
abhaybhargav

Everything-as-Code
Abhay Bhargav

abhaybhargav

Yours Truly
• Founder @ we45

• Founder @ AppSecEngineer

• AppSec Automation Junkie

• Trainer/Speaker at DEF CON, BlackHat, OWASP
Events, etc world-wide

• Co-author of Secure Java For Web Application
Development

• Author of PCI Compliance: A Definitive Guide

abhaybhargav

My talk…

abhaybhargav

Everything-as-Code
Everything-as-Abstracted, Configurable, Parameterizable Code

abhaybhargav

Agenda

• Why is the “as-code” movement so important?

• DevSecOps => Possible Future of Security

• As-Code across the stack

• Demos and Examples

abhaybhargav

Why?

135:1

Source: BSIMM-12

Developers Software Security
Pros

abhaybhargav

Git and its role in Modern DevOps

abhaybhargav

Infrastructure as Code

abhaybhargav

Cloud

• Plethora of Deployment and Database
options

• Elastic Scale

• API-driven Orchestration across the
cloud

abhaybhargav

Monoliths

User Management Customer Master
Customer Communication

User Communication Customer Deals

Sales Order Processing

Inventory Management
Delivery Management

Tax Filing

abhaybhargav

MicroServices

User Management

User Communication

Customer Master

Sales orders

Inventory Management Delivery Service

Taxation Service Customer Comms

abhaybhargav

Functions as a Service

User Management

create_user()

edit_user()

delete_user()

abhaybhargav

Trends on the Application Delivery Front

abhaybhargav

The Bottleneck

abhaybhargav

Security is very waterfall

Security intervenes here

Security is still viewed as a Gatekeeper process

Gatekeeper processes come up with very binary options

abhaybhargav

In Short….

abhaybhargav

What we need

abhaybhargav

Dev-First Workflows!

abhaybhargav

Dev-First Workflows!

Workflows that support iterative and continuous delivery of apps

^

abhaybhargav

This means…

• Dev has consumed Ops (Infrastructure-as-Code, Continuous Integration,
Continuous Deployment)

• Dev has consumed QA (Test Automation)

• Dev is halfway through consuming security (Security-as-code)

• Dev is coming for policy, compliance, etc next

abhaybhargav

Why is this good?

• ⬆ Automation!

• ⬇ Human Intervention

• ⏭ Faster delivery of features

• ⛅ Highly Scalable, Immutable Environments ❎

abhaybhargav

Instead of this…

abhaybhargav

To this…

abhaybhargav

DevSecOps

Plan

Code

Build

Test

Release

Deploy

Operate

Monitor

Threat
modeling,
Training,
Baselines

SAST
Source Composition Analysis

Secure Defaults
Build Security Processes

DAST
IAST,

InfraSec,
Sec Regression

Infrastructure Security,
Cloud Hardening,

Secrets Management

Security monitoring
& attack detection,

Threat Hunting,
Attack Simulation/RedTeam

abhaybhargav

DevSecOps

Plan

Code

Build

Test

Release

Deploy

Operate

Monitor

Threat
modeling,
Training,
Baselines

SAST
Source Composition Analysis

Secure Defaults
Build Security Processes

DAST
IAST,

InfraSec,
Sec Regression

Infrastructure Security,
Cloud Hardening,

Secrets Management

Security monitoring
& attack detection,

Threat Hunting,
Attack Simulation/RedTeam

SAST as Code DAST/Regression as Code Decoupled Security Controls
/Policy-As-Code

abhaybhargav

Decoupled Security Controls
and Policy as Code

abhaybhargav

BOLA
Broken Object Level AuthZ

EDE
Excessive Data Exposure

BFLA
Broken Function Level AuthZ

BA
Broken AuthN

abhaybhargav

From recent events…

abhaybhargav

Trends on the Application Delivery Front

abhaybhargav

Imagine…

Your Service Business Logic

JWT Authorization

Input Validation

Object Access Control

Authentication

Logging

abhaybhargav

What if…

• APIs and services were NOT security aware

• But security validation and checks were handed off to a more specialised set
of controls

• Leverage “as-code” platforms to be able to compose and change them as
required, vs changing all services

abhaybhargav

Need and Motivation

• APIs and Web Services are typically part of a larger set of service offerings

• With rapid-release requirements, these services are constantly changing.

• New services are constantly being included, removed and modified

abhaybhargav

Need and Motivation - 2

• Decentralized controls are applied “outside” the application

• The idea is to NOT hardcode security rules in app that have rapidly evolving
and changing requirements

• Leveraging eBPF, Policy-as-Code and API Gateway Security Features to drive
security controls

abhaybhargav

Typical Use-Cases

• Syscall Profiling, Seccomp, AppArmor and eBPF for Runtime Security
enforcement

• Authorization, CORS, Rate-Limiting, mTLS and others on the API Gateway

• Log Collection and aggregation of services from Cloud-Native environments

• Input Validation, Access Control with Policy-as-Code Frameworks

abhaybhargav

Security Model - An Example

abhaybhargav

Open-Policy-Agent
• Policy Management Framework for “any”

environment

• Allows you to define policies that can be
enforced based on generic json input and
output parameters

• Uses a DSL (domain specific language)
called “rego” that is used to define
policies

abhaybhargav

Open Policy Agent - Operation

abhaybhargav

OPA Use-Cases

• Kubernetes Policy Management

• API AuthZ and Policy Management

• OS Policy Management - SSH and Access Control

• Kafka Topic Authorization

• Many more…

abhaybhargav

OPA - API AuthZ

Copyright © we45 2020
abhaybhargav

What about Access Control?

abhaybhargav

Let’s look at most AuthZ flaws

• Inconsistent implementation of Object Level Authorization

• Access Control code strewn across multiple services

• Lack of standardization and expressive capability for AuthZ frameworks

• Heavily design dependent - which gets complex at scale

abhaybhargav

ACL

has access to to perform

abhaybhargav

RBAC - Role Based Access Control

abhaybhargav

ABAC - Attribute Based Access Control

abhaybhargav

PERM

Policy, Effect, Request, Matchers

abhaybhargav

What is PERM?

Request Attributes must MATCH Policy Attributes

abhaybhargav

Casbin

• Authorization libraries and framework for multiple Access Control models

• Uses a DSL based on the PERM model to be able to define access control
functionality that can integrate with access control data

• All you need to do is pass the library with a Subject-Object-Action definition
and Casbin’s APIs handle the validation

abhaybhargav

Lab: OPA, Traefik and Decentralized security
Controls

abhaybhargav

Other applications of Policy-as-Code

• Managing Kubernetes Clusters

• Threat Hunting with Audit Logs

• Cloud Admission Controls

abhaybhargav

SAST as Code

abhaybhargav

SAST Test Approaches

•Good ol’ Regular Expressions

•Abstract Syntax Trees

•Semantic Grep or QL

Copyright © we45 2020
abhaybhargav

Regular Expressions

• Regular Expressions are useful in identifying patterns.

• However, they can be inaccurate, because they don't really look understand
the code in context

• Heavily dependent on the quality of Regexes written as rules

Copyright © we45 2020
abhaybhargav

Errors

Code Comments:

Don’t use this!! jwt.decode(something, secret,
verify=False)

abhaybhargav

SAST with AST

abhaybhargav

AST example with Python

call

nil
jwt.decode

args

local

“verify”

abhaybhargav

SAST - AST Benefits for DevSecOps

• New rules can be written into SAST or Linter/Code Quality tool

• Very fast, especially if using as a Linter/Code Quality tool, rather than a full-
featured SAST Tool

• Can be embedded into the IDE for immediate feedback loops to the
developer

Copyright © we45 2020
abhaybhargav

Good Rules for SAST

• Every check should do ONE THING ONLY!

• False Positives abound when complexity increases

• Extending SAST with Custom Checks is a good idea

• IF you know what you are doing

• Getting Engineering teams to extend SAST should be the ultimate objective

Copyright © we45 2020
abhaybhargav

Custom SAST Rules

• Custom SAST rules become necessary as you are scaling up in SAST Maturity

• Custom SAST rules help identify specific cases that make sense to your
applications, in terms of security

• Increases Depth of your overall SAST Process

• Leveraging AST is better for SAST, as it makes it more accurate

abhaybhargav

Lab - Custom SAST: Bandit Python
@test.checks(‘Call')

@test.test_id('B350')

def unsafe_jwt_verify(context):

 if (context.call_function_name_qual == 'jwt.decode'):

 if context.get_call_arg_value('verify') == 'False':

 return bandit.Issue(

 severity = bandit.HIGH,

 confidence = bandit.HIGH,

 text = 'JSON Web Token decode() method does not verify the HMAC/Key. Attacker
can use this to spoof Authentication Tokens'

)

abhaybhargav

Semantic Grep and QL
• Combines the power of Regular Expressions or a full-feature Query Language with the context of

Abstract Syntax Trees

• Faster

• More Accurate

• Easier to customise

• Current Landscape:

• Semgrep

• CodeQL

abhaybhargav

CodeQL

securitylab.github.com

http://securitylab.github.com

abhaybhargav

Semgrep

• Tool for offline static analysis

• Borrows simplicity from Grep, but with the context of an Abstract Syntax
Tree Parse engine built in

• Polyglot support

• Existing Database of rules

abhaybhargav

Demo

abhaybhargav

Notable Areas of As-Code

• Runtime Security Defence/Detection => eBPF

• Threat-Modeling-as-Code => ThreatPlaybook

• Security Orchestration, Automation and Response (SOAR)

• Natural Language Test Automation for DAST

