2356342

This SQL would be vulnerable to tampering
select id,data from messages where messageid = 2356342

Ensure the owner is referenced in the query!
select id,data from messages m where m.id = :one AND (m.owner_id =
:two or m.recipient_id = :two)

:one = 2356342
:two = <userid_from_session_or_jwt>

16

COPYRIGHT ©2022 MANICODE SECURITY

Broken Access Control Challenges

§Access Control is difficult to test from
automated tools. Your scanning tools are
rarely aware of your custom access
control policies.
§Access Control is difficult for developers

to build. Our frameworks rarely provide
detailed access control functionality.

17

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A01:2021 – Broken Access Control

Design access control so all requests must be authorized

Enforce access by activity and only for valid workflow paths,
never by role

Build a centralized access control mechanism

Assign permissions to users in the context of data

Refuse access by default, fail securely

18

COPYRIGHT ©2022 MANICODE SECURITY

if (user.hasAccess(Feature.ARTICLE_EDIT))
{
//execute activity

}

Best Practice: Code to the Activity (or Permission)

19

Code it once, never needs to change again

Implies policy is centralized in some way

Implies policy is persisted in some way

Requires more design/work up front to get right

COPYRIGHT ©2022 MANICODE SECURITY

Access Control Key Concepts I

§Enforce access control by an activity or feature, not
the role

§ Implement data-contextual access control to assign
permissions to application users in the context of
specific data items for horizontal access control
requirements

§Build a centralized access control mechanism

§Design access control so all requests must be
authorized

20

COPYRIGHT ©2022 MANICODE SECURITY

Access Control Key Concepts II

§Deny by default, fail securely

§Server-side trusted data should drive access control
policy decisions

§Be able to change a users entitlements in real time

§Build grouping capability for users and permissions
§Build admin screens first to manage access control

policy data

21

COPYRIGHT ©2022 MANICODE SECURITY

ASVS 4.0.3 Access Control Requirements

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

https://github.com/OWASP/ASVS/blob/maste
r/4.0/en/0x12-V4-Access-Control.md

22

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY 23

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY 24

COPYRIGHT ©2022 MANICODE SECURITY

§CAUTION
– Good access control is hard to add to an application late in the

lifecycle

§VERIFY
– Automated security tools are poor at verifying access control

vulnerabilities since tools are not aware of your access control policy

§GUIDANCE
– https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Chea
t_Sheet.html

– http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-
162.pdf

– https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-
Access-Control.md

25

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
http://nvlpubs.nist.gov/nistpubs/specialpublications/NIST.sp.800-162.pdf
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V4-Access-Control.md

COPYRIGHT ©2022 MANICODE SECURITY

Summary
A01:2021 – Broken Access Control

26

Access Control
• Selectively restricting access
• Features or data require permission to access

Authorization
• Permission to access certain features or data is called

authorization

Design access control so all requests must be
authorized
Enforce access by activity and only for valid
workflow paths, never by role
Build a centralized access control mechanism
Assign permissions to users in the context of data
Refuse access by default, fail securely

• user.isRole("USER")

• user.isAuthorized("ADMIN")

Concept Definition

Best Protection StrategiesExample

Users of the application can operate outside their defined
permissions

This typically leads to unauthorized information being
processed

Violation of the principle of need to know

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A2: Cryptographic Failure

27

COPYRIGHT ©2022 MANICODE SECURITY

A02:2021-Cryptographic Failures shifts up
one position to #2, previously known as
A3:2017-Sensitive Data Exposure, which was
broad symptom rather than a root cause. The
renewed name focuses on failures related to
cryptography as it has been implicitly before.
This category often leads to sensitive data
exposure or system compromise.

https://owasp.org/www-project-top-ten/
28

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

2 Key Concepts for A02:2021 –
Cryptographic Failures
Cryptography

• The art and science of keeping messages secure

• Encryption: An algorithm for transforming messages (plaintext)
into secure messages (ciphertext), most often using a key.

Cryptanalysis

• The art and science of breaking secure messages

• Cryptology = Cryptography + Cryptanalysis

29

COPYRIGHT ©2022 MANICODE SECURITY

Definition A02:2021 – Cryptographic Failures

• The use of weak, deprecated or incorrect cryptographic
algorithms

• Sensitive data transmitted over a network without
cryptography

• Insecure certificates, keys and secrets

• Weak creation of random values used for keys or as
seeds

30

COPYRIGHT ©2022 MANICODE SECURITY

Example
A02:2021 – Cryptograpic Failures

31

Cipher cipher =
Cipher.getInstance("AES/GCM/NoPadding");

Good code Bad code User defined input

Cipher cipher =
Cipher.getInstance("DES/CBC/NoPadding");
Cipher.getInstance("DESede/CBC/PKCS5Padding");
Cipher.getInstance("AES/ECB/PKCS5Padding");

COPYRIGHT ©2022 MANICODE SECURITY

Challenges
A02:2021 – Cryptographic Failures

• Crypto knowledge is a rare commodity because the
material to learn cryptography is challenging and difficult

• It is hard to verify the level of security crypto solutions
attain

• It takes very senior and sophisticated developer resources

32

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A02:2021 –
Cryptographic Failures
Manage keys and secrets properly

Use up to date and strong cryptographic algorithms,
protocols and key sizes

Sensitive data requires more protection, so classify them
correctly

Instrument encryption for data at rest and in transit

Configure cryptographic protocols well

33

COPYRIGHT ©2022 MANICODE SECURITY

Transport Layer Protection (HTTPS)

Always Use HTTPS/TLS!

• Use TLS on all connections
• Do not tolerate plaintext communication
• Use HSTS (HTTP Strict Transport

Security) and preloading

COPYRIGHT ©2022 MANICODE SECURITY

Key Lifecycle

COPYRIGHT ©2022 MANICODE SECURITY

§Private key is stored in
the local key database for
signature signing only

§Key is not extractable

§ Input is the raw data to
sign

§RSA512 signature is the
output

36

RSA512

Input

Private
Key

Signature

Secrets Management

Advanced Secrets Management

37

https://code.cash.app/app-layer-encryption

https://docs.microsoft.com/en-us/azure/app-service/app-
service-key-vault-references

https://code.cash.app/app-layer-encryption
https://docs.microsoft.com/en-us/azure/app-service/app-service-key-vault-references

COPYRIGHT ©2022 MANICODE SECURITY

• A multi-language, cross-platform library that
provides cryptographic APIs that are
secure, easy to use correctly, and hard(er)
to misuse

• Java, Android, C++, Obj-C, Go, and Python
are field tested and ready for production

• Integration with Secrets Management

https://github.com/google/tink

Encrypting data at Rest : Google Tink

https://github.com/google/tink

COPYRIGHT ©2022 MANICODE SECURITY

• A high-security, cross-platform & easy-to-
use crypto library

• Modern, easy-to-use software library for
encryption, decryption, signatures,
password hashing and more

• Supports a variety of compilers and
operating systems

https://github.com/jedisct1/libsodium

Encrypting data at Rest : Libsodium

https://github.com/jedisct1/libsodium

COPYRIGHT ©2022 MANICODE SECURITY

§CAUTION
– Applied cryptography is difficult

§VERIFY
– Bring in senior resources to build, procure and verify your cryptographic

implementations, especially at rest

§GUIDANCE
– https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sh

eet.html

– https://www.ssllabs.com/

– https://owasp.org/www-project-o-saft/

– https://github.com/drwetter/testssl.sh

– https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.h
tml

40

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
https://www.ssllabs.com/
https://owasp.org/www-project-o-saft/
https://github.com/drwetter/testssl.sh
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

Summary A02:2021 – Cryptographic Failures

41

• Cryptography
The art and science of keeping messages secure
• Encryption: An algorithm for transforming messages

(plaintext) into secure messages (ciphertext), most often
using a key.

• Cryptanalysis
The art and science of breaking secure messages
Cryptology = Cryptography + Cryptanalysis

Manage keys and secrets properly
Use up to date and strong cryptographic algorithms,
protocols and key sizes
Sensitive data requires more protection, so classify
them correctly
Instrument encryption for data at rest and in transit
Configure cryptographic protocols well

Concept Definition

Best Protection StrategiesExample

• The use of weak, deprecated or incorrect
cryptographic algorithms

• Sensitive data transmitted over a network without
cryptography

• Weak creation of random values used for keys or as
seeds

Good code Bad code User defined input

Cipher cipher =
Cipher.getInstance("DES/CBC/NoPadding");

Cipher cipher =
Cipher.getInstance("AES/GCM/NoPadding");

COPYRIGHT ©2022 MANICODE SECURITY

A3: Injection
SQL Injection

42

COPYRIGHT ©2022 MANICODE SECURITY

A03:2021-Injection slides down to the third
position. 94% of the applications were tested for
some form of injection with a max incidence rate of
19%, an average incidence rate of 3.37%, and the
33 CWEs mapped into this category have the
second most occurrences in applications with 274k
occurrences. Cross-site Scripting is now part of this
category in this edition.

https://owasp.org/www-project-top-ten/

43

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

Key Concepts A03:2021 – Injection

• Protocol – Set of rules for exchanging information

• Protocol Encapsulation – Wrapping one set of rules into another

• Example:
• Web application gives user control of database
• HTTP as a protocol encapsulates SQL with user given commands

• New malicious commands are added to application hence the term
"injection“

• Injected SQL queries will run under the context of the application account allowing
read and/or write access to application data and more

44

COPYRIGHT ©2022 MANICODE SECURITY

Definition A03:2021 – Injection
An instance where an attacker can supply untrusted data to a web
application that is processed by the protocol as a command or query

This changes the execution flow typically leading to:
Stealing data from databases and other data sources
Running malicious operating system commands
Abuse authentication systems
Bypass access control

Many forms of injection depending on the protocol, such as

45

• SQL Injection • Operating System (O/S) Command Injection
• LDAP Injection • Object Query Injection

COPYRIGHT ©2022 MANICODE SECURITY

SQL Injection

Applications that insert untrusted
data into database queries via
string building allows attackers to
execute arbitrary queries against
back-end databases

46

COPYRIGHT ©2022 MANICODE SECURITY

SQL Injection

Injected SQL queries will run
under the context of the
application account allowing
read and/or write access to
application data and more

47

COPYRIGHT ©2022 MANICODE SECURITY 48

jim'or'1'!='@manicode.com

Looks Legit?

COPYRIGHT ©2022 MANICODE SECURITY

HTML5 Email Regular Expressions

The following JavaScript- and Perl-
compatible regular expression is an
implementation of the above definition.

/^[a-zA-Z0-9.!#$%&'*+\/=?^_`{|}~-]+@[a-zA-
Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-
zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-
9])?)*$/

49

COPYRIGHT ©2022 MANICODE SECURITY 50

select id,ssn,cc,mmn from customers where
email='$email'

$email = jim'or'1'!='@manicode.com

select id,ssn,cc,mmn from customers where
email='jim'or'1'!='@manicode.com'

Even Valid Data Can Cause Injection

1

2

3

COPYRIGHT ©2022 MANICODE SECURITY

Example
A03:2021 – Injection (Classic SQL Injection)

51

Good code Bad code User defined input

SqlCommand objCommand = new SqlCommand (
"SELECT id,name FROM user_table WHERE
username = ' " & Request("NameTextBox.Text") & " ' AND
password = ' " & Request("PasswordTextBox.Text") &

" ' ");

SqlCommand objCommand = new SqlCommand(
"SELECT id,name FROM user_table WHERE
Name = @Name AND Password = @Password", objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);
objCommand.Parameters.Add("@Password", PasswordTextBox.Text);

COPYRIGHT ©2022 MANICODE SECURITY

Challenges
A03:2021 – Injection
• It is hard enough getting your web application

protocols and layers to work together

• Limiting what data gets passed where is seen as an
additional step

• Injection is caused by insufficient user input
validation, escaping or parameterization

• Injection can be use to circumvent authentication,
access control and other defensive layers for data
theft.

52

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A03:2021 – Injection

Validate untrusted data

Encode data where necessary

Configure databases using least privilege principle

Use safe APIs for protocol queries

Sanitize data when parameterization is not available

53

COPYRIGHT ©2022 MANICODE SECURITY

WARNING:
Some variables cannot be parameterized

54

$dbh->prepare('SELECT name, color,
calories FROM ? WHERE calories < ?
order by ?');

COPYRIGHT ©2022 MANICODE SECURITY

§ CAUTION
– One SQL Injection can lead to complete data loss so be

sure to parameterize all SQL queries

§ VERIFY
– Code review and static analysis do an exellent job of

discovering SQL Injection in your code

§ GUIDANCE
– https://bobby-tables.com/
– https://cheatsheetseries.owasp.org/cheatsheets/Quer

y_Parameterization_Cheat_Sheet.html
55

https://bobby-tables.com/
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

Summary A03:2021 – Injection

56

• Protocol – Set of rules for exchanging information
• Protocol Encapsulation – Wrapping one set of rules into another

• Example:
• Web application gives user control of database
• HTTP as a protocol encapsulates SQL with user given commands

• New malicious commands are added to application hence the term
"injection“

Validate untrusted data
Encode data where necessary
Configure databases using least privilege principle
Use safe APIs for protocol queries
Sanitize data when parameterization is not available

Concept Definition

Best Protection StrategiesExample

• An instance where an attacker can supply untrusted
data to a web application that is processed by the
protocol as a command or query

• This changes the execution flow

Common Forms:
• SQL Injection – LDAP Injection
• Command Injection – Object Query Injection

Good code Bad code User defined input

"SELECT id,name FROM user_table WHERE
username = ' " & Request("NameTextBox.Text")…

"SELECT id,name FROM user_table WHERE
Name = @Name AND Password = @Password",
objConnection);

objCommand.Parameters.Add("@Name", NameTextBox.Text);
…

COPYRIGHT ©2022 MANICODE SECURITY

A3: Injection
Cross Site Scripting (XSS)

57

COPYRIGHT ©2022 MANICODE SECURITY 58

Data Type Context Defense

String HTML Body/Attribute HTML Entity Encode/HTML Attribute Encode

String JavaScript Variable JavaScript Hex Encoding

String GET Parameter URL Encoding

String Untrusted URL URL Validation, Attribute Encoding

String CSS CSS Hex Encoding

HTML Anywhere HTML Sanitization (Server and Client Side)

Any DOM Safe use of JS API's

Untrusted
JavaScript Any Sandboxing and Deliver from Different Origin

JSON Embedded JSON Serialization/Encoding

XSS Standard Content Security Policy

DOM XSS Standard Trusted Types

COPYRIGHT ©2022 MANICODE SECURITY

A4: Insecure Design

59

COPYRIGHT ©2022 MANICODE SECURITY

A04:2021-Insecure Design is a new category for
2021, with a focus on risks related to design flaws.
If we genuinely want to "move left" as an industry,
we need more threat modeling, secure design
patterns and principles, and reference architectures.

https://owasp.org/www-project-top-ten/

60

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

3 Key Concepts for A04:2021 – Insecure Design
1. Architectural flaws

• Flaws of Omission – Ignoring a threat or security requirement

• Flaws of Commission – Bad design e.g., client-side authentication

2. Secure Design Patterns

• Examples include protocol breaks across different network zones

3. Reference Architectures

• Examples include detailed technical diagrams, zero trust user access

61

COPYRIGHT ©2022 MANICODE SECURITY

Definition A04:2021 – Insecure Design

Collection of security flaws that cannot be attributed to, or
fixed by implementation

Broad category – captures missing or ineffective controls
e.g.,
Architectural flaws of omission, where security requirements have not been
provided or are not been followed
Access has not been appropriately restricted

Design flaws have a different root causes to implementation
defects
Good implementation cannot fix insecure design

62

COPYRIGHT ©2022 MANICODE SECURITY

Example A04:2021 – Insecure Design

63

userAccess() {
if (user.isAuthorized(“USER"))
{
//authorize user independent of zone

}
}

userAccess() {
if (user.isConnectingFromZone(ZONE.SemiTrusted))
{
//authorize user based on zone

}
}

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A04:2021 – Insecure Design

Not enough time is given to architecture and design
Architectural flaws of omission are often the cause of time constraints
There is no dedicated resource to look at and model the architectural threats

Secure design patterns are often incorrectly customized
It is hard to admit insecure design because the fix is not easy to implement
This can cause a huge waste of engineering time

Often reference architectures are not updated for latest
frameworks
Developers want to use the next cool framework or library

64

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A04:2021 – Insecure Design

Deny by principle, based on policy

Apply known reference architectures

Design using privilege separation

Generate security requirements to counter threats

Use known design patterns

Manage protocols and restrict permissions

65

COPYRIGHT ©2022 MANICODE SECURITY

Threat Modeling Presentations

Avi Douglen

66

Tony UV

https://securityweekly.com/shows/threat-
modeling-in-appsec-avi-douglen-asw-105/

https://www.youtube.com/watch?v=s21aI-
jqIVM

https://securityweekly.com/shows/threat-modeling-in-appsec-avi-douglen-asw-105/
https://www.youtube.com/watch?v=s21aI-jqIVM

COPYRIGHT ©2022 MANICODE SECURITY

Summary A04:2021 – Insecure Design

67

Architectural flaws

Secure Design Patterns
• Examples include protocol breaks across different

network zones

Reference Architectures

Deny by principle, based on policy
Apply known reference architectures
Design using privilege separation
Generate security requirements to counter threats
Use known design patterns
Manage protocols and restrict permissions

userAccess() {
if (user.isAuthorized(“USER")) {

//authorize user
}
if (user.connectFromZone(ZONE.SemiTrusted)){

//authorize user
}
}

Concept Definition

Best Protection StrategiesExample

Collection of security flaws that cannot be attributed to,
or fixed by implementation

Broad category – captures missing or ineffective controls

Design flaws have a different root causes to
implementation defects

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A5: Security Misconfiguration

68

COPYRIGHT ©2022 MANICODE SECURITY

A05:2021-Security Misconfiguration moves up
from #6 in the previous edition; 90% of applications
were tested for some form of misconfiguration, with
an average incidence rate of 4.5%, and over 208k
occurrences of CWEs mapped to this risk category.
With more shifts into highly configurable software,
it's not surprising to see this category move up. The
former category for A4:2017-XML External Entities
(XXE) is now part of this risk category.

https://owasp.org/www-project-top-ten/
69

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

2 Key Concepts
A05:2021 – Security Misconfiguration
1. Security Control

• An information system safeguard or countermeasure

• Designed to protect: Confidentiality, Integrity, or Availability

2. Misconfiguration that introduces common vulnerabilities

• Not performing security hardening

• Keeping default settings

Like A4:2021 Insecure Design, also a broad category

• Often referred to as the ‘catchall’ of the OWASP Top 10
70

COPYRIGHT ©2022 MANICODE SECURITY

Definition A05:2021 – Security Misconfiguration

Failing to implement the necessary controls to
secure the configurations of your application

Configuration puts your systems and data at risk

Vulnerabilities caused due to configuration

71

COPYRIGHT ©2022 MANICODE SECURITY

Example A05:2021 – Security Misconfiguration

72

<global-exceptions>
<exception key="global.error.invalidLogin" path=""
scope="request" type="InvalidLoginException" />

</global-exceptions>

<global-forwards>
<forward name=“sign-in" path=“Sign-in.jsp" />

</global-forwards>

<global-forwards>
<forward name=“sign-in" path=“/Sign-in.jsp" />

</global-forwards>

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A05:2021 – Security Misconfiguration

• This topic can span anything from
password length to file permissions to
access control and more

• You need to read the manual for the
framework, deployment environment and
everything in between

73

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies
A05:2021 – Security Misconfiguration

Verify configurations

Assume insecure if you cannot verify

Read existing hardening and security guides

Know your frameworks and libraries

Apply security settings available to you

Study to know enough about your platforms

74

COPYRIGHT ©2022 MANICODE SECURITY

Know your Framework, Libraries and Production
Environment

For frameworks, libraries and production environment:
• Hardening Guide

• Security Guide

• Security Settings

• Secure Deployment

Settings can easily open up major security gaps
e.g. “Open” AWS S3 Buckets

COPYRIGHT ©2022 MANICODE SECURITY 77

COPYRIGHT ©2022 MANICODE SECURITY 78

COPYRIGHT ©2022 MANICODE SECURITY

XML EXTERNAL ENTITY PROCESSING

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >

]>
<foo>&xxe;</foo>

Configure all of your XML parsers to disable external entity resolution!

https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Preven
tion_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

§ CAUTION
– This is a huge category that involves everywhere from the

OS to the Framework to the App Server and more

§ VERIFY
If you can’t verify the config assume it's not secure

§ GUIDANCE
– Learn the proper settings and read the manual for

security configuration needs
– Cloud configuration is especially important and requires

proper platform knowledge
80

COPYRIGHT ©2022 MANICODE SECURITY

Summary A05:2021 – Security Misconfiguration

81

Security Control
• An information system safeguard or countermeasure
• Designed to protect: Confidentiality, Integrity, or

Availability
Misconfiguration that introduces common vulnerabilities
• Not performing security hardening
• Keeping default settings
Often referred to as the ‘catchall’ of the OWASP Top 10

Verify configurations
Assume insecure if you cannot verify
Read existing hardening and security guides
Know your frameworks and libraries
Apply security settings available to you
Study to know enough about your platforms

• … path="" … />
• … path=“Sign-in.jsp" />

• … path=“/Sign-in.jsp” />

Concept Definition

Best Protection StrategiesExample

Failing to implement the necessary controls to secure the
configurations of your application

Configuration puts your systems and data at risk

Vulnerabilities caused due to configuration

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A6: Vulnerable and Outdated
Components

82

COPYRIGHT ©2022 MANICODE SECURITY

A06:2021-Vulnerable and Outdated Components
was previously titled Using Components with
Known Vulnerabilities and is #2 in the Top 10
community survey, but also had enough data to
make the Top 10 via data analysis. This category
moves up from #9 in 2017 and is a known issue that
we struggle to test and assess risk.

https://owasp.org/www-project-top-ten/

83

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

3 Key Concepts for A06:2021 – Vulnerable and
Outdated Components

1. Software often has

• Past vulnerable versions using outdated components

2. Systems and frameworks have a date by when

• End of life, end of sale, unsupported

3. Attackers attempt to exploit newly published vulnerabilities

• Requiring you apply fixes or perform updates

84

COPYRIGHT ©2022 MANICODE SECURITY

Definition A06:2021 – Vulnerable and Outdated
Components

Having in use software components that are
vulnerable, unsupported, or out of date

Environments that are not patched in a timely
manner

Not knowing the versions of software, you use

85

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A06:2021 – Vulnerable and Outdated
Components

• Patching is a monthly, quarterly, or
undefined task, leaving organizations
exposed to known vulnerabilities

• Ensuring 3rd party libraries are up to date is
often neglected as a process due to time
and similar constraints

86

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A06:2021 – Vulnerable
and Outdated Components

Check continuously that your libraries are updated and
then actually keep them updated

Only obtain components from official trusted sources

Remove unused dependencies

Use only features that are necessary

Stay current with latest vulnerabilities

87

COPYRIGHT ©2022 MANICODE SECURITY

Third Party Library Security in the NVD Database

88

COPYRIGHT ©2022 MANICODE SECURITY 89

COPYRIGHT ©2022 MANICODE SECURITY

3rd Party Management Tools
OWASP dependency-check
https://owasp.org/www-project-dependency-check/

Maven Security Versions
https://github.com/victims/maven-security-versions

Retire.js (JavaScript 3rd party library analysis)
https://retirejs.github.io/retire.js/

Create PR's for your dependencies automatically
https://dependabot.com/

https://owasp.org/www-project-dependency-check/
https://github.com/victims/maven-security-versions
https://retirejs.github.io/retire.js/

COPYRIGHT ©2022 MANICODE SECURITY

§CAUTION
– Virtually every application has 3rd party library issues

because most development teams don’t focus on ensuring
their libraries are up to date

§VERIFY
– Use automation that checks periodically (e.g., every build

or check-in) to see if your libraries are out of date and then
actually updated them!

§GUIDANCE
– https://owasp.org/www-project-dependency-check/

91

https://owasp.org/www-project-dependency-check/

COPYRIGHT ©2022 MANICODE SECURITY

Summary A06:2021 –
Vulnerable and Outdated Components

92

Software often has
• Past vulnerable versions using outdated components
Systems and frameworks have a date by when
• End of life, end of sale, unsupported
Attackers attempt to exploit newly published vulnerabilities
• Requiring you apply fixes or perform updates

Check periodically your libraries are updated
Only obtain components from official trusted sources
Remove unused dependencies
Use only features that are necessary
Stay current with latest vulnerabilities

<artifactId>log4j-core</artifactId>
<version>2.14.1</version>

<artifactId>log4j-core</artifactId>
<version>2.16.0</version>
<!-- or newer -->

Concept Definition

Best Protection StrategiesExample

Having in use software components that are vulnerable,
unsupported, or out of date

Environments that are not patched in a timely manner

Not knowing the versions of software you use

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A7: Identification and Authentication
Failures

93

COPYRIGHT ©2022 MANICODE SECURITY

A07:2021-Identification and Authentication
Failures was previously Broken Authentication and
is sliding down from the second position, and now
includes CWEs that are more related to
identification failures. This category is still an
integral part of the Top 10, but the increased
availability of standardized frameworks seems to be
helping.

https://owasp.org/www-project-top-ten/

94

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

3 Key Concepts for A07:2021 –
Identification and Authentication Failures
1. Digital Identity

• Set of attributes related to a person, organization, application, or
device

2. Identification

• The act of indicating (showing) one’s identity

3. Authentication

• Process or action confirming the identity of a user

• The act of verifying (checking) one’s identity

95

COPYRIGHT ©2022 MANICODE SECURITY

Definition A07:2021 – Identification and
Authentication Failures

Permit attacks that disclose identity attributes

Allow for authentication controls to be subverted or
bypassed

Permit weak or misconfigured attributes (e.g., weak
passwords)

96

COPYRIGHT ©2022 MANICODE SECURITY

Example A07:2021 – Identification and
Authentication Failures

97

if (user.equals(username)) {
if (pass.equals(password)) {
response.set(“Invalid Password”);

} else {
response.authoriseUser(user);

}
}

if (user.equals(username) && pass.equals(password)) {
response.authoriseUser(user);
else {
response.set(“Invalid Username or Password”);
}

} Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A07:2021 –
Identification and Authentication Failures

• Weakest point is the point of interaction
with the user on their identity

• Many attack scenarios including credential
stuffing, brute force, session reuse attacks,
weak passwords, etc.

98

COPYRIGHT ©2022 MANICODE SECURITY

High Level Authentication and Session Topics

• Password Binding

• General Authentication
Rules

• Credential Storage

• Credential Recovery

• Look-up Recovery Tokens

• Out of Band Authentication

• Session Creation

• Session Termination

• Cookie Based Sessions

• Token Based Sessions

• Federated Authentication

• One Time Passwords

• Service Authentication

99

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A07:2021 –
Identification and Authentication Failures

Force strong credentials e.g., passwords

Ensure user registration and recovery are hardened

Manage authenticated sessions and tokens

Alert on attacks e.g., brute force

Limit failed login attempts

Enable multi-factor authentication

100

COPYRIGHT ©2022 MANICODE SECURITY

How Strong Should Your Digital Identity
Solution Be?

101

COPYRIGHT ©2022 MANICODE SECURITY 102

https://pages.nist.gov/800-63-3/sp800-63-3.html

https://pages.nist.gov/800-63-3/sp800-63-3.html

COPYRIGHT ©2022 MANICODE SECURITY 103

https://pages.nist.gov/800-63-3/sp800-63-3.html

https://pages.nist.gov/800-63-3/sp800-63-3.html

COPYRIGHT ©2022 MANICODE SECURITY

Modern Password Policy

104

COPYRIGHT ©2022 MANICODE SECURITY

Should we be limiting characters of a password?

§ Limiting password characters to protect against
injection is doomed to failure

§ Very long passwords can cause DoS

§ Minimum 8 char passwords

§ Must support up to 64

§ No more than 128

105

COPYRIGHT ©2022 MANICODE SECURITY

Use a Modern Password Policy Scheme

§ Consider the password policy and
MFA suggestions from the standard
NIST SP800-63b

§ Do not depend on passwords as a
sole credential anytime sensitive data
is involved and use MFA

106

COPYRIGHT ©2022 MANICODE SECURITY

NIST Special Publication 800-63b: Digital AuthN 107

At least 8 characters and allow up to 64 but no more than 128

Throttle or otherwise manage brute force attempts
Don’t force unnatural password special character rules

Don’t use password security questions or hints

No more mandatory password expiration for the sake of it
Force the use of MFA anytime sensitive data is in play

Do not limit the character type of passwords

Check against a list of common passwords

Block context-specific passwords like the username or service name

Check against a list of breached password

COPYRIGHT ©2022 MANICODE SECURITY

Password1!

108

COPYRIGHT ©2022 MANICODE SECURITY

Password
Storage

109

COPYRIGHT ©2022 MANICODE SECURITY 110

Configure Password Hashing Functions Correctly
§ Use Argon2id with a minimum configuration of 15 MiB of

memory, an iteration count of 2, and 1 degree of parallelism
§ If Argon2id is not available, use bcrypt with a work factor of 10

or more and with a password limit of 72 bytes
§ For legacy systems using scrypt, use a minimum

CPU/memory cost parameter of (2^16), a minimum block size
of 8 (1024 bytes), and a parallelization parameter of 1

§ If FIPS-140 compliance is required, use PBKDF2 with a work
factor of 310,000 or more and set with an internal hash
function of HMAC-SHA-256

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

§CAUTION
– Authentication and Session Management are very complex layers of

software to both build and verify

§VERIFY
– There are many requirements to consider for Authentication and

Session Management

§GUIDANCE
– https://github.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-

Authentication.md

– https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V3-Session-
management.md

– https://pages.nist.gov/800-63-3/

111

https://github.com/OWASP/ASVS/blob/master/4.0/en/0x11-V2-Authentication.md
https://github.com/OWASP/ASVS/blob/master/4.0/en/0x12-V3-Session-management.md
https://pages.nist.gov/800-63-3/

COPYRIGHT ©2022 MANICODE SECURITY

Summary A07:2021 –
Identification and Authentication Failures

112

Digital Identity
• Set of attributes related to a person, organization,

application, or device
Identification
• The act of indicating (showing) one’s identity
Authentication
• Process or action confirming the identity of a user
• The act of verifying (checking) one’s identity

Ensure user registration and recovery are hardened
Limit failed login attempts
Alert administrators on attacks e.g., brute force
Force strong passwords
Implement multi-factor authentication

if (pass.equals(password)) {
response.set(“Invalid

Password”);

response.set(“Invalid Username or
Password”);

Concept Definition

Best Protection StrategiesExample

Permit attacks that disclosure identity attributes

Allow for authentication controls to be subverted or
bypassed

Permit weak or misconfigured attributes (e.g., weak
passwords)

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A8: Software and Data Integrity Failures

113

COPYRIGHT ©2022 MANICODE SECURITY

A08:2021-Software and Data Integrity Failures is
a new category for 2021, focusing on making
assumptions related to software updates, critical
data, and CI/CD pipelines without verifying integrity.
One of the highest weighted impacts from Common
Vulnerability and Exposures/Common Vulnerability
Scoring System (CVE/CVSS) data mapped to the
10 CWEs in this category. A8:2017-Insecure
Deserialization is now a part of this larger category.

https://owasp.org/www-project-top-ten/
114

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

3 Key Concepts for A08:2021 Software and Data
Integrity Failures
1. Software Integrity Verification – Process of verifying the inclusion of

functionality from untrusted software sources
Applications relying on libraries, modules, resources or plugins received from untrusted
sources

Examples of untrusted sources are repositories and Content Delivery Networks (CDNs)

2. Continuous Integration (CI) – Merging all developers’ working
software copies to a shared main instance, typically several times a
day

3. Continuous Delivery (CD) – Releasing software reliably in an
automated way without manual intervention

115

COPYRIGHT ©2022 MANICODE SECURITY

Definition A08:2021 Software and Data Integrity
Failures

Software code that does not prevent the inclusion of
functionality from untrusted sources

Downloading or updating source code dependencies from
software repositories without performing integrity checks

Deserializing untrusted data or applying updates to a
previously trusted application

116

COPYRIGHT ©2022 MANICODE SECURITY

Example A08:2021 Software and Data Integrity
Failures

117

Update() {
var data = download("https://manicode.com/update.sh");
exec(data);

}

Update() {
var data = download("https://manicode.com/update.sh");
verifyHash(data, "e7de35ebe643d7a$d23fd814639ac420fc2a9b6");
verifyGitContent(data);
exec(data);

}

Good code Bad code User defined input

https://manicode.com/update-script
https://manicode.com/update-script

COPYRIGHT ©2022 MANICODE SECURITY

Rule of Two

Check your scripts not once ... but twice!
• Be very wary of scripts you down download and run daily
• I'm looking at you DevOps pipelines!

Solution?
• Verify once via the download hash
• Verify a second time via the published repot

118

COPYRIGHT ©2022 MANICODE SECURITY

Main Challenges A08:2021 Software and Data
Integrity Failures
1. Many solutions auto-update without sufficient integrity

protections without immediate solutions

• Attackers are targeting software update mechanisms and this
problem is on the rise and widespread

2. Software integrity problems are often challenging to detect

• Keeping your 3rd party components updated (A06),is a
significant challenge and is a big part of software and data
integrity protection

119

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A08:2021 Software and
Data Integrity Failures
Learn enough cryptography to verify integrity of
downloads

Ensure all 3rd party software and frameworks are
updated

Verify software updates independently, using
cryptography

Apply and use digital signatures

Note what software sources you trust
120

COPYRIGHT ©2022 MANICODE SECURITY

Summary A08:2021 Software and Data Integrity
Failures

121

• Software Integrity Verification – Process of verifying the
inclusion of functionality from untrusted software sources

• Applications relying on libraries, modules, resources or
plugins received from untrusted sources

• This can happen most notably during Continuous
Integration (CI) and/or Continuous Delivery (CD)

Learn enough cryptography to verify integrity of
downloads
Ensure all 3rd party software and frameworks are
updated
Verify software updates independently, using
cryptography
Apply and use digital signatures
Note what software sources you trust

Update() {
var data = download("https://manicode.com/update.sh");
exec(data);

}

Update() {
var data = download("https://manicode.com/update.sh");
verifyHash(data, "e7de35ebe643d7a$d23fd814639ac420fc2a9b6");
verifyGitContent(data);
exec(data);

}

Concept Definition

Best Protection StrategiesExample

• Software code that does not prevent the inclusion of
functionality from untrusted sources

• Downloading or updating source code dependencies
without performing integrity checks

• Deserializing untrusted data or applying updates to a
previously trusted application

Good code Bad code User defined input

https://manicode.com/update-script
https://manicode.com/update-script

COPYRIGHT ©2022 MANICODE SECURITY

A9: Security Logging and Monitoring
Failures

122

COPYRIGHT ©2022 MANICODE SECURITY

A09:2021-Security Logging and Monitoring
Failures was previously A10:2017-Insufficient
Logging & Monitoring and is added from the Top 10
community survey (#3), moving up from #10
previously. This category is expanded to include
more types of failures, is challenging to test for, and
isn't well represented in the CVE/CVSS data.
However, failures in this category can directly
impact visibility, incident alerting, and forensics.

https://owasp.org/www-project-top-ten/
123

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

Why Logging?

• 1
2
4

"...the goal of logging is to be
able to alert on specific
security events..."
https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_V
ocabulary_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

3 Key Concepts for A09:2021 –
Security Logging and Monitoring Failures
1. Event Logging provides a standard, centralized way of recording

important software events

2. Event Monitoring is the process of collecting, analyzing and signaling
event occurrences

3. Security Logging and Monitoring focuses on events that can impact
the confidentiality, integrity or availability of software

This category is unique in that it is not a specific risk that leads to
compromised software
Aids in the accountability, visibility, incident alerting, and forensics and has wide reaching
implications to security management of software

125

COPYRIGHT ©2022 MANICODE SECURITY

Definition A09:2021 –
Security Logging and Monitoring Failures

Auditable events, warnings and errors are not adequately
logged
Developers and Security Staff must work together to agree on a security centric
logging standard so developers know exactly what events to log

Developers should consider logging labels specific to
security

Proper logging infrastructure is necessary in order to
securely collect and store logs long term

126

COPYRIGHT ©2022 MANICODE SECURITY

Example A09:2021 –
Security Logging and Monitoring Failures

127

if (!user.hasAccess("ADMIN_ACTION")) {
//quietly deny access

}

if (!user.hasAccess("ADMIN_ACTION")) {
//deny access and log
log.event(Event.SECURITY, Event.CRITICAL, "User
attempted to access admin action without permission");

}

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A09:2021 –
Security Logging and Monitoring Failures
• Developers are often unaware of the many security events

that need to be logged

• Appropriate alerting thresholds and response escalation processes
are not in place or effective.

• This can lead to applications that cannot detect, escalate, or alert
for attacks or suspicious activity

• Security Operations Centre (SOC) teams often do not
onboard application-level logging correctly

128

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A09:2021 – Security
Logging and Monitoring Failures
Build a secure logging infrastructure for collection and
storage of logs long term

Ensure all authentication and access control events,
both failed and successful, are logged

Standardize machine-readable formats for events and
alerts

Test incident response based on logging events

129

COPYRIGHT ©2022 MANICODE SECURITY

What To Log
§ Authentication Events

§ Access Control Events

§ Rate Limiting Events

§ File Upload Events

§ Input Validation Events

§ Malicious Behavior Events

130

§ Permission Changes

§ Sensitive Data Changes

§ Sequence Errors

§ Session Management Errors

§ System Events

§ User Management

https://cheatsheetseries.owasp.org/cheatsheets/Lo
gging_Vocabulary_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

§CAUTION
– Be sure developers and security teams work together to ensure good

security logging

§VERIFY
– Verify that proper security events are getting logged and consumed

properly by your SOC teams

§GUIDANCE
– https://cheatsheetseries.owasp.org/cheatsheets/Application_Log

ging_Vocabulary_Cheat_Sheet.html
– https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_

Sheet.html

131

https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html

COPYRIGHT ©2022 MANICODE SECURITY

Summary A09:2021 – Security Logging and
Monitoring Failures

132

• Event Logging provides a standard, centralized way of
recording important software events

• Event Monitoring is the process of collecting, analyzing and
signaling event occurrences

• Security Logging and Monitoring focuses on events that can
impact the confidentiality, integrity or availability of software

Build a secure logging infrastructure for collection
and storage of logs long term
Ensure all authentication and access control events,
both failed and successful, are logged
Standardize machine-readable formats for events and
alerts
Test incident response based on logging events

if (!user.hasAccess("ADMIN_ACTION")) {
//quietly deny access

}

if (!user.hasAccess("ADMIN_ACTION")) {
//deny access and log
log.event(Event.SECURITY, Event.CRITICAL, "User attempted to access
admin action without permission");

}

Concept Definition

Best Protection StrategiesExample

• Auditable events, warnings and errors are not
adequately logged

• Developers should consider logging labels specific to
security

• Proper logging infrastructure is necessary here to
securely collect and store logs long term

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

A10: Server Side Request Forgery
(SSRF)

133

COPYRIGHT ©2022 MANICODE SECURITY

A10:2021-Server-Side Request Forgery is added
from the Top 10 community survey (#1). The data
shows a relatively low incidence rate with above
average testing coverage, along with above-
average ratings for Exploit and Impact potential.
This category represents the scenario where the
security community members are telling us this is
important, even though it's not illustrated in the data
at this time.

https://owasp.org/www-project-top-ten/
134

https://owasp.org/www-project-top-ten/

COPYRIGHT ©2022 MANICODE SECURITY

SSRF At GitLab

135

COPYRIGHT ©2022 MANICODE SECURITY

COPYRIGHT ©2022 MANICODE SECURITY

4 Key Concepts for A10:2021 – Server-Side
Request Forgery

1. Server-Side refers to programs and operations that run on the server

2. Request Forgery means crafting a web request that appears
legitimate, but contains malicious input

3. Cross-Site Request Forgery (CSRF) forces a user to execute
unwanted actions, while authenticated on a web application

4. One-click attack involves sending a malicious URL to an
authenticated user that executes an action they do not approve

§ One-click attack resulting in the transfer of funds

137

COPYRIGHT ©2022 MANICODE SECURITY

Definition A10:2021 – Server-Side Request Forgery

Attack that forces a server to make a request to an
unexpected resource

Can lead to a wide variety of critical impacts
including loss of data, privilege escalation, and
more

A common vulnerability in N-tiered webservices and
microservices

138

COPYRIGHT ©2022 MANICODE SECURITY

Example A10:2021 – Server-Side Request Forgery

139

addToPage(String url) {
if (Validator.isValidURL(url)) {

return fetchContent(url);
}

}

addToPage(String url) {
if (Validator.isValidURL(url)) {

if (url.domain == "manicode.com") {
return fetchContent(url);

}
}

}
Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

SSRF In The Real World
August '19

https://searchsecurity.techtarget.com/news/252467901/Capital-One-
hack-highlights-SSRF-concerns-for-AWS

140

https://searchsecurity.techtarget.com/news/252467901/Capital-One-hack-highlights-SSRF-concerns-for-AWS

COPYRIGHT ©2022 MANICODE SECURITY 141

https://blog.appsecco.com/an-ssrf-privileged-aws-keys-and-the-capital-one-breach-4c3c2cded3af

COPYRIGHT ©2022 MANICODE SECURITY

Challenges A10:2021 – Server-Side Request
Forgery

• Traditional code and dynamic scanning
tools struggle to find Server-Side Request
Forgery accurately

• Passing URLs and IP addresses is very
common (e.g., for logging purposes)

142

COPYRIGHT ©2022 MANICODE SECURITY

Best Protection Strategies A10:2021 – Server-
Side Request Forgery

Validate origin of URLs and IPs when
parameters

Ensure authentication and access control on
APIs

Setup URL encoding for untrusted parameters

Test and limit network service access with
network controls

143

COPYRIGHT ©2022 MANICODE SECURITY

SSRF Detailed Defense Summary

§ Great session management on internal/intranet APIs

§ Great access control on internal/intranet APIs

§ When URL's are a parameter that the server then acts
upon do strong URL Validation

§ Avoid taking URLs as a full parameter that the
server then acts on

§ Building URLs safely with URL Encoding of Parameters

§ Limit services with network controls

§ Microsegmentation
144

COPYRIGHT ©2022 MANICODE SECURITY 145

var = request.getParameter("data");

new URL("https://internal/data/" + var)

A B

A
B

https://internal/da

COPYRIGHT ©2022 MANICODE SECURITY 146

var = request.getParameter("data");
new URL("https://internal/data/" + var)

https://someserver/search?data=23

../../../admin/report/global

https://internal/admin/report/global

https://internal/da
https://internal/admin/report/global

COPYRIGHT ©2022 MANICODE SECURITY 147

%2e%2e%2f%2e%2e%2
f%2e%2e%2f%61%64%
6d%69%6e%2f%72%65
%70%6f%72%74%2f%6
7%6c%6f%62%61%6c

../../../admin/report/global

COPYRIGHT ©2022 MANICODE SECURITY 148

new
URL("https://internal/data/" +
encodeForURIPath(var))

new
URL("https://internal?data=+
encodeForURIParam(var))

https://internal/da
https://internal/da

COPYRIGHT ©2022 MANICODE SECURITY 149

var = request.getParameter("data");

new URL(https://internal/data/ + URLEncode(var))

A B

A
B

https://internal/data/

COPYRIGHT ©2022 MANICODE SECURITY

Summary A10:2021 – Server-Side Request Forgery

150

• Server-Side refers to programs and operations that run on the
server

• Request Forgery means crafting a web request that appears
legitimate, but contains malicious input

• Cross-Site Request Forgery (CSRF) forces a user to execute
unwanted actions, while authenticated on a web application

Validate origin for URLs and IPs when parameters

Ensure authentication and access control on APIs

Setup URL encoding for untrusted parameters

Test and limit network service access with network
controls

addToPage(String url) {
if (Validator.isValidURL(url)) {

return fetchContent(url);

addToPage(String url) { if (url)) {
if (url.domain == "manicode.com") {

return fetchContent(url);

Concept Definition

Best Protection StrategiesExample

• Attack that forces a server to make a request to an
unexpected resource

• Can lead to a wide variety of critical impacts including
loss of data, privilege escalation, and more.

• A common vulnerability in N-tiered webservices and
microservices

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

Conclusion

151

COPYRIGHT ©2022 MANICODE SECURITY

• Use OWASP’s Application Security Verification
Standard (ASVS) for more comprehensive secure
coding requirements

• https://owasp.org/www-project-application-security-
verification-standard/

• Follow the guidance in OWASP’s Cheatsheet Series
• https://cheatsheetseries.owasp.org/
• Use standard security components and frameworks

that are a fit for your organization

Develop Secure Code

https://owasp.org/www-project-application-security-verification-standard/
https://cheatsheetseries.owasp.org/

COPYRIGHT ©2022 MANICODE SECURITY

• Automate as much security testing as you can.
Consider OWASP ZAP and Dependency Check.

• https://owasp.org/www-project-zap/
• https://owasp.org/www-project-dependency-

check/
• Review your applications manually following the

OWASP Testing Guide
• https://owasp.org/www-project-web-security-

testing-guide/

Test Continously For Security

https://owasp.org/www-project-zap/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-web-security-testing-guide/

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 – 2021 Key InfoSec Concepts

154

08 Software and Data Integrity Failures

01 Broken Access Control Access Control – Authorization

02 Cryptographic Failures Cryptography – Encryption – Cryptanalysis

03 Injection Protocol Encapsulation – Injecting Commands

04 Insecure Design Architectural Flaws – Secure Design Patterns

06 Vulnerable and Outdated Components End of Life – End of Sale – Unsupported Software

05 Security Misconfiguration Security Controls – Misconfiguration Vulnerabilities

07 Identification and Authentication Failures Digital Identity – Identification

Software Integrity Verification – (CI) & (CD)

09 Security Logging and Monitoring Failures Event Logging – Event Monitoring

10 Server-Side Request Forgery Request Forgery – One Clicks Attacks (CSRF)

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 – 2021 Definition 1-Liners

155

01 Broken Access Control Users Operate Outside Given Permissions

02 Cryptographic Failures Use of Weak or Incorrect Cryptographic Algorithms

03 Injection Run Unauthorized Protocols or Commands

04 Insecure Design Security Flaws not Fixable by Implementation

06 Vulnerable and Outdated Components Vulnerable, Unsupported or Out of Date Software

05 Security Misconfiguration Vulnerabilities Caused due to Misconfiguration

07 Identification and Authentication Failures Permit Attacks that Disclose Identity Attributes

08 Software and Data Integrity Failures Prevent Inclusion of Functionality from Untrusted

09 Security Logging and Monitoring Failures Events, Warnings, Errors not Adequately Logged

10 Server-Side Request Forgery Server forced to make Malicious Outbound Request

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 – 2021 Examples (Good & Bad)

156

01 Broken Access Control if (user.isAuthorized("ADMIN"))

02 Cryptographic Failures Cipher.getInstance("DESede/CBC/PKCS5Padding");

03 Injection … WHERE username = ' " & Request("username")

04 Insecure Design if(user.isConnectingFromZone(ZONE.SemiTrusted)

06 Vulnerable and Outdated Components <artifactId>log4j-core</..><version>2.16.0</…

05 Security Misconfiguration <fwd name=“signin" path=“Signin.jsp" />

07 Identification and Authentication Failures response.set(“Invalid Username or Password”);

08 Software and Data Integrity Failures verifyGitContentWithHash(data);

09 Security Logging and Monitoring Failures log.event("attempted admin access");

10 Server-Side Request Forgery if (Validator.isValidURL(url)) {

Good code Bad code User defined input

COPYRIGHT ©2022 MANICODE SECURITY

OWASP Top 10 – 2021 Best Protection Strategies

157

08 Software and Data Integrity Failures

01 Broken Access Control Design Enforce Build Assign Refuse

02 Cryptographic Failures Manage Use Sensitive Instrument Configure

03 Injection Validate Encode Configure Use Sanitize

04 Insecure Design Deny Apply Design Generate Use Manage

06 Vulnerable and Outdated Components Check Only Remove Use Stay

05 Security Misconfiguration Verify Assume Read Know Apply Study

07 Identification and Authentication Failures Force Ensure Manage Alert Limit Enable

Learn Ensure Verify Apply Note

09 Security Logging and Monitoring Failures Build Ensure Standardize Test

10 Server-Side Request Forgery Validate Ensure Setup Test

DEBAR

MUSIC

VECUS

DADGUM

VARKAS

CORUS

FEMALE

LEVAN

BEST

VEST

JIM MANICO Secure Coding Instructor www.manicode.com

It Has Been A Pleasure!

Jim Manico
jim@manicode.com

