
@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCKPHILIPPE DE RYCK

THE SECURITY MODEL OF THE WEB



@PhilippeDeRyck 2



@PhilippeDeRyck 3

Pragmatic 
Web Security

Custom training courses on web/API/JS frontend security

- Ph.D-level understanding of the web security landscape

- Google Developer Expert (not employed by Google)

DR. PHILIPPE DE RYCK

- Author of the primer on client-side web security

Technical writing, architectural security assessments and brief consultancy

- Course curator of the        SecAppDev course 
(https://secappdev.org)

@PHILIPPEDERYCK

HTTPS://PRAGMATICWEBSECURITY.COM



@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

4

ORIGINS AND BROWSING CONTEXTS

SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY

CONCLUSION

MODERN COOKIE SECURITY



@PhilippeDeRyck 5

WHAT IS THE DEFINITION
OF AN ORIGIN?



@PhilippeDeRyck

THE CONCEPT OF AN ORIGIN

6

scheme host port path query fragment

http://www.example.com:80/test?color=blue#section2



@PhilippeDeRyck

THE SAME-ORIGIN POLICY (SOP)

Content retrieved from one origin can freely interact 
with other content from that origin, but interactions 

with content from other origins are restricted

7

https://restograde.com https://search.restograde.com

https://restograde.com https://reviews.restograde.com



@PhilippeDeRyck

THE ORIGIN AS A PRINCIPAL IN THE BROWSER

• Origins are used as a principal for making security decisions
• The Same-Origin Policy governs interaction between contexts
• The SOP affects the DOM and all its contents

• Other origin-protected resources in a modern browser
• Permissions for sensitive features are also granted per origin
• Client-side storage areas (Web Storage, IndexedDB, virtual file systems, ...)
• Ability to send JavaScript-based XHR requests without CORS restrictions

• Includes the capability to load resources and inspect their contents (e.g. JS source code)

• One of the most important aspects of web security is controlling your origin
• Once an attacker runs code within your origin, it will be hard to provide any security

8



@PhilippeDeRyck

SECURITY ASSUMPTIONS ABOUT THE BROWSER

• Web security builds on top of an extensive Trusted Computing Base
• If the server machine is compromised, anything is possible
• If the user’s machine or operating system is compromised, all bets are off
• If the user is running a malicious browser, there are no security guarantees at all

• Web security mechanisms and policies depend on a few security assumptions
• The server-side execution environment of the application is secure (e.g., OS, JVM, …)
• The client-side execution environment of the application is secure (e.g., OS, browser, …)
• Anything else can potentially be compromised (e.g., network, third-party code, …)

9

chromium-browser --disable-web-security



@PhilippeDeRyck

TOP-LEVEL BROWSING CONTEXTS

10



@PhilippeDeRyck

NESTED BROWSING CONTEXTS

11



@PhilippeDeRyck

AUXILIARY BROWSING CONTEXTS

12



@PhilippeDeRyck

INTERACTIONS ARE GOVERNED BY THE SAME-ORIGIN POLICY

13



@PhilippeDeRyck

A CLICKJACKING SCENARIO

14

Do you want free beer?

No way, that's 
heavy stuff

Yes yes yes, real 
beer!

https://free.beer



@PhilippeDeRyck

A CLICKJACKING SCENARIO

15
Malicious page Victim application

<iframe src="…">



@PhilippeDeRyck

UI REDRESSING ATTACKS

• Clickjacking is one example of a UI redressing attack
• The UI around a real application is redressed to confuse the user

• Another example reduces the viewport of the framed site
• Only one UI element remains visible, and everything else around it is changed
• The surrounding context tricks the user into clicking on the element

• UI redressing attacks are possible, even within the protections of the SOP
• The malicious page does not get access to the framed victim page
• Instead, it misdirects the user's input into the victim page
• The enabler for UI redressing attacks is the ability to frame the victim page

16



@PhilippeDeRyck

RESTRICTING FRAMING TO PREVENT UI REDRESSING ATTACKS

• The victim application can tell the browser to prevent framing
• The browser will enforce the framing policy, and prevent framing by the malicious site
• Two mechanisms to convey a framing policy to the browser

• X-Frame-Options header is the oldest mechanism
• Supports SAMEORIGIN, DENY or ALLOW-FROM with an origin
• ALLOW-FROM not supported by all browsers

17

X-Frame-Options: DENY

X-Frame-Options: ALLOW-FROM https://restograde.com



@PhilippeDeRyck

A CLICKJACKING SCENARIO

18
Malicious page Victim application

<iframe src="…">

Response contains 
X-Frame-Options header



19



@PhilippeDeRyck

RESTRICTING FRAMING TO PREVENT UI REDRESSING ATTACKS

• X-Frame-Options header is the oldest mechanism
• Supports SAMEORIGIN, DENY or ALLOW-FROM with an origin
• ALLOW-FROM not supported by all browsers

• Content-Security-Policy has a frame-ancestors directive
• Supports 'self', 'none' or a list of allowed origins
• Supported by all browsers except IE11

20

X-Frame-Options: DENY

X-Frame-Options: ALLOW-FROM https://restograde.com

Content-Security-Policy: frame-ancestors 'none'

Content-Security-Policy: frame-ancestors https://restograde.com



21



@PhilippeDeRyck

RESTRICTING FRAMING IN PRACTICE

• Denying all framing or restricting framing to the same origin is straightforward
• Both X-Frame-Options and Content-Security-Policy support these features
• Deploy either X-Frame-Options or both

• Deploying X-Frame-Options ensures that users with legacy browsers are also protected

• Selective framing works well for a single origin
• Use Content-Security-Policy for one set of browsers (Chrome, Safari, …)
• Use X-Frame-Options to enable selective framing in IE11 with ALLOW-FROM

• Selective framing for multiple origins requires a dynamic whitelist for IE11
• This is messy to implement, and hard to get right
• I would not recommend this, unless this is a critical defense

22



@PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN UI REDRESSING

23

Beer Information

Here, you can find some information on Belgian brews.

Learn more

A browser tab with an 
innocent application



@PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN UI REDRESSING

24

A delicious but 
malicious page



@PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN UI REDRESSING

25



@PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN UI REDRESSING

26

A phishing page, 
loaded by the 

malicious page



@PhilippeDeRyck

TABNABBING IS EVEN SNEAKIER THAN UI REDRESSING

27

A delicious but 
malicious page window.opener.location = 

"https://pages.github.io/hackforbeer" 



@PhilippeDeRyck

PREVENTING TABNABBING

• A tabnabbing attack changes the content of a page in the background
• A user returning to a page will be less vigilant than when visiting a new page
• The malicious tab disguises itself as a legitimate site
• When done well, it will trick the user into entering sensitive information

• These kind of tabnabbing attacks abuse the window.opener property
• This property refers to the context that opened the new context
• The SOP prevents access to DOM, but allows navigation of the opener context

• A browsing context can instruct the browser to remove the window.opener
• An attribute on an anchor tag

28

<a href="https://info.beer" rel="noopener" />



29



@PhilippeDeRyck

SECURING BROWSING CONTEXTS

• Every browsing context is associated with an origin
• The origin is used as a primary principal to make security decisions

• By default, cross-origin contexts are separated by the Same-Origin Policy
• Only a very limited amount of interaction is allowed

• UI redressing attacks sidestep the SOP by tricking the user
• The user interaction is sent to the victim page, causing unintended actions
• The mitigation technique against UI redressing is to restrict framing

• Tabnabbing attacks abuse access to the window.opener property
• The mitigation technique is to clear the opener when the user follows links

30



@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

31

ORIGINS AND BROWSING CONTEXTS

SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY

CONCLUSION

MODERN COOKIE SECURITY



“ ““ “
88.45% of the Alexa top 10,000 web sites 

included at least one remote JavaScript library



@PhilippeDeRyck 33



@PhilippeDeRyck 34

WHY IS THIRD-PARTY
JAVASCRIPT CODE SO
DANGEROUS?



“ ““ “The issue was caused by malware, spotted on 23 June 2018, 
that had infected a customer support system managed by 

Ticketmaster partner Inbenta Technologies



@PhilippeDeRyck

SCRIPT CONTEXTS VS BROWSING CONTEXTS

• Every browsing context has one script execution context
• Every script file loaded in that context runs within the same script execution context
• There is no isolation between code, and no separation between namespaces

• Unfortunately, the web evolved without seeing the need for code isolation
• Advertisements are embedded directly into the page, without restrictions
• Third-party components are embedded without isolation
• User-provided data can even result in script execution within the main context (XSS)

• Isolating script code into a separate context is not as easy as it should be
• Requires the creation of a separate browsing context

36



@PhilippeDeRyck

LEVERAGING BROWSING CONTEXTS FOR CODE ISOLATION

• Each browsing context has its own script context
• Cross-origin browsing contexts effectively isolate script contexts from each other
• This enables a mechanism to support compartmentalization

• To make this practical, we need interaction between contexts
• This allows the main context to offer or request data to the isolated
• E.g., showing a chat dialog, requesting user data, …

37

https://restograde.com https://www.restograde.com

https://restograde.com https://support.restograde.com



@PhilippeDeRyck

COMMUNICATION BETWEEN BROWSING CONTEXTS

• Communication between two cross-origin contexts used to be hard
• Sidechannels that enabled transferring data, but no by-design communication channel
• Web Messaging (HTML5) offers a proper opt-in communication channel

38

frame.postMessage("Start Chat", 
"https://support.restograde.com")

window.addEventListener("message", receiveMessage, false);

function receiveMessage(event) { 
if (event.origin !== "https://www.restograde.com") 
return; 

// Handle data
}



@PhilippeDeRyck

COMMUNICATION BETWEEN BROWSING CONTEXTS

• Communication between two cross-origin contexts used to be hard
• Sidechannels that enabled transferring data, but no by-design communication channel
• Web Messaging (HTML5) offers a proper opt-in communication channel

• You need to specify an origin when sending a message
• The browser will check it to the origin of the context before delivering the message
• A mismatch happens when the framed document changes without the parent realizing
• A wildcard can be used when sending public messages anyone can see

• Receiving messages requires an explicit origin check in your code
• In theory, anyone can send a frame messages, so check if it matches your expectations
• Handle the data securely to avoid script injection problems

39



“ ““ “The script is connected to the British Airways baggage claim 
information page; the last time it had been modified prior to the 
breach was December 2012. Attackers revised the component to 

include code, just 22 lines of it.



@PhilippeDeRyck 41

HOW DO YOU KNOW WHAT
RESOURCE YOU LOAD FROM
A CDN?



@PhilippeDeRyck

<script src="https://.../1.7/angular.js"></script>
42

1 Load …/1.7/angular.js

2



@PhilippeDeRyck

<script src="https://.../1.7/angular.js" integrity="sha384-
ChfqqxuZUCnJ...41rYiqJxyMiZ6OW/JmZQ5stwEULTy"
crossorigin="anonymous"></script>

43

1 Load …/1.7/angular.js

2



@PhilippeDeRyck

SUBRESOURCE INTEGRITY

• An integrity attribute can be added to scripts and stylesheets
• The value of the attribute is a hash of the contents of the file
• The hash and the contents are uniquely linked

• When loading the resource, the browser first verifies the hash
• It calculates the hash of the file it just retrieved
• It compares this hash to the hash in the integrity attribute
• If they match, the file is the one the developer intended to load
• A mismatch means that the file is not the same, and results in an error

• The properties of the hash function ensure the security of this mechanism
• Only secure hash functions are supported by browsers

44



45



@PhilippeDeRyck 46



@PhilippeDeRyck 47



@PhilippeDeRyck

SRI DEPENDS ON THE USE OF CORS

• The integrity attribute also requires the cross-origin attribute
• This tells to enable CORS checking on the response when loading the resource
• SRI only works if the server also sends the proper CORS headers

• Many public hosts are configured with the CORS wildcard
• They allow every origin to access the resource
• As a result, everyone can apply SRI on the files served

48

<script
src="https://.../bootstrap/4.1.3/js/bootstrap.min.js"
integrity="sha384-ChfqqxuZUCnJSK3+MXm…iZ6OW/JmZQ5stwEULTy"
crossorigin="anonymous"></script>



@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

50

ORIGINS AND BROWSING CONTEXTS

SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY

CONCLUSION

MODERN COOKIE SECURITY



@PhilippeDeRyck

BROWSERS ARE BECOMING APPLICATION PLATFORMS

• Modern browsers offer a platform to run independent web applications
• Single Page Applications with offline capabilities are a modern example
• More extreme are Chromebooks, where everything runs in a browser environment

• As an application platform, a browser supports a variety of new features
• Applications have access to persistent data storage in the browser
• Modern browsers enable cross-origin access to APIs

• Security is one of the cornerstones of an application platform
• In the browser, the Same-Origin Policy is the most important security mechanism
• Over time, additional client-side security features have been added

51



@PhilippeDeRyck

STORAGE AS AN ORIGIN-PROTECTED RESOURCE

• Storage areas in the browser are containerized per origin
• Web Storage and IndexedDB are two widely available examples

• The Web Storage specification offers a localStorage area
• A key/value-based storage mechanism available in modern browsers
• Each origin has a separate storage container
• Within the origin, every browsing context can access the same storage area

52

localStorage.setItem(key, value);
localStorage.getItem(key);



@PhilippeDeRyck

ORIGIN-BASED PROTECTION ONLY WORKS IF YOUR ORIGIN IS SECURE

• The moment malicious code runs within your origin, you are doomed
• Malicious code can come from third-party dependencies
• Malicious code can be injected by the user

• Code running within the origin has all the same privileges as legitimate code
• It can perform requests in the name of the application
• It can access origin-based storage, such as localStorage

• A common payload for XSS attacks is to steal localStorage data
• Generic payload that yields interesting results
• Especially fruitful if the application stores session data in the localStorage container

53



@PhilippeDeRyck

LEVERAGING THE SOP FOR DATA ISOLATION

• Sensitive data can be stored in a private origin
• The main application asks the origin to perform operations using Web Messaging
• The private context can independently decide to fulfil this request

• Origin-based isolation helps protect the sensitive data
• Only the messaging interface is exposed to the main application
• A breach of the main application context does not automatically compromise all data

54

https://restograde.com https://restograde.com

https://restograde.com https://private.restograde.com



@PhilippeDeRyck 55

WHAT IF WE TURN THE
TABLES ON TRUSTED
CONTENT?

<iframe src="..." sandbox> </iframe>



@PhilippeDeRyck

THE HTML5 SANDBOX ATTRIBUTE

• By default, the browser will enforce the following restrictions
• The context is assigned a separate, unique origin
• JavaScript code is not executed
• Forms cannot be submitted
• External navigation is not permitted, and popups are not allowed
• Plugin content cannot be run (Flash, Java, ...)
• Fullscreen capabilities are not available
• Autoplay is not available
• ...

56

<iframe src="..." sandbox> </iframe>



@PhilippeDeRyck

ENFORCING CONTENT RESTRICTIONS

• The Same-Origin Policy governs interactions within the browser
• It can be used to isolate content, but not to restrict its capabilities
• The content loaded within the origin can still perform arbitrary actions

• Content Security Policy gives you control about what is loaded in a context
• It prevents the loading of potentially untrusted content
• It does not impose behavioral restrictions on the content that is allowed to be loaded

• The HTML5 sandbox brings behavioral control over an execution context
• The sandbox attribute can be specified on an iframe tag
• When the sandbox attribute is present, the browser will enforce a set of restrictions

57

<iframe src="..." sandbox> </iframe>



@PhilippeDeRyck

SELECTIVELY LIFTING SANDBOX RESTRICTIONS

• The value of the attribute can be used to specify a sandboxing policy
• Allow-* keywords can be used to re-enable a set of features
• A few possible values are:

• allow-scripts
• allow-same-origin
• allow-forms
• allow-top-navigation
• allow-popups
• ...

• Some restrictions cannot be lifted
• Plugin content is never allowed to run
• Arbitrary context navigation is not possible, only top-level or popup navigation

<iframe src="..." sandbox="allow-scripts allow-forms"> </iframe>



@PhilippeDeRyck 59

WHICH TWO SANDBOX
KEYWORDS SHOULD NEVER
BE SPECIFIED TOGETHER?



@PhilippeDeRyck

ESCAPING THE SANDBOX

• Code running in a sandbox is by definition untrusted
• If it is allowed to execute, it needs to remain contained in a separate origin
• The moment the code can reach out of the sandbox, the isolation is broken

• The sandbox attribute supports lifting restrictions on scripts and isolation
• allow-scripts supports lifting the restriction on JavaScript execution
• allow-same-origin supports lifting the restriction on context isolation

• When these restrictions are both lifted, the sandbox is lifted
• Now, only the browser's default Same-Origin Policy applies
• In a same-origin context, the code can reach out and escape the sandbox
• In a cross-origin context, the code can impersonate legitimate application contexts

60



@PhilippeDeRyck

MODERN BROWSERS SUPPORT A VARIETY OF SECURITY FEATURES

• Modern browsers offer much more than origin-based isolation
• Architectural building blocks offer control over resources being loaded
• Server-controlled security policies offer various security features

• Architectural building blocks are inherent part of the application
• The application is constructed to use these features on the relevant elements

• E.g., adding a sandbox attribute to an iframe

• Policy-based mechanisms are complementary to the application's architecture
• They enable additional restrictions on the client-side application

• E.g., forcing the use of HTTPS, controlling the loading of external resources
• Commonly, these features can be controlled through HTTP response headers
• The server can set a customized policy for each application

• In some cases, policies can even be set on a per-page basis

61



@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

62

ORIGINS AND BROWSING CONTEXTS

SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY

CONCLUSION

MODERN COOKIE SECURITY



@PhilippeDeRyck 63

WHICH OF THESE IS THE BEST PRACTICE
FOR ISOLATED APPLICATIONS?
A. Session=...; Secure; HttpOnly

B. __Secure-Session=...; Secure; HttpOnly

C. __Host-Session=...; Secure; HttpOnly

D. __Host-Session=...; Secure; HttpOnly; SameSite

E. __Host-Session=...; Secure; HttpOnly; SameSite; LockOrigin



@PhilippeDeRyck

THE PROPERTIES OF COOKIES

• Cookies are set by the server, and stored and sent by the browser
• Cookies are associated with the domain of the server that sets them
• Cookies require additional security flags and prefixes to ensure secure handling

• Security considerations for using cookies securely
• Set the Secure flag on cookies that are served over HTTPS

• That should be all cookies, since your application should fully deployed over HTTPS
• Set the HttpOnly flag on cookies that do not need to be accessed from JavaScript
• Avoid the use of the the Domain attribute

• Cookie-based systems also suffer from Cross-Site Request Forgery (CSRF)
• Contrary to popular belief, CSRF also matters for API-based backends

64



@PhilippeDeRyck

SESSION HIJACKING COUNTERMEASURES

• Session cookies should be configured with the Secure flag
• Prevents eavesdropping attacks on the network
• Applies to all cookies in your application

• Session cookies should be configured with the HttpOnly flag
• Raises the bar for XSS attacks, as well as Spectre/Meltdown attacks
• Applies to all cookies not needed in JavaScript

• Session cookies should not be configured with the Domain attribute
• Exposes the cookie to all subdomains, without any limitations
• An alternative to domain-wide cookies are per-application sessions with single-sign on

65



@PhilippeDeRyck 66

DO YOU SEE A
PROBLEM HERE?

Set-Cookie: session=...; Secure; HttpOnly

Cookie: session=...



@PhilippeDeRyck

COOKIE SECURITY IS VERY WEAK

• The server has no guarantees about the security of incoming cookies
• The Secure and HttpOnly instruct the browser to limit the use of the cookie
• This information is not reflected back to the server
• Even within these restrictions, the cookies can be attacked

• Example attacks on cookies in the browser
• An attacker can set malicious domain-wide cookies from a subdomain
• An attacker can set malicious Secure cookies over an insecure HTTP channel
• An attacker can overflow the cookie jar and set malicious HttpOnly cookies from JS

• Cookie prefixes further restrict how the browser handles cookies
• Supported in every modern browser, except MS



@PhilippeDeRyck

THE _ _SECURE- COOKIE PREFIX

• The name of the cookie can be prefixed with _ _Secure-
• The cookie can only be set over a secure connection
• The cookie can only be set with the Secure flag enabled

• Since the  _ _Secure- prefix is part of the name, it is sent to the server
• The server now knows that the cookie has been set over HTTPS
• Whoever set the cookie was able to set up a valid HTTPS connection

• Attackers able to set such prefixed cookies can do a lot worse

68

Set-Cookie: __Secure-session=...; Secure; HttpOnly

Cookie: __Secure-session=...



@PhilippeDeRyck

THE _ _HOST- COOKIE PREFIX

• The name of the cookie can also be prefixed with _ _Host-
• Everything from the _ _Secure- prefix applies
• The cookie can only be set for the root path (/)
• The cookie will only be sent to that host, never for sibling or child domains

• Since the _ _Host- prefix is part of the name, it is sent to the server
• Whoever set the cookie was able to set up a valid HTTPS connection for the domain
• In principle, that is only that application / server

• An attacker able to set a _ _Host- prefixed cookie has full control of the application

69

Set-Cookie: __Host-session=...; Secure; HttpOnly

Cookie: __Host-session=...



@PhilippeDeRyck

RECOMMENDATIONS FOR SECURE COOKIES

• Since everything runs over HTTPS, cookies can be locked down
• Set the Secure flag on all cookies
• Add the _ _ Secure- prefix to all cookies

• Most cookies do not need to be accessed from JavaScript
• Set the HttpOnly flag on those cookies

• Most cookies are set and used by one application only
• Do not set the Domain attribute on cookies
• Replace the _ _ Secure- prefix with the _ _ Host- prefix

70



@PhilippeDeRyck

CROSS-SITE REQUEST FORGERY (CSRF)

1 Open application and login

ID: 1234

7Post review

5 Request unrelated page
6 Unrelated page

2

8 Done

3 Post review

4 Done!



@PhilippeDeRyck

THE ESSENCE OF CSRF

• CSRF exists because the browser handles cookies very liberally
• They are automatically attached to any outgoing request, regardless of the source
• The browser prevents direct access to the cookies, but not their use on requests

• Many applications are unaware that any browsing context can send requests
• The session cookies will be attached automatically by the browser
• The web depends on this behavior, for better or for worse

• None of the cookie security measures covered so far helps here
• The only difference between CSRF and legitimate scenarios is intent
• CSRF requires additional defenses and explicit action by the developer

72



@PhilippeDeRyck

DEFENDING AGAINST CSRF ATTACKS

• To defend against CSRF, the application must identify forged requests
• By design, there is no way to identify if a request came from a malicious context
• The Referer header may help, but is not always present

• Common CSRF defenses add a secret token to legitimate requests
• Only legitimate contexts have the token
• Attackers can still make requests with cookies, but not with the secret token

• Recently, additional client-side security mechanisms have been introduced
• The Origin header tells the server where a request is coming from
• The SameSite cookie flag prevents the use of cookies on forged requests

73



@PhilippeDeRyck

FIRST-PARTY COOKIES AS A CSRF DEFENSE

1 Open application and login

ID: 1234

7Post review

5 Request unrelated page
6 Unrelated page

2

8 Who there?

3 Post review

4 Done!

Set-Cookie: session=...; SameSite1



75



@PhilippeDeRyck

FIRST-PARTY COOKIES

• The SameSite attribute actually supports a strict and lax mode
• In strict mode, the browser will never attach the cookie to a cross-site request

• This is determined based on the registered domain, not the origin
• In lax mode, the cookie will be present on safe top-level navigations

• e.g. a GET request that results in a navigation of the context

• The default setting for the SameSite attribute is strict mode
• This is the mode you get when you simply add SameSite to the cookie
• This will stop all CSRF attacks

• Adding the SameSite attribute in lax mode will stop most CSRF attacks
• Unless the attack can be launched with a GET request

76



@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

77

ORIGINS AND BROWSING CONTEXTS

SCRIPT EXECUTION CONTEXTS

THE EVOLUTION OF CLIENT-SIDE SECURITY

CONCLUSION

K

MODERN COOKIE SECURITY



@PhilippeDeRyck

RECAP

• The origin is a primary principal for security decisions within the browser
• Every browsing context has an origin
• The Same-Origin Policy (SOP) isolates contexts based on the origin
• Resources within the browser typically belong to an origin

• Each browsing context has exactly one script context
• All scripts are executed within the same context
• There is no concept of origin-isolation for scripts within the browser (unfortunately)

• Cookies require attributes and prefixes to guarantee secure handling
• Attributes alone are not strict enough
• Almost all modern browsers support the new prefixes, so start using them

78



@PhilippeDeRyck

BEST PRACTICES

• Compartmentalize your applications
• The SOP is present in all browsers, leverage it!
• Different applications should be deployed in different origins
• Sensitive components within an application can also be isolated in a separate origin
• Communication between contexts is possible through Web Messaging

• Be careful with including third-party scripts
• Each script has full access to your origin
• When embedding less-trusted components, leverage compartmentalization for security

• Protect your cookies using the following best practices
• The _ _Secure- prefix and Secure flag should be present on all cookies
• Cookies should have the HttpOnly flag, unless they need to be accessed from JavaScript
• Deploy the SameSite cookie flag as a complementary CSRF defense

79



@PhilippeDeRyck 80https://cheatsheets.pragmaticwebsecurity.com/

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS



@PhilippeDeRyck 81

Web Security Essentials

Leuven, Belgium

April 25th – 26th, 2019

https://essentials.pragmaticwebsecurity.com

2-day training course

Modern-day best practices

Hands-on labs on a custom 
training application



@PhilippeDeRyck – philippe@PragmaticWebSecurity.comPHILIPPE DE RYCKPHILIPPE DE RYCK

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com


