14 June 2022

KU LEUVEN

4

Outline

- > Authenticated encryption
- > Post-quantum cryptography
- > Computing on Encrypted Data

14 June 2022

CTR: properties different IV necessary; otherwise insecure (Venona) uses only encryption key stream independent of plaintext: can be pre-computed no error propagation: errors are only copied random access on decryption optimal for hardware: parellellism: one can process multiple counter values at the same time pipelining: no need to know the ciphertext block corresponding to the current plaintext block to start processing the next plaintext block risk: what if counters are (accidentally) reset to same value?

KU LEUVER

Encryption limitations

- > Typically does not hide the **leng**th of the plaintext (unless randomized padding but even then...)
- > Ciphertext becomes random string: "normal" crypto does not encrypt a credit card number into a (valid) credit card number
- > Does **not** hide existence of plaintext (requires steganography)
- > Does **not** hide that Alice is talking to Bob (e.g.Tor)
- > Does not hide traffic volume (requires dummy traffic)
- > Does **not** protect against modifications

14 June 2022

 $\begin{aligned} & \mathsf{GMAC: polynomial authentication code} \\ & (\mathsf{NIST SP 800-38D 2007 + 3GSM}) \\ & \mathsf{keys} \ K_1, K_2 \in GF(2^{128}) \\ & \mathsf{input} \ x: \ x_1, x_2, \dots, x_v \ \text{with} \ x_i \in GF(2^{128}) \\ & g(x) = K_1 + \sum_{i=1}^t \ x_i \cdot (K_2)^i \\ & \mathsf{compute} \ K_1 = \mathsf{AES}_{\mathsf{K}}(\mathsf{n}) \ (\mathsf{CTR mode}) \end{aligned}$ $\begin{aligned} & \mathsf{properties:} \\ & \mathsf{not very robust w.r.t. nonce reuse, truncation, MAC verifications, due to reuse of \\ & K_2 \ (\mathsf{not in } 3G/4G!) \\ & \mathsf{versions over GF}(\mathsf{p}) \ (\mathsf{e.g. Poly1305-AES}) \ \mathsf{is more robust as key depends on nonce} \\ & \mathsf{and keystream} \end{aligned}$

AE: block cipher based Online Nonce Patents (but # passes // Misue all expired) (encr) IAPM $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Т XECB T. $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ OCB Т $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ EAX $\sqrt{}$ 2 CWC 2 $\sqrt{}$ $\sqrt{}$ AEGIS L $\sqrt{}$ $\sqrt{}$ GCM-SIV 2 BTM L $\sqrt{}$ 1* $\sqrt{}$ McOE-G 26 KU LEUVI

Nonce reuse in practice H.Böck, A. Zauner, S. Devlin, J. Somorovsky, P. Jovanovic, Nonce-Disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS, Black Hat 2016 Affects 184 https servers Affects Ruby if nonce is set before the key Samsung Galaxy:ARM Trustzone implementation Exporting key encrypted under Hardware Derived Key in GCM mode IV provided by the application A. Shakevsky, E. Ronen A. Wool, Trust Dies in Darkness: Shedding Light on Samsung's TrustZone Keymaster Design, https://eprint.iacr.org/2022/208.pdf We should make cryptographic primitives as robust as possible If developers can't follow instructions and understand constraints, will they be able to properly generate and manage keys?

Caesar competition for Authenticated Encryption

2013-2019 https://competitions.cr.yp.to/caesar.html

	Name	Designers
Lightweight	Ascon	C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer
	ACORN	H. Wu
High speed	Aegis	H. Wu, B. Preneel
	OCB	T. Krovetz, P. Rogaway
Robust	COLM	J. Jean, I. Nikolić, T. Peyrin, Y. Seurin
	AES-COPA	E. Andreeva, A. Bogdanov, N. Datta, A. Luykx, B. Mennink, M. Nandi, E. Tischhauser, K. Yasuda

Selected from 52 submissions - a 5-year effort

KU LEUVEN

OCB2 has been broken at Crypto 2019 (bug in security proof) – but OCB3 is still ok

AEGIS: nonce-based Authenticated Encryption

- stream cipher using AES instruction
- 2x faster than AES-GCM: 0.287 cycles/byte
- multiple implementations available (including in Linux kernel)

28

KU LEUVEN

The advent of quantum computers

35

Yuri Manin 1980 Richard Feynman 1981 Exponential parallelism

First trials in the 1990s 7-bit quantum computer in 2001 Jan. 2014: NSA has spent 85 M\$ on research to build a quantum computer

NI	ST Post	-Quantum Standardization Effort http://csrc.nist.gov/pqcrypto			
Fall 2016		Formal call for proposals – NISTIR 8105			
Nov 2017	69	69 Deadline for submissions (82 attempts)			
Apr 2018	Apr 2018 Workshop - Submitter's presentations				
Jan 2019	26	26 Second round candidates announced – NISTIR 8240			
Aug 2019		Second conference			
July 2020	7	Third round finalist announced - NISTIR 8309			
June 2021		Third conference			
June 2022	?	Winners announced			
2022-2023	2022-2023 Release draft standard				
2024		Parameters chosen and standard published			
	44 KU LEUV				

Submissions to NIST Post-Quantum Competition https://en.wikipedia.org/wiki/Post-Quantum_Cryptography_Standardization			
13 rejected as	incomplete; 25 br Signatures	oken in first year Encryption/KEM	TOTAL
Lattice	4	24	28
Code	5	19	24
Multivariate	7	6	13
Hash	4	0	4
Other	3	10	13
TOTAL	23	59	82
		45	

Submission https://en.v	ns to NIST F wikipedia.org/wiki/Post	Ost-Quantum Quantum_Cryptography_S	Competition Standardization
Reduction also by mergers			
	Signatures	Encryption/KEM	TOTAL
Lattice	4/3	24/9	28/12
Code	5/0	19/7	24/7
Multivariate	7/4	6/0	13/4
Hash	4/1	0/0	4/1
Other	3/1	10/1	13/2
TOTAL	23/9	59/17	82/26
		46	

Submissions to NIST Post-Quantum Competition https://en.wikipedia.org/wiki/Post-Quantum_Cryptography_Standardization

7 finalists (1 of which broken)

	Signatures	Encryption/KEM	TOTAL
Lattice	4/3/2	24/9/3	28/12/5
Code	5/0/0	19/7/1	24/7/1
Multivariate	7/4/ <mark>1</mark>	6/0/0	13/4/ <mark>1</mark>
Hash	4/1/0	0/0/0	4/1/0
Other	3/1/0	10/1/0	13/2/0
TOTAL	23/9/ <mark>3</mark>	59/17/4	82/26/ <mark>7</mark>
		47	

Submissions to NIST Post-Quantum Competition https://en.wikipedia.org/wiki/Post-Quantum_Cryptography_Standardization

7 finalists (of which one broken) + 8 alternates

	Signatures	Encryption/KEM	TOTAL
Lattice	2+0	3+2	5+2
Code	0	1+2	1+2
Multivariate	1 0+1	0	0+1
Hash	0+2	0	0+2
Isogeny	0	0+1	0+1
TOTAL	3 2+3	4+5	<mark>6</mark> +8
		48	

Level	Classical			
	AES 128	2 ¹⁷⁰ /MAXDEPTH quantum gates or 2 ¹⁴³ classical gates		
II	SHA3-256	2 ¹⁴⁶ classical gates		
	AES192	2 ²³³ /MAXDEPTH quantum gates or 2 ²⁰⁷ classical gates		
IV	SHA3-384	2 ²¹⁰ classical gates		
V	AES256	2 ²⁹⁸ /MAXDEPTH quantum gates or 2 ²⁷² classical gates		
Critic • circ • cos	cism: too vag cuit depth st of memory e of quantum	ue		

Other standards

- > IEEE PI 363.3 (2008), X9.98: NTRU
- > IETF: hash-based signatures
 - >> IETF RFC 8554 Leighton-Micali signatures (stateful)
 - >> IETF RFC 8391 XMSS eXtended Merkle (stateful)
- > ISO/IEC JTC1/SC27: study period

56

KU LEUVEN

Overhead	Trusted Server	MPC (Multi Party Computation)	FHE (Fully Homomorphic Encryption
	ARM TrustZone Intel SGX AMD SEV	all parties engage in a protocol to compute the function securely	the parties encrypt their data, a server computes the function in the encrypted domain, a designated party gets the output
Computation	Fast	Relatively fast	Very very slow
Communication	Relatively low	Expensive	Relatively low
Applications	Yes	Growing range of options	Simple functions
Security	Need to trust hardware manufacturer (+ infrastructure)	Very high (can even be unconditional) (trust cryptographers)	High (trust cryptographers)
		60	KULEU

14 June 2022

Conclusion

- > Cryptography keeps changing
- > Cryptographic agility is challenging
- > Secure implementations

<section-header><section-header><text><text><text><text><text><text>

Selected books on cryptology

A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 1997. The "bible" of applied cryptography.Thorough and complete reference work but slightly outdatednot suited as a first text book.http://www.cacr.math.uwaterloo.ca/hac

61

KU LEUVEN

KU LEUVEN

D. Boneh, V. Shoup, A Graduate Course in Applied Cryptography, https://toc.cryptobook.us/ Draft. Rather advanced course with interesting applications.

N. Smart, Cryptography Made Simple, Springer, 2015. Solid and up to date but on the mathematical side.

D. Stinson, M. Peterson, *Cryptography: Theory and Practice*, CRC Press, 4th Ed., 2018. Solid introduction, but only for the mathematically inclined.

J. Katz and Y. Lindell, Introduction to Modern Cryptography, Chapman & Hall, 2014. Rigorous and theoretical approach.