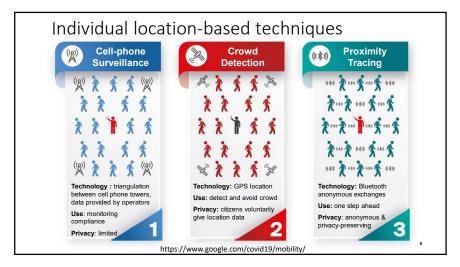
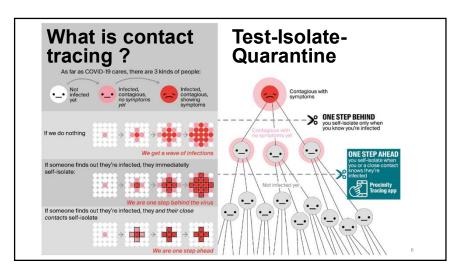
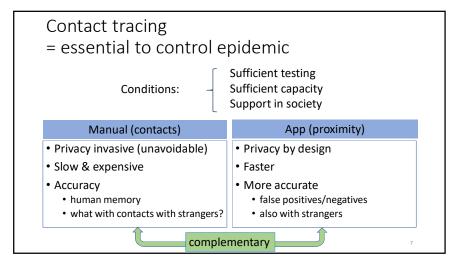
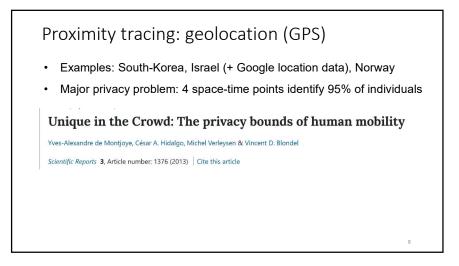


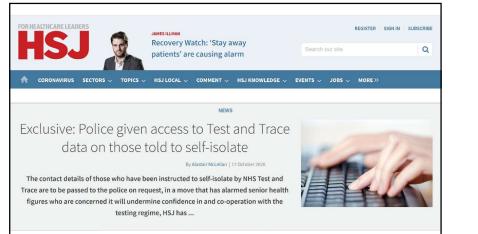
Can technology help us to deal with Corona?

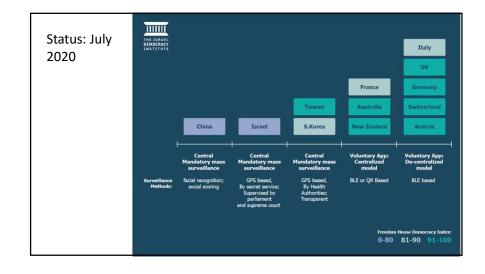



- Information
- •Self-diagnosis
- Collect medical data
- Location-based techniques


Feb 27, 2020 South Korea: 5 coronavirusrelated apps rank within the top 10 apps in the Google Play Store


China: many apps



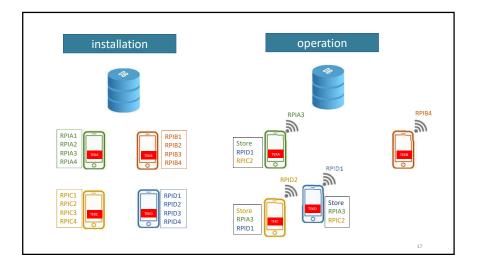


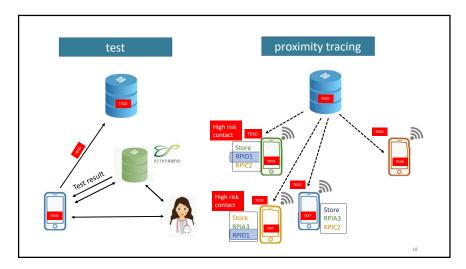
Decentralized Proximity tracing: requirements (1/2): Respect for privacy and human rights

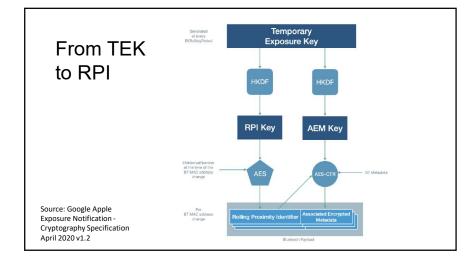
- Data minimization privacy by design (GDPR)
 - No central database that can reconstruct social graph/count
- Data can only be used to detect proximity
 - Built-in protection against "function creep"
- Protect identities: who has been in contact with whom, where and when
 - No information about uninfected users
- · Right to be forgotten (erase data): auto-fading

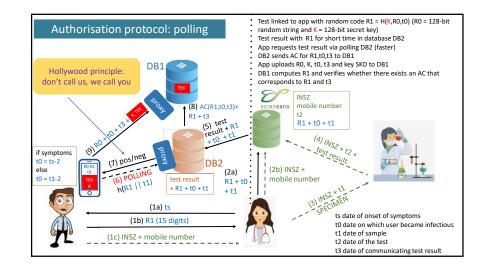
Decentralized Proximity tracing: requirements (2/2)

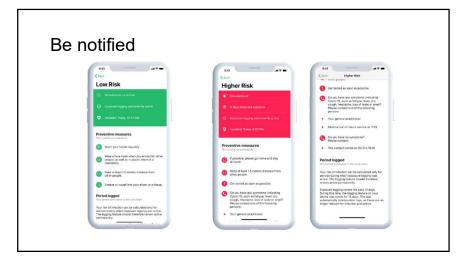
- Accuracy:
 - · Only for sufficiently intensive contacts
 - Minimize false negatives and false positives
- Security: avoid false or incorrect reporting of infections (i.e. no self-reporting)
- Scalable to 100+ million users
- Transparency: specs and software open
- · Voluntary: needs confidence of the general public
- · Fast deployment

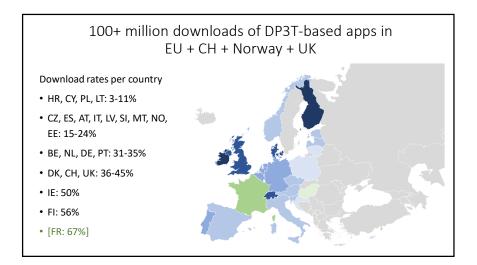

Realistic deployment: Google/Apple Exposure API

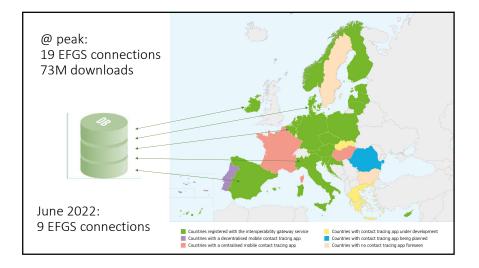


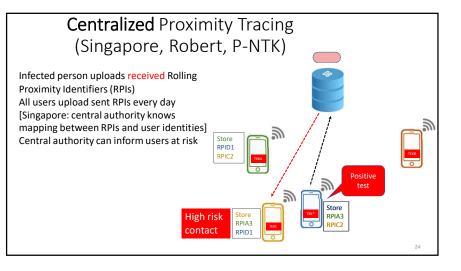

- · Android and iOS versions need to be compatible
- Battery and CPU usage
 - No connections/limited roundtrips
- Run in background: need iOS/still problems on some Android phones
- Support for old(er) devices
- Google and Apple implement protocol and API
 - privacy engineering
 - epidemiology and exposure estimation
 - internationalization
 - deployment
- Fall 2020: Apple iOS 13.7 Exposure Notification Express

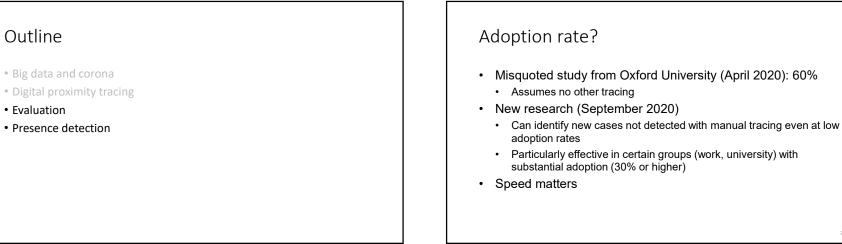

DP3T Protocol History

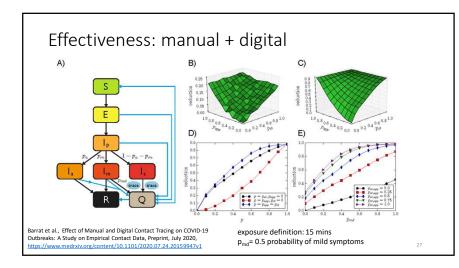

- March 2020: multidisciplinary research team: https://github.com/DP-3T
- March 2020: US PACT East Coast and West Coast
- April 2020: Google (Android) and Apple (iOS) GAEN
- May 2020: protocol and code finished
- June 2020: apps launch in CH/DE & start of EU interoperability (EFGS)
- October 2020: EU server launches
- Asia/Oceania: Japan, Kazachstan, New Zealand, Saudi Arabia
- Russia
- South Africa
- Canada + US: 26 states/territories
- South America: Brazil, Ecuador, Panama, Uruguay
- https://www.xda-developers.com/google-apple-covid-19-contact-tracing-exposure-notifications-api-app-list-countries/

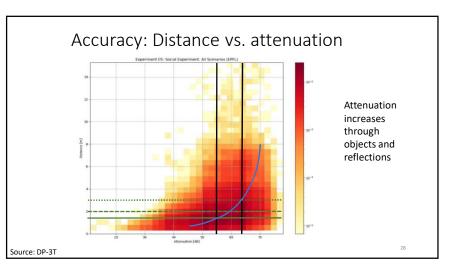


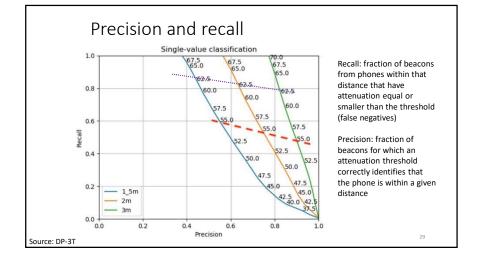


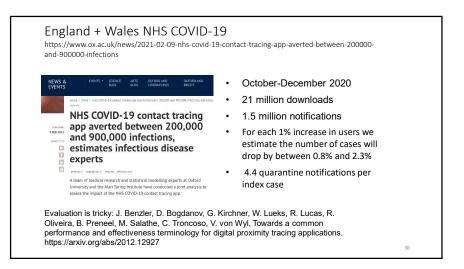


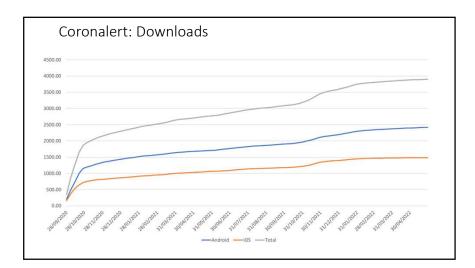


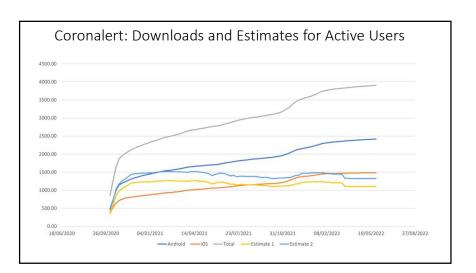


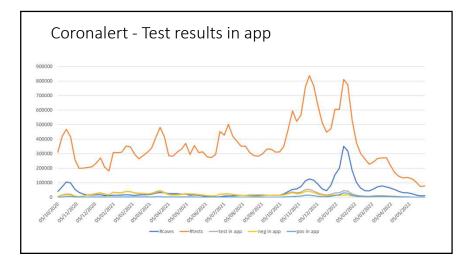


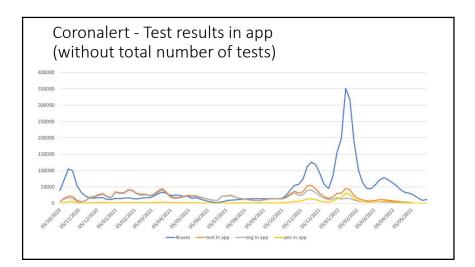


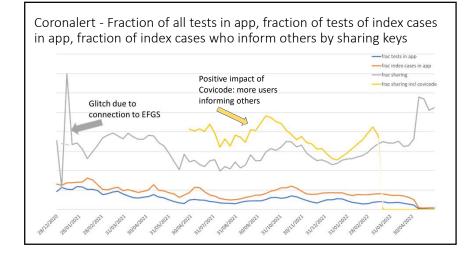


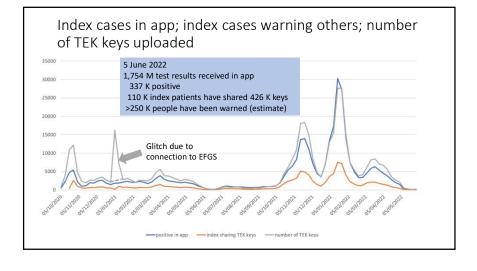


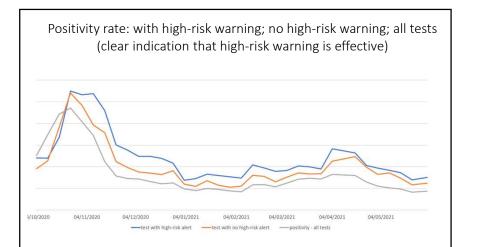


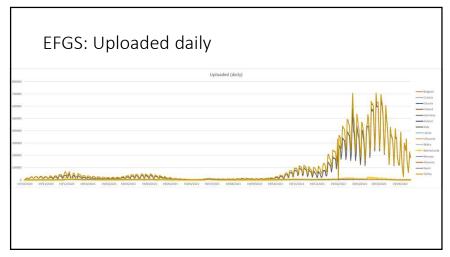

26

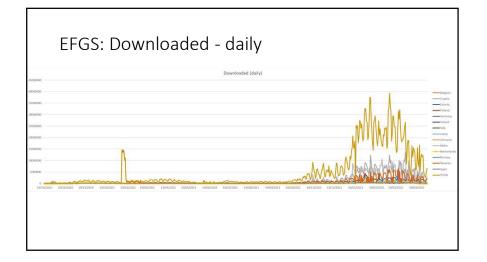


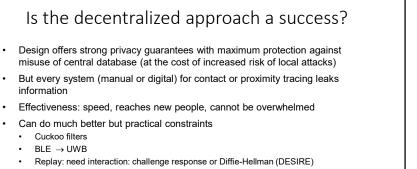












Important impact information which cannot be found in these slides

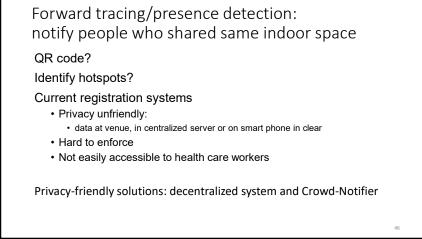
- Low risk and high risk contacts are informed within 6-8 hours of a positive test, which is typically much faster than with manual contact tracing
- Coronalert allows users to manage their risks by adapting their behavior as a function of low and high risk contacts (users have reported strong engagement)
 - Note that there is no statistical information on low risk contacts
- Users appreciate that Coronalert provides tests results in a convenient way

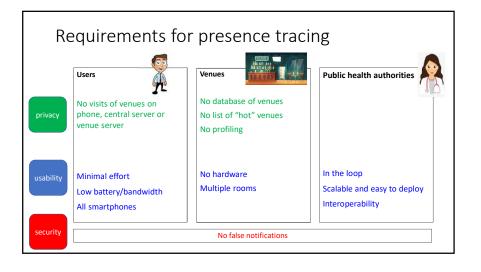
41

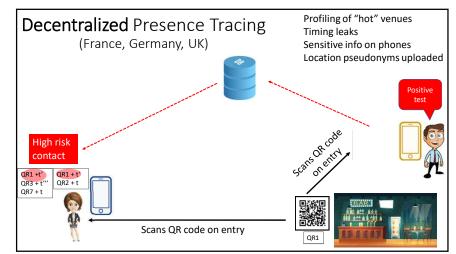
- · Relay: need location
- [Pietrzak'20] commitment + MAC for delayed authentication 128 vs 256 bits?
- Some of these options create digital evidence

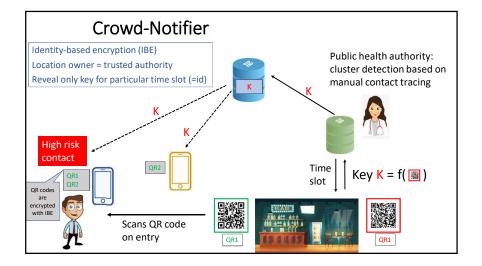
	https:/	//github.com/DP-3	T/documents/		
	All PT systems	BLE-based PT systems	Systems sharing infected identifiers	Systems sharing observed identifiers	
	Section 2.1	Section 2.2	Decentralised Section 3.2	Decentralised Section 3.4	Centralised Section 3.5
Identify					
Infected individuals (IR 1)	1	1	1	1	1
	Multiple accounts	Multiple accounts	Eavesdropping	Injection	Multiple accounts
Locations with infected people present (GR 3)		✓	1	1	1
		Multiple accounts	Eavesdropping	Injection	Multiple accounts
Prevent notification (IR 2)	1	√	1	1	1
Cause false alarms					
Through range extension (GR 1)		✓	1	1	1
			Injection	Eavesdropping	Eavesdropping
Through active relay (GR 2)		1	1	1	1
		Bi-directional	Uni-directional	Uni-directional	Uni-directional
Disrupt contact discovery (GR 4)		√	√	1	1
Track a BT enabled device (GR 5)		(√)	(√)	(√)	(√)
Reveal app usage (GR 6)		1	1	1	1

System-specific risks for Proximity Tracing systems https://github.com/DP-3T/documents/ Decentralised Decentralised Centralised Section 3.1 Section 3.3 Section 3.5 Section 3.6 Reveal social interactions Through local phone access (SR 1) 1 1 To a central server (SR 5) 1 1 Infected user Infected users Recompute risk score (SR 2) 1 1 1 1 Location tracing Through local phone access (SR 3) 1 1 By other users (SR 4) √/× Infected users Through access to a central server 1 (SR 7) Reveal colocation to a central server (SR 6) 1 1 Any user (SR 8) Infected users Reveal social graph (SR 8) .1 Reveal at-risk status (SR 9) 1


What were the options anyway?


- No contact tracing
- Manual contact tracing only
- Centralized proximity detection
- · Decentralized proximity detection
- A beautiful high tech scheme that is more privacy-friendly and secure but that does not work on current smart phones


Each option has its own risks


11

Outline Forwind • Big data and corona QR condition • Digital proximity tracing Identified • Evaluation • Privacy • Presence detection • Hade • Note • Privacy

Identity-based encryption

- Master public key = product of 2 IBE public keys: one for authority, one for location
- QR code public = master public key + metadata
- QR code private = location private key + metadata
- App user encrypts: arrival + departure time for identity time slot (=id) with master public key and stores the ciphertext
- Location uploads partial location private key for identity time slot (=id) and uploads this to authority who computes tracing key K
- App user downloads tracing keys K and time slots (=id) and tries to decrypt ciphertexts
- FullIdent Boneh-Franklin
 - CCA2 security
 - Strong anonymity: ciphertext does not reveal identity or master public key

Comparison of Presence Tracing Solutions

https://github.com/CrowdNotifier/documents/

	Existing Classes of Systems			
	Store at Location	Store at Server	Store at Phone	CrowdNotifier
Privacy of Users				
No central data collection (PU1)	\checkmark	×	\checkmark	\checkmark
No data collection at location (PU2)	×	\checkmark	1	1
No location confirmation attacks given phone (PU3)	\checkmark	\checkmark	×	~
No notification side channel (PU4)	unknown	unknown	1	1
No SARS-CoV-2-positive diagnosis side channel (PU5)	~	~	\checkmark	\checkmark
Confidentiality of locations				
Hide trace locations from non-visitors (PL1)	\checkmark	\checkmark	~	~
Hide trace locations from non-contemporal visitors (PL2)	1	1	XIV	XIV
No database of locations (PL3)	~	×	XIV	\checkmark
Security				
No targeting of individuals (S1)	×	×	\checkmark	\checkmark
No crowd control (S2)	\checkmark	×	×	~
Automatic dismantling (S3)	~	×	×	1

Lessons learned: privacy-by-design in practice

- Decentralized solution that offers strong privacy guarantees can be rolled out at a large scale
 - Resist function creep
- · New cryptographic solutions deployed in short time
- **Public acceptance** very important (also by health care professionals)
 - · Unclear whether public was convinced about privacy properties
- Legal issue (GDPR): proving proportionality requires proving effectivity
 - · But the more privacy-friendly a solution is, the harder it may be to prove effectivity
 - First research shows it is effective
- Do not overregulate technology by writing every technical detail in the law
- · The devil is in the (implementation) details

Bart Prene	eel, COSIC, at KU Leuven and imec	
ADDRESS:	Kasteelpark Arenberg 10, 3000 Leuven	
WEBSITE:	homes.esat.kuleuven.be/~preneel/	
EMAIL:	Bart.Preneel@esat.kuleuven.be	
TWITTER:	@bpreneel1	
TELEPHONE:	+32 16 321148	
4		54