
The (bright) future of API Security

Isabelle MAUNY - Field CTO - 42Crunch

Glad to be here!

• Field CTO / Founder of 42Crunch

• French National, living in Spain for past 20
years

• Most of career in the integration world,
pioneering what would become API
Management

• Fell quite recently into security.. but we will
talk about that later.

APIs connect the world

Healthcare

Banking

5G

IoT

Cloud

Data is the new gold!

APIs are a critical path to data

Equifax

Experian

Verizon

T-Mobile

Facebook

LinkedIN

Parler

WHY ARE APIS
SUCH A PROBLEM?

Evolution of web architectures We lost the server-side controller layer

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm

Security Architecture has to
evolve from protecting this…

…to protecting this!
“Treat APIs like they have a direct interface into your
underlying systems and can bypass security controls –
because that is pretty much what they do,” said Peter Liebert,
former CISO, state of California

https://www.linkedin.com/in/peter-liebert/

Development plays hard to catch…

APPLICATION 
DEVELOPMENT

APPLICATION 
SECURITY

Security is still an afterthought! No news there.

Application Security is hard! For everyone.

Too much to master ?

I am learning every day!

Thou shalt…

• Current security processes/tools create a
lot of work for developers

• False positives

• Delayed builds (hours)

• Imposing security rules that impact
productivity only results in friction,
“malicious obedience” and frustration

Design Flaws

APIs suffer from many design flaws, which are
hard, including impossible to fix after the fact.

The AppSec stack Increased role/responsibility of developers.

From: https://snyk.io/blog/cloud-transforms-it-security-appsec/

https://snyk.io/blog/cloud-transforms-it-security-appsec/

APIs have different vulnerabilities (REST)
•API1 : Broken Object Level Access Control

•API2 : Broken Authentication

•API3 : Excessive Data Exposure

•API4 : Lack of Resources & Rate Limiting

•API5 : Missing Function Level Access Control

•API6 : Mass Assignment

•API7 : Security Misconfiguration

•API8 : Injection

•API9 : Improper Assets Management

•API10 : Insufficient Logging & Monitoring

DOWNLOAD

Data	Protection Auth	/	Authorization	 Governance/Operations

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10-cheat-sheet.htm

Parler (January 2021)

• Wild combination of issues!

• 70 TB of user’s data leaked

• Core Issues

• Sequential IDs (IDOR/BOLA)

• No Authentication

• No Rate limiting

• Leaked raw metadata about posts, including location

• Deleted data was not deleted, just hidden in the UI

https://apisecurity.io/issue-116-facebook-parler-api-vulnerabilities-clairvoyance/

API2

API3

API4

API5

API6

API10

API9

API8

API7

API1

https://apisecurity.io/issue-116-facebook-parler-api-vulnerabilities-clairvoyance/

Zoom on BOLA The #1 issue today

GraphQL

• Similar security issues as REST plus:

• Queries complexity (DOS)

• Queries recursivity (DOS)

• Queries “suggestions”

• Authorization layer is complex as not
covered by framework - Likely to led to
more BOLA-style issues.

How do we address this?

•Common language across Dev and AppSec

•Empower Developers

•Trust but Verify

•Cover security basics

•Restore Controller Layer

•Frameworks for core tasks

•Automation

Better Communication
• APIs are “popping up like mushrooms”

• AppSec teams usually have very limited
knowledge/visibility about APIs
development

• AppSec is shooting in the dark to find
issues

• AppSec and Dev need a common
language to describe those APIs

Common Language

• API blueprint is required

• Specifications like OpenAPI or AsyncAPI
have a key role to play

• Why ?

• Standard, Extensible language widely
used by both sec and dev tooling

• Enables Security as Code approach

• Enables static analysis

• Enables dynamic testing

• Enables positive security model

https://www.openapis.org
https://www.asyncapi.com

Negative Security Model

(Deny List)

Access Allowed
by default

Block access for
suspicious traffic Threats centric

Positive Security Model

(Allow List)

Access Denied by
default

Allow Access only
to approved

traffic
Trust centric

Empower Developers
• “No shame, no blame”

• Tools which can be used from dev flow

• Limited false positives

• Easy to use from IDEs

• Provide remediation guidelines

• Interactive Security Testing

Controller Layer

• Control everything server-side

• Handles auth and authorization

• Who has access to what, at operation
and data level.

• Who can talk to who ?

• Service Meshes/API Gateways play part of
that role but we need more (especially for
authorization / BOLA prevention)

Trust but Verify
• App Sec teams want to ensure corporate

security standards are respected

• Allow them to express static rules of what
is acceptable or not, for example:

• OAuth with azn_code is mandatory

• JWTs must be signed with PS256

• All inbound parameters must be
constrained by patterns and limits

• Results visible to dev teams as early as
possible.

Cover the basics!
• Threat Modelling for APIs

• Input validation

• Anything coming in: headers, body, query
params, JWTs contents, etc.

• Output validation

• Control the data: PII, Sensitive Data, tokens

• “Proper” rate limiting

• By operation

• Auth / Tokens endpoints

• Logging

What we see is working
• Educate developers

• Separate security controls so that
development focuses on business logic

• Authentication/Authorization

• Input/Output Validation

• Provide corporate libraries for key functionality

• Logging especially

• Prevent uncontrolled access to npm,
DockerHub and similar.

• Create many “negative tests” (10X more than
“200 OK” tests

https://www.npmjs.com/package/square-area

Automate Security Only solution with 1000’s of APIs to protect.

What we see is working

• Empower Dev teams with CI/CD templates
they manage themselves

• Particularly for large enterprises

• Automate “negative tests” for each release
(even if it happens every day!)

• Automate “basic” pen-testing

• Protect the software supply chain by
systematically validating libs and images

• Automate the injection of security policies

Future of API Security

•Dev and AppSec reconcile their conflicting goals
through new processes and tools

•Developer are empowered to discover and fix
security issues in their IDEs

•Security is expressed as code and automated

