Pragmatic Web Security

THE SECURITY MODEL OF THE WEB

PHILIPPE DE RYCK @PhilippeDeRyck — philippe@PragmaticWebSecurity.com

Yahoo! Auctions f . i !mm ‘ Hey -
m _.}Tosmh Laptop Giveaway! Find 2 loay ‘ Grom pockmarts — X
cards > i ——
_ > ONSALEsicosT— Win 510,000
N | - s
‘ance searc|
book.
Yahoo! Games - Piay ogige chess, bridge, spades, hearts andmore | Wiki pedvsta: Amgine/fnoﬂo €/ Opars: Cri 5. Satark Gt R
hlmEun-&mk_s.mh~._:m.1mq ABEM - Clasiieds - Pecsons gane:. Mg cick fead| ' -
Email mmmmmmnmﬂf’“&" ‘w“:::wmowﬂ’mmnmnw
ity
Arts & Humanities News & Media In the News :': bt
Literature Photography BllCovenge Newspmpers V.t dedin oot | WIKINEWS | - - 5
. css . .
Busin_en_& Economy Recreation & Sports +NATO . Serbia war \ § . '.::':m- Tt March VX %
Companies, Finance, Jobs.. Sports, Travel, Autos, Outdoors... - Y221 2000 protien ‘ —..“M " "“&"""“ﬁ:“m o
Computers & Internet Reference S o Nl oy e A viaas et 1E, 184 18 o
intemer, WWW. Software Games.. Librares, Dictionaries, Quotaions e \ comnm || e 400 ML S S o
- Kosoro Charity Auctions e " e omin o
Regional - Custom mortgage quotes e N '“‘:.‘:'_ Srovsers, it'd :I
mmu Countnes. Resions. US States.. atthe Loan Center COuypunkie | | e be appteciated. ,; .
- P seactook . ca8 t .
Entertainment Science _ nsidél¥ahool g | /o 2¢ yom vant ea nan thia fiia 1o your :;“,-l. paste the follewisg lise ia your mea ctypes=text/css”; :
CoolLinks. Movies, Humor Music - Biology. Astronon. Engineering - - ! Pager - instant ‘ | Wimpart “hteps//pl.vikinews .arg : e 't have to masually update It in your meesbook.css. |
i something : 11 allew me to make changes in the skin, so that you wen
Government % Lz, LLChb- for ‘ Lo | _snay | mua
Military. Politics, Law. Taxes ; o :
Health Society & Culture mmmm:m_ | © -~ L
a) i Religion.. L)
neamh .. People. Environment. * Zmiany ; A3, M, M,
Medicine, Diseases, Drugs Fitness prrihiig | montn-autaon’ g0 oot ey
* Strosy specaine :.l-!.u,l verdana;

Y @philippeDeRyck

DR. PHILIPPE DE RYCK

- Ph.D-level understanding of the web security landscape

- Google Developer Expert (not employed by Google)

Author of the primer on client-side web security

Course curator of the :: SecAppDev course
(https://secappdev.org)

7 e
E .
s %% 0 "

@PHILIPPEDERYCK
HTTPS://PRAGMATICWEBSECURITY.COM

Custom training courses on web/API1/JS frontend security

Technical writing, architectural security assessments and brief consultancy

THE SECURITY MODEL OF THE WEB

ORIGINS AND BROWSING CONTEXTS
SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY
MODERN COOKIE SECURITY

CONCLUSION

y @PhilippeDeRyck 4

WHAT IS THE DEFINITION
OF AN ORIGIN?

@PhilippeDeRyck

THE CONCEPT OF AN ORIGIN

m://www.example.com:8_O/te_st?color=blue#section2
l l Ll I

scheme host port path query fragment

y @PhilippeDeRyck

THE SAME-ORIGIN PoLicy (SOP)

Content retrieved from one origin can freely interact
with other content from that origin, but interactions
with content from other origins are restricted

https://restograde.com https://search.restograde.com

https://restograde.com https://reviews.restograde.com

THE ORIGIN AS A PRINCIPAL IN THE BROWSER

* Origins are used as a principal for making security decisions

 The Same-Origin Policy governs interaction between contexts
* The SOP affects the DOM and all its contents

e Other origin-protected resources in a modern browser
* Permissions for sensitive features are also granted per origin
 Client-side storage areas (Web Storage, IndexedDB, virtual file systems, ...)

e Ability to send JavaScript-based XHR requests without CORS restrictions
* Includes the capability to load resources and inspect their contents (e.g. JS source code)

* One of the most important aspects of web security is controlling your origin
* Once an attacker runs code within your origin, it will be hard to provide any security

y @PhilippeDeRyck

SECURITY ASSUMPTIONS ABOUT THE BROWSER

* Web security builds on top of an extensive Trusted Computing Base
* |f the server machine is compromised, anything is possible
* |f the user’s machine or operating system is compromised, all bets are off
* |f the user is running a malicious browser, there are no security guarantees at all

* Web security mechanisms and policies depend on a few security assumptions
* The server-side execution environment of the application is secure (e.g., OS, JVM, ...)
* The client-side execution environment of the application is secure (e.g., OS, browser, ...)
* Anything else can potentially be compromised (e.g., network, third-party code, ...)

chromium-browser --disable-web-security

y @PhilippeDeRyck

TOP-LEVEL BROWSING CONTEXTS

® ©@® & seccappDev2019 x <+

& —- (C & https://secappdev.org

4D Sccure
= Application SECAPPDEV 2019 COURSE PROGRAM

h___J
@& Development

o= SecAppDev 2019
- February 18 - 22, 2019 — Leuven, Belgium

38 IN-DEPTH LECTURES AND
3 ONE-DAY WORKSHOPS

WORLD-RENOWNED FACULTY
MEMBERS

THE MOST IMMERSIVE
SECURITY COURSE

SPEAKERS

REGISTRATION TESTIMONIALS

FEATURED TOPICS

SECURITY ACTIVITIES
CRYPTOGRAPHY

IDENTITY MANAGEMENT
PRIVACY & ETHICS

WEB SECURITY

MOBILE SECURITY
LOW-LEVEL / 10T SECURITY

Check out the list of speakers and
sessions.

Only a limited number of Seats are available

REGISTER NOW

y @PhilippeDeRyck

10

NESTED BROWSING CONTEXTS

o0 & Program X +
& C & https://secappdev.org/program.html

Secure

A
- Application SECAPPDEV 2019 COURSE PROGRAM SPEAKERS REGISTRATION TESTIMONIALS MORE..Y
@& Development

. . Search
Sign up or log in to bookmark your favorites and sync them to your phone or calendar.

Filter By Date
Monday, February 18 B8 Feb18-22, 2019

09:00 Opening session Filter By Venue

Johan Peeters * Philippe De Ryck ¥ Fac‘...ty Club, Leuven,
Belgium

Paradigms of privacy research and privacy engineering (keynote) Filter By Type

Seda Guerses

Ceremonial session

@ Container security

Cryptography
11:00 New trends in system software security ‘ The security model of the web Identity management

Frank Piessens Philippe De Ryck Low-level / loT security

Maobile security

Privacy & ethics
14:00 A modern take on passwords Zero to DevSecOps - security in a DevOps world

. . Security activities
Jim Fenton Jimmy Mesta

Web security

16:00 Whiteboard hacking - aka hands-on threat modeling
Sebastien Deleersnyder

OWASP's top 10 proactive controls
Jim Manico

y @PhilippeDeRyck

y @PhilippeDeRyck

AUXILIARY BROWSING CONTEXTS

00 & SecAppDev 2019

& > (C @& https://secappdev.org

Secure

A
- Application SECAPPDEV 2019 COURSE PROGRAM SPEAKERS REGISTRATION TESTIMONIALS MORE.. Y
@& Development

o SecAppDev 2019
- February 18 - 22, 2019 — Leuven, Belgium

00 & Testimonials X +

<« > C & https://secappdev.org/testimonials.html 9

4D Sccure
38 IN-DEPTH LECTURES AND = Application

3 ONE-DAY WORKSHOPS Development

WORLD-RENOWNED FACULTY . .
MEMBERS Reflections from SecAppDev alumni

THE MOST IMMERSIVE

The most valuable aspect of the course was the way that the organizing team managed to ensure
SECURITY COURSE P y ganizing ;

that everyone enjoys their stay. Also, the speakers were exceptional and they changed the way |
was seeing things in regards to global security!

Alex Gatu, Security Test Consultant, Endava

Only a limited numbe

REGISTER NOW

12

INTERACTIONS ARE GOVERNED BY THE SAME-ORIGIN POLICY

, @PhilippeDeRyck

® O® & program X +

& c & https://secappdev.org/program.html g
4D Seccure
wm Application SECAPPDEV 2019 COURSE PROGRAM SPEAKERS REGISTRATION TESTIMONIALS MORE.. ™

@& Development

Paradigms of privacy research and privacy engineering (keynote)
Seda Guerses

Filter By Type
Ceremcnial session

. Container security
Cryptography

11:00 New trends in system software security ~ The security model of the web Identity management

Frank Piessens Philippe De Ryck Low-level / 10T security

Mabile security
o Privacy & ethics
14:00 A modern take on passwords ~ Zero to DevSecOps - security in a DevOps world Sacnt

Jim Fenton Jimmy Mesta ecurity activities

Web security
[Q :
¥ Elements Console Sources » 1 « X

D] O

> document.querySelector("iframe").contentWindow.document.body

® » Uncaught DOMException: Blocked a frame with origin VM102:1
"https://secappdev.org"” from accessing a cross—origin frame.
at <anonymous>:1:47

top vy @ @ Filter Default levels ¥

=

13

y @PhilippeDeRyck

A CLICKJACKING SCENARIO

[NN /’ New Tab X \\D Guest

C | o https://free.beer | :

Do you want free beer?

i

No way, that's Yes yes yes, real
heavy stuff beer!

14

Malicious page

A CLICKJACKING SCENARIO

Victim application

15

Ul REDRESSING ATTACKS

* Clickjacking is one example of a Ul redressing attack
 The Ul around a real application is redressed to confuse the user

* Another example reduces the viewport of the framed site
* Only one Ul element remains visible, and everything else around it is changed
* The surrounding context tricks the user into clicking on the element

e Ul redressing attacks are possible, even within the protections of the SOP
* The malicious page does not get access to the framed victim page
* Instead, it misdirects the user's input into the victim page
* The enabler for Ul redressing attacks is the ability to frame the victim page

y @PhilippeDeRyck

16

RESTRICTING FRAMING TO PREVENT Ul REDRESSING ATTACKS

* The victim application can tell the browser to prevent framing
* The browser will enforce the framing policy, and prevent framing by the malicious site
 Two mechanisms to convey a framing policy to the browser

* X-Frame-Options header is the oldest mechanism
e Supports SAMEORIGIN, DENY or ALLOW-FROM with an origin
* ALLOW-FROM not supported by all browsers

X-Frame-Options: DENY

X-Frame-Options: ALLOW-FROM https://restograde.com

y @PhilippeDeRyck

17

A CLICKJA

- | sifrare

Do you Want free beer?

Response contains
X-Frame-Options header

18

X-Frame-Options HTTP header B orier usase %of allusers 3

Global 9.42% + 83.25% = 92.67%
An HTTP header which indicates whether the

browser should allow the webpage to be displayed
in a frame within another webpage. Used as a
defense against clickjacking attacks.

@Vgglpieel[2gl=e M Usage relative Date relative Apply filters BSjalelVEl ?
IE

Edge ’ Firefox Chrome Safari Opera i0S Safari Opera Mini ’

Android * Blackberry
Browser Browser

Bl
72 12 57

65

11

all

RESTRICTING FRAMING TO PREVENT Ul REDRESSING ATTACKS

* X-Frame-Options header is the oldest mechanism
e Supports SAMEORIGIN, DENY or ALLOW-FROM with an origin
* ALLOW-FROM not supported by all browsers

X-Frame-Options: DENY

X-Frame-Options: ALLOW-FROM https://restograde.com

* Content-Security-Policy has a frame-ancestors directive
e Supports ‘self’, ‘none’ or a list of allowed origins
* Supported by all browsers except IE11

Content-Security-Policy: frame-ancestors 'none’

Content-Security-Policy: frame-ancestors https://restograde.com

, @PhilippeDeRyck 20

Content Security Policy Level 2 & -cr Usage %of allusers ¢

Global 77.3% + 6.45% = 83.75%
Mitigate cross-site scripting attacks by whitelisting
allowed sources of script, style, and other resources.
CSP 2 adds hash-source, nonce-source, and five new
directives
Usage relative Date relative Apply filters ?
IE Edge ’ Firefox Chrome Safari Opera iOS Safari ’ Opera Mini ’ Qﬂgg ’ BIBaer:\l,):;y

2-30

31-34 10-22
35
12-14 36-44

E15-‘I7 45-64 40-71 g10-11.1 Q¢ 27-56 g 10-11.4
El
18

57 all

4-35

325

:

®36-338

S 39 031910 2

W

73-75

21

RESTRICTING FRAMING IN PRACTICE

* Denying all framing or restricting framing to the same origin is straightforward
* Both X-Frame-Options and Content-Security-Policy support these features

* Deploy either X-Frame-Options or both
* Deploying X-Frame-Options ensures that users with legacy browsers are also protected

* Selective framing works well for a single origin
* Use Content-Security-Policy for one set of browsers (Chrome, Safari, ...)
* Use X-Frame-Options to enable selective framing in IE11 with ALLOW-FROM

 Selective framing for multiple origins requires a dynamic whitelist for IE11
* This is messy to implement, and hard to get right
* | would not recommend this, unless this is a critical defense

y @PhilippeDeRyck

22

TABNABBING IS EVEN SNEAKIER THAN Ul REDRESSING

y @PhilippeDeRyck

® © ® /() philippederyck (Philippe De Ry X Guest

& C | [https://github.com/philippederyck/allaboutbeer

iness Explore Marketplace Pricing

Beer Information

Here, you can find some information on Belgian brews.

Learn more

A browser tab with an

innocent application

23

TABNABBING IS EVEN SNEAKIER THAN Ul REDRESSING

, @PhilippeDeRyck

® © @ /() philippederyck (Philippe De 7\ x /' New Tab

C | [https:/finfo.beer

malicious page

A delicious but

24

TABNABBING IS EVEN SNEAKIER THAN Ul REDRESSING

y @PhilippeDeRyck

eo0e /) sign in to GitHub - GitHub

X > New Tab

C | [0 https://info.beer

Guest

A

i

A
B2
.....

s

Y
f.

25

TABNABBING IS EVEN SNEAKIER THAN Ul REDRESSING

® © ® /() signintoGitHub - GitHub x| New Tab X\

& C [https://pages.github.io/hackforbeer

O

Signin to GitHub

Username or email address

A phishing page,
loaded by the

malicious page

y @PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN Ul REDRESSING

® © @ |) philippederyck (Philippe De 7 % / New Tab X Guest

C | O https://info.beer

A delicious but

malici
q ous page window.opener.location =
9 @PhilippeDeRyck "https://pages.github.io/hackforbeer"

PREVENTING TABNABBING

* A tabnabbing attack changes the content of a page in the background
* A user returning to a page will be less vigilant than when visiting a new page
* The malicious tab disguises itself as a legitimate site
* When done well, it will trick the user into entering sensitive information

* These kind of tabnabbing attacks abuse the window.opener property
* This property refers to the context that opened the new context
* The SOP prevents access to DOM, but allows navigation of the opener context

* A browsing context can instruct the browser to remove the window.opener
* An attribute on an anchor tag

’ @PhilippeDeRyck

28

A

rel=noopener B-is Usage % of allusers 4
Global 84.22%

Ensure new browsing contexts are opened without a useful

window.opener

Usage relative Date relative Apply filters ?

IE Edge Firefox Chrome Safari Opera iOS Safari Opera Mini liel®el o 2l
Browser Browser

11 18 65 72

57 all

12

29

SECURING BROWSING CONTEXTS

* Every browsing context is associated with an origin
* The origin is used as a primary principal to make security decisions

* By default, cross-origin contexts are separated by the Same-Origin Policy
* Only a very limited amount of interaction is allowed

* Ul redressing attacks sidestep the SOP by tricking the user
* The user interaction is sent to the victim page, causing unintended actions
* The mitigation technique against Ul redressing is to restrict framing

* Tabnabbing attacks abuse access to the property
* The mitigation technique is to clear the opener when the user follows links

y @PhilippeDeRyck

30

THE SECURITY MODEL OF THE WEB

ORIGINS AND BROWSING CONTEXTS
SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY
IMODERN COOKIE SECURITY

CONCLUSION

y @PhilippeDeRyck 31

You Are What You Include:
Large-scale Evaluation of Remote JavaScript Inclusions

Nick Nikiforakis', Luca Invernizzi?, Alexandros Kapravelos?, Steven Van Acker!, Wouter Joosen!,
Christopher Kruegel?, Frank Piessens', and Giovanni Vigna?

IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be
2University of California, Santa Barbara, CA, USA
{invernizzi,kapravel,chris,vigna}@cs.ucsb.edu

35

30

25
20
15
10 |
. ||Illl.l- ,,, —

15 35 /5 95 115 135 155 180 225 265 285
5 25 45 65 85 105 125 145 170 215 255 275 295

% of Alexa sites

#Remote hosts providing JS files

y @PhilippeDeRyck 33

WHY IS THIRD-PARTY
JAVASCRIPT CODE SO
DANGEROUS?

@PhilippeDeRyck

The Ticketmaster breach —
what happened and what to do

28 JUN 2018 ({8

SCRIPT CONTEXTS VS BROWSING CONTEXTS

* Every browsing context has one script execution context
e Every script file loaded in that context runs within the same script execution context
* There is no isolation between code, and no separation between namespaces

e Unfortunately, the web evolved without seeing the need for code isolation
* Advertisements are embedded directly into the page, without restrictions
* Third-party components are embedded without isolation
» User-provided data can even result in script execution within the main context (XSS)

* Isolating script code into a separate context is not as easy as it should be
* Requires the creation of a separate browsing context

y @PhilippeDeRyck

36

LEVERAGING BROWSING CONTEXTS FOR CODE ISOLATION

* Each browsing context has its own script context
* Cross-origin browsing contexts effectively isolate script contexts from each other
* This enables a mechanism to support compartmentalization

* To make this practical, we need interaction between contexts
* This allows the main context to offer or request data to the isolated
e E.g., showing a chat dialog, requesting user data, ...

https://restograde.com https://www.restograde.com

https://restograde.com https://support.restograde.com

37

COMMUNICATION BETWEEN BROWSING CONTEXTS

« Communication between two cross-origin contexts used to be hard
* Sidechannels that enabled transferring data, but no by-design communication channel
* Web Messaging (HTML5) offers a proper opt-in communication channel

frame.postMessage('"Start Chat",
"https://support.restograde.com")

window.addEventListener ('message"”, receiveMessage, false);

function receiveMessage(event) {
if (event.origin !== "https://www.restograde.com")
return;

// Handle data

38

COMMUNICATION BETWEEN BROWSING CONTEXTS

« Communication between two cross-origin contexts used to be hard
* Sidechannels that enabled transferring data, but no by-design communication channel
* Web Messaging (HTML5) offers a proper opt-in communication channel

* You need to specify an origin when sending a message
* The browser will check it to the origin of the context before delivering the message
* A mismatch happens when the framed document changes without the parent realizing
* A wildcard can be used when sending public messages anyone can see

* Receiving messages requires an explicit origin check in your code
* In theory, anyone can send a frame messages, so check if it matches your expectations
* Handle the data securely to avoid script injection problems

’ @PhilippeDeRyck

39

HOW HACKERS
SLIPPED BY BRITISH
ARWAYS' DEFENSES

HOW DO YOU KNOW WHAT
RESOURCE YOU LOAD FROM
A CDN?

@PhilippeDeRyck

c Load .../1.7/angular.js

<script src="https://.../1l.7/angular.js"></script>

y @PhilippeDeRyck

42

o Load .../1.7/angular.js

CDN

&

BROWSER

<script src="https://.../1.7/angular.js" integrity="sha384-
ChfggxuziCnJ...41rYiqJxyMiZ60W/JIJmZQ5stwEULTy"
crossorigin="anonymous"></script>

y @PhilippeDeRyck

43

SUBRESOURCE INTEGRITY

* An integrity attribute can be added to scripts and stylesheets
* The value of the attribute is a hash of the contents of the file
* The hash and the contents are uniquely linked

* When loading the resource, the browser first verifies the hash
* |t calculates the hash of the file it just retrieved
* |t compares this hash to the hash in the integrity attribute
* If they match, the file is the one the developer intended to load
* A mismatch means that the file is not the same, and results in an error

* The properties of the hash function ensure the security of this mechanism
* Only secure hash functions are supported by browsers

y @PhilippeDeRyck

44

Subresource Integrity & -rec Usage %of all users 4
Global 85.3%

Subresource Integrity enables browsers to verify that file is
delivered without unexpected manipulation.

Usage relative Date relative Apply filters ?

IE Edge Firefox Chrome Safari Opera OS Safari ~ OperaMini Android = Blackberry
Browser Browser

I I .

-

0

all

45

Complete JavaScript

https://stackpath.bootstrapcdn.com/bootstrap/4 -

Click to copy

HTML

Copied text to clipboard

SRl Hash Generator

Enter the URL of the resource you wish to use:

https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.
1/js/bootstrap.min.js" integrity="sha384-JjSmVgydOp3pXBlrRibZUA

How can | generate Integrity hashes?

Use the generator above or the following shell command:

openssl dgst -sha384 -binary FILENAME.js | openssl base64 -A

SRI DEPENDS ON THE USE OF CORS

* The integrity attribute also requires the cross-origin attribute

* This tells to enable CORS checking on the response when loading the resource
* SRI only works if the server also sends the proper CORS headers

* Many public hosts are configured with the CORS wildcard
* They allow every origin to access the resource
* As aresult, everyone can apply SRI on the files served

<script

src="https://.../bootstrap/4.1.3/js/bootstrap.min.js"

integrity="sha384-ChfqgxuZUCnJSK3+MXm...iZ60W/JIJmZQ5stwEULTy"
crossorigin="anonymous"></script>

y @PhilippeDeRyck

48

THE SECURITY MODEL OF THE WEB

ORIGINS AND BROWSING CONTEXTS
SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY
IMODERN COOKIE SECURITY

CONCLUSION

y @PhilippeDeRyck 50

BROWSERS ARE BECOMING APPLICATION PLATFORMS

* Modern browsers offer a platform to run independent web applications
* Single Page Applications with offline capabilities are a modern example
* More extreme are Chromebooks, where everything runs in a browser environment

* As an application platform, a browser supports a variety of new features
* Applications have access to persistent data storage in the browser
* Modern browsers enable cross-origin access to APIs

* Security is one of the cornerstones of an application platform
* In the browser, the Same-Origin Policy is the most important security mechanism
* Over time, additional client-side security features have been added

y @PhilippeDeRyck

51

STORAGE AS AN ORIGIN-PROTECTED RESOURCE

 Storage areas in the browser are containerized per origin
* Web Storage and IndexedDB are two widely available examples

* The Web Storage specification offers a localStorage area
* A key/value-based storage mechanism available in modern browsers
e Each origin has a separate storage container
* Within the origin, every browsing context can access the same storage area

localStorage.setItem(key, value);
localStorage.getItem(key);

y @PhilippeDeRyck

52

ORIGIN-BASED PROTECTION ONLY WORKS IF YOUR ORIGIN IS SECURE

* The moment malicious code runs within your origin, you are doomed
* Malicious code can come from third-party dependencies
* Malicious code can be injected by the user

* Code running within the origin has all the same privileges as legitimate code
* |t can perform requests in the name of the application
* |t can access origin-based storage, such as localStorage

A common payload for XSS attacks is to steal local/Storage data

* Generic payload that yields interesting results
* Especially fruitful if the application stores session data in the localStorage container

y @PhilippeDeRyck 53

LEVERAGING THE SOP FOR DATA ISOLATION

 Sensitive data can be stored in a private origin
* The main application asks the origin to perform operations using Web Messaging
* The private context can independently decide to fulfil this request

* Origin-based isolation helps protect the sensitive data
* Only the messaging interface is exposed to the main application
* A breach of the main application context does not automatically compromise all dat

d

-(

https://restograde.com https://restograde.com

(-

https://restograde.com https://private.restograde.com

1

N

WHAT IF WE TURN THE
TABLES ON TRUSTED
CONTENT?

<iframe src="..." sandbox> </iframe>

@PhilippeDeRyck

THE HTMLS SANDBOX ATTRIBUTE

* By default, the browser will enforce the following restrictions
* The context is assigned a separate, unique origin

JavaScript code is not executed

Forms cannot be submitted

External navigation is not permitted, and popups are not allowed

Plugin content cannot be run (Flash, Java, ...)

Fullscreen capabilities are not available

Autoplay is not available

<iframe src="..." sandbox> </iframe>

y @PhilippeDeRyck

56

ENFORCING CONTENT RESTRICTIONS

* The Same-Origin Policy governs interactions within the browser
* |t can be used to isolate content, but not to restrict its capabilities
* The content loaded within the origin can still perform arbitrary actions

* Content Security Policy gives you control about what is loaded in a context
* |t prevents the loading of potentially untrusted content
* It does not impose behavioral restrictions on the content that is allowed to be loaded

* The HTML5 sandbox brings behavioral control over an execution context
* The sandbox attribute can be specified on an iframe tag
* When the sandbox attribute is present, the browser will enforce a set of restrictions

<iframe src="..." sandbox> </iframe>

’ @PhilippeDeRyck

57

SELECTIVELY LIFTING SANDBOX RESTRICTIONS

* The value of the attribute can be used to specify a sandboxing policy
* Allow-* keywords can be used to re-enable a set of features
* A few possible values are:
 allow-scripts
* allow-same-origin
* allow-forms
* allow-top-navigation
 allow-popups

* Some restrictions cannot be lifted
* Plugin content is never allowed to run
e Arbitrary context navigation is not possible, only top-level or popup navigation

<iframe src="..." sandbox="allow-scripts allow-forms"> </iframe>

y @PhilippeDeRyck

WHICH TWO SANDBOX
KEYWORDS SHOULD NEVER
BE SPECIFIED TOGETHER?

@PhilippeDeRyck

ESCAPING THE SANDBOX

e Code running in a sandbox is by definition untrusted
 If it is allowed to execute, it needs to remain contained in a separate origin
* The moment the code can reach out of the sandbox, the isolation is broken

* The sandbox attribute supports lifting restrictions on scripts and isolation
 allow-scripts supports lifting the restriction on JavaScript execution
* allow-same-origin supports lifting the restriction on context isolation

* When these restrictions are both lifted, the sandbox is lifted
* Now, only the browser's default Same-Origin Policy applies
* In a same-origin context, the code can reach out and escape the sandbox
* |In a cross-origin context, the code can impersonate legitimate application contexts

y @PhilippeDeRyck

60

MODERN BROWSERS SUPPORT A VARIETY OF SECURITY FEATURES

 Modern browsers offer much more than origin-based isolation
* Architectural building blocks offer control over resources being loaded
e Server-controlled security policies offer various security features

* Architectural building blocks are inherent part of the application

* The application is constructed to use these features on the relevant elements
* E.g., adding a sandbox attribute to an iframe

* Policy-based mechanisms are complementary to the application's architecture
* They enable additional restrictions on the client-side application
* E.g., forcing the use of HTTPS, controlling the loading of external resources
« Commonly, these features can be controlled through HTTP response headers
* The server can set a customized policy for each application
* In some cases, policies can even be set on a per-page basis

’ @PhilippeDeRyck

61

THE SECURITY MODEL OF THE WEB

ORIGINS AND BROWSING CONTEXTS
SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY
IMODERN COOKIE SECURITY

CONCLUSION

y @PhilippeDeRyck 62

WHICH OF THESE IS THE BEST PRACTICE
FOR ISOLATED APPLICATIONS ?

Session=...; Secure; HttpOnly

A.

B. _ Secure-Session=...; Secure; HttpOnly
C. _ Host-Session=...; Secure; HttpOnly
D.

___Host-Session=...; Secure; HttpOnly; SameSite

E. _ Host-Session=...; Secure; HttpOnly; SameSite; LockOrigin

y @PhilippeDeRyck

63

THE PROPERTIES OF COOKIES

e Cookies are set by the server, and stored and sent by the browser
* Cookies are associated with the domain of the server that sets them
* Cookies require additional security flags and prefixes to ensure secure handling

e Security considerations for using cookies securely

* Set the Secure flag on cookies that are served over HTTPS
* That should be all cookies, since your application should fully deployed over HTTPS

» Set the HttpOnly flag on cookies that do not need to be accessed from JavaScript
* Avoid the use of the the Domain attribute

* Cookie-based systems also suffer from Cross-Site Request Forgery (CSRF)
e Contrary to popular belief, CSRF also matters for API-based backends

y @PhilippeDeRyck

64

SESSION HIJACKING COUNTERMEASURES

 Session cookies should be configured with the Secure flag
* Prevents eavesdropping attacks on the network
* Applies to all cookies in your application

 Session cookies should be configured with the HttpOnly flag
* Raises the bar for XSS attacks, as well as Spectre/Meltdown attacks
e Applies to all cookies not needed in JavaScript

e Session cookies should not be configured with the Domain attribute
* Exposes the cookie to all subdomains, without any limitations
* An alternative to domain-wide cookies are per-application sessions with single-sign on

y @PhilippeDeRyck

65

DO YOU SEE A
PROBLEM HERE?

Set-Cookie: session=...; Secure; HttpOnly

RRRRRRR

COOKIE SECURITY IS VERY WEAK

* The server has no guarantees about the security of incoming cookies
* The Secure and HttpOnly instruct the browser to limit the use of the cookie
* This information is not reflected back to the server
* Even within these restrictions, the cookies can be attacked

* Example attacks on cookies in the browser
* An attacker can set malicious domain-wide cookies from a subdomain
* An attacker can set malicious Secure cookies over an insecure HTTP channel
* An attacker can overflow the cookie jar and set malicious HttpOnly cookies from JS

* Cookie prefixes further restrict how the browser handles cookies
e Supported in every modern browser, except MS

y @PhilippeDeRyck

THE SECURE- COOKIE PREFIX

* The name of the cookie can be prefixed with Secure-
* The cookie can only be set over a secure connection
* The cookie can only be set with the Secure flag enabled

* Since the Secure- prefix is part of the name, it is sent to the server
* The server now knows that the cookie has been set over HTTPS
 Whoever set the cookie was able to set up a valid HTTPS connection

 Attackers able to set such prefixed cookies can do a lot worse

Set-Cookie: Secure-session=...; Secure; HttpOnly

Cookie: Secure-session=...

BROWSER

68

THE HOST- COOKIE PREFIX

* The name of the cookie can also be prefixed with Host-
e Everything from the Secure- prefix applies
* The cookie can only be set for the root path (/)
* The cookie will only be sent to that host, never for sibling or child domains

* Since the Host- prefix is part of the name, it is sent to the server
 Whoever set the cookie was able to set up a valid HTTPS connection for the domain
* |In principle, that is only that application / server

* An attacker able toseta Host- prefixed cookie has full control of the application

Set-Cookie: Host-session=...; Secure; HttpOnly

Cookie: Host-session=...

BROWSER

69

RECOMMENDATIONS FOR SECURE COOKIES

* Since everything runs over HTTPS, cookies can be locked down
e Set the flag on all cookies
* Add the prefix to all cookies

* Most cookies do not need to be accessed from JavaScript
e Set the flag on those cookies

* Most cookies are set and used by one application only
* Do not set the attribute on cookies
* Replace the prefix with the prefix

’ @PhilippeDeRyck

70

CROSS-SITE REQUEST FORGERY (CSRF)

_ (2
.0 ID: 1234
— |

19 Open application and logint.)

c® Post review ¢_;

O Done!

.) Post review o

SERVER

P Request unrelated page

Y

¥ Unrelated page

y @PhilippeDeRyck

THE ESSENCE OF CSRF

* CSRF exists because the browser handles cookies very liberally
* They are automatically attached to any outgoing request, regardless of the source
* The browser prevents direct access to the cookies, but not their use on requests

* Many applications are unaware that any browsing context can send requests
* The session cookies will be attached automatically by the browser
* The web depends on this behavior, for better or for worse

* None of the cookie security measures covered so far helps here
* The only difference between CSRF and legitimate scenarios is intent
* CSRF requires additional defenses and explicit action by the developer

y @PhilippeDeRyck

72

DEFENDING AGAINST CSRF ATTACKS

* To defend against CSRF, the application must identify forged requests
* By design, there is no way to identify if a request came from a malicious context
* The Referer header may help, but is not always present

* Common CSRF defenses add a secret token to legitimate requests
* Only legitimate contexts have the token
» Attackers can still make requests with cookies, but not with the secret token

* Recently, additional client-side security mechanisms have been introduced
* The Origin header tells the server where a request is coming from
 The SameSite cookie flag prevents the use of cookies on forged requests

y @PhilippeDeRyck

73

FIRST-PARTY COOKIES AS A CSRF DEFENSE

_ 2
.» ID: 1234
bl —

1 Open application and login¢.)

c® Post review ¢

O Done!

Post review o —

tho there?

P Request unrelated page

P Unrelated page

€@ Set-Cookie: session=...; SameSite

y @PhilippeDeRyck

'SameSite' cookie attribute B - omer Usage %of allusers ¢
Global 78.69% + 2.37% = 81.06%
Same-site cookies ("First-Party-Only" or "First-Party")

allow servers to mitigate the risk of CSRF and
information leakage attacks by asserting that a
particular cookie should only be sent with requests
initiated from the same registrable domain.

Usage relative Date relative Apply filters ?

Android * Blackberry
Browser Browser

IE Edge) Firefox Chrome Safari Opera iOS Safari Opera Mini ’

all

FIRST-PARTY COOKIES

* The SameSite attribute actually supports a strict and /ax mode

* |In strict mode, the browser will never attach the cookie to a cross-site request
* This is determined based on the registered domain, not the origin

* In Jax mode, the cookie will be present on safe top-level navigations
* e.g.a GET request that results in a navigation of the context

* The default setting for the SameSite attribute is strict mode

* This is the mode you get when you simply add SameSite to the cookie
* This will stop all CSRF attacks

* Adding the SameSite attribute in lax mode will stop most CSRF attacks
* Unless the attack can be launched with a GET request

y @PhilippeDeRyck

76

THE SECURITY MODEL OF THE WEB

K

ORIGINS AND BROWSING CONTEXTS
SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY
IMODERN COOKIE SECURITY

CONCLUSION

y @PhilippeDeRyck 77

RECAP

* The origin is a primary principal for security decisions within the browser
* Every browsing context has an origin
 The Same-Origin Policy (SOP) isolates contexts based on the origin
* Resources within the browser typically belong to an origin

* Each browsing context has exactly one script context
* All scripts are executed within the same context
* There is no concept of origin-isolation for scripts within the browser (unfortunately)

* Cookies require attributes and prefixes to guarantee secure handling
* Attributes alone are not strict enough
* Almost all modern browsers support the new prefixes, so start using them

y @PhilippeDeRyck

78

BEST PRACTICES

 Compartmentalize your applications
* The SOP is present in all browsers, leverage it!
» Different applications should be deployed in different origins
e Sensitive components within an application can also be isolated in a separate origin
« Communication between contexts is possible through Web Messaging

* Be careful with including third-party scripts
* Each script has full access to your origin
* When embedding less-trusted components, leverage compartmentalization for security

* Protect your cookies using the following best practices
* The Secure- prefix and Secure flag should be present on all cookies
* Cookies should have the HttpOnly flag, unless they need to be accessed from JavaScript

* Deploy the SameSite cookie flag as a complementary CSRF defense
y @PhilippeDeRyck

79

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabi
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 2L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Anguiar apphoascns. Many backend related Issues apply 1o the APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
([Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
(7} Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke a self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

Web Security Essentials

2-day training course

Modern-day best practices

Hands-on labs on a custom
April 25th — 26th 2019 training application

Leuven, Belgium

https://essentials.pragmaticwebsecurity.com

Pragmatic Web Security

/in/PhilippeDeRyck -~ @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

