Pragmatic Web Security

INTRODUCTION TO OAUTH 2.0
AND OPENID CONNECT

PHILIPPE DE RYCK @PhilippeDeRyck — philippe@PragmaticWebSecurity.com

SLOLD TR 4O B1B LOH® <010 O AREGHE A S o LR

€ buffer Learn About Buffer for Business Help My Account .

Applications

Accounts + Content = Ana
These are the apps that can access your Twitter account. Learn more.

c PhilippeDeRyck Posts
d o fiter E(a):: 'thov::t: '::)nn:jrt Facebook profile or page Connect to Facebook
Philippe De Ryck 4 P page.

. > @PhilippeDeRyck
3@ E:L‘Zﬁf De... ' All Recent Posts Having trouble? Learn more.

Your latest posts are looking good,

Permissions: read and write
Approved: Thursday, June 9, 2016 at 12:00:52 PM

Account > Tweepsmap by TweepsMap
. . - N Revoke access
intelligent publishing, communications and brand
Facebook * Privacy and safety > o : :
. ‘ y management platform. Precision segmentation actionable
o Connect it now! Recent Most Popular Least . . ; :
" Password > audience analytics. Will never Tweet without your
permission http://tweepsmap.com/Info/FAQ#faq6
Instagram Cards and shipping > Permissions: read and write
Connect it now! Approved: Tuesday, December 27, 2016 at 10:38:06 AM
Today Order history >
. n Connect More Twitter for Android Revoke access
. Mobile > y Twitter for Android
rofiles and Pages
Email notificati > Permissions: read, write, and direct messages
mail notifications . Eri .57.
The slides for my talk on #angulc Approved: Friday, November 6, 2015 at 9:27:28 AM
#SanFrancisco community are ot Notifications >
Twitter Web Client by Twitter, Inc.
o . Revoke access
01:25 (CET) via Web Web notifications > The official client for Twitter.com
Permissions: read and write
Find friends A ed: Wednesday, A t 12, 2015 at 8:18:56 AM
2 Retweets 5 Likes > pprov SOnEaeSy, S é
Muted accounts > . .
Bitly by Bitly - Revoke access
- —— Save, Share and Bundle your Bitlinks
Muted words > . .
Permissions: read and write
Blocked accounts > Approved: Monday, January 23, 2017 at 7:21:02 PM
Apps > . Buffer by Buffer Revoke access
~” Buffer is a service to help you tweet interesting and
Widgets > valuable content to your Twitter followers more consistently.
>

Your Twitter data

, @PhilippeDeRyck

AUTHORIZATION
SERVER

e Verify client
access

Request access

from the o

resource owner

RESOURCE
SERVER

RESOURCE
SERVER

RESOURCE
SERVER

RESOURCE
SERVER

. CLIENT

RESOURCE
SERVER

y @PhilippeDeRyck

DR. PHILIPPE DE RYCK

- Ph.D-level understanding of the web security landscape

- Google Developer Expert (not employed by Google)

Author of the primer on client-side web security

Course curator of the :: SecAppDev course
(https://secappdev.org)

7 e
E .
s %% 0 "

@PHILIPPEDERYCK
HTTPS://PRAGMATICWEBSECURITY.COM

Custom training courses on web/API1/JS frontend security

Technical writing, architectural security assessments and brief consultancy

INTRODUCTION TO OAUTH 2.0 AND OPENID CONNECT

THE CLIENT'S PERSPECTIVE

THE RESOURCE SERVER'S PERSPECTIVE

INTRODUCING OPENID CONNECT

CONCLUSION

y @PhilippeDeRyck 6

App details

App nhame (required)

PragmaticWebSecurity]

Maximum characters: 32
Application description (required)

Share a description of your app. This description will be visible to users so this is

a good place to tell them what your app does.

This is for personal use only, not for public use

/

Between 10 and 200 characters

Website URL (required)
https://pragmaticwebsecurity.com

Allow this application to be used to sign in with Twitter
Learn more

Enable Sign in with Twitter

Callback URLs

OAuth 1.0a applications should specify their oauth_callback URL on the request
token step, which must match the URLs provided here. To restrict your
application from using callbacks, leave these blank.

https://pragmaticwebsecurity.com/twittercallback.php X

+ Add another

Terms of Service URL

Privacy policy URL

Organization name

Organization website URL

Tell us how this app will be used (required)

This field is only visible to Twitter employees. Help us understand how your app

will be used. What will it enable you and your customers to do?

This is for personal use only, not for public use. Will be used as a
relatable example of how OAuth 2.0 works in practice.|

Terms of Service URL ¢

App details httns://

The follg

to gener

products Keys and tokens

App nan Keys, secret keys and access tokens management.

Pragm

Consumer API keys

Applicat QC1IwPqVwsj74TCygmEsdxXbJB (/7! key)
Share ad
a good plf M80Rg66HLKck1SChuRUaKGBFwqZgCwysSGZDYT8nMIzXIGBNfM (AF] cecrat kay)
This is
< Regenerate)
Website Access token & access token secret
https:/

3417260589-WdGA0zLBXyc11BrACKkBANpgSzpuhuHLK8JjfZhs (/ccess token)
Allow th JafkKM2wJwjrMrT6GwSfJoHW42Yd0aVXG4crmX3ZmaghXq (Access token secret)

Learn m

Read and write (fccess level)
() Enab

Callbact (Revoke) C Regenerate) Don't worry, these are revoked!

OAuth 1.0

token stey

applicatio

https://pragmaticwebsecurity.com/twittercallback.php X

SCENARIO 1 — SHOW A SELECTED NUMBER OF TWEETS

Almost every application depends on
authentication, a much-debated topic. Who
better to teach about it than @jimfenton, the
co-editor of the #NIST SP 800-63 Digital
Identity Guidelines. Proud to have Jim on
board. buff.ly/1Ric8Zq

SPEAKER

JiM FENTON

Internet Technologist, Altmode Networks
Co-editor of NIST SP 800-63 Digital Identity Guidelines

User authentication and identity management
technologies, messaging security

“Ss SecAppDev 2019

-
February 18 - 22, Leuven (Belgium)

y @PhilippeDeRyck

For the 15th year in a row, Bart Preneel from
@CosicBe will be at SecAppDev. He is one of
the world's experts on cryptography. This
year, he will teach about crypto, but will also
give his expert opinion on #blockchain and
the current hype. buff.ly/1Ric8Zq

SPEAKER

BART PRENEEL

Full professor, KU Leuven

Cryptography and privacy

:: SecAppDev 2019

February 18 - 22, Leuven (Belgium)

——

With a lot of excitement, we can announce
@jimmesta will be part of the SecAppDev
2019 faculty. He is one of the top experts on
security in DevOps environments. He also
teaches one of his excellent 1-day
workshops, where you dive #Kubernetes!
buff.ly/1Ric8Zq

SPEAKER

JiIMMY MESTA

CTO, Manicode Security

DevOps security, mobile security

<€ SecAppDev 2019

February 18 - 22, Leuven (Belgium)

=

y @PhilippeDeRyck

THE CLIENT CREDENTIALS GRANT FLOW

CLIENT

Protected resource o

RESOURCE
SERVER

10

@) CLIENT CREDENTIALS GRANT

- DIRECT ACCESS BY THE CLIENT APPLICATION
- ACCESS TOKEN OBTAINED USING CLIENT CREDENTIALS

, @PhilippeDeRyck

11

SCENARIO 2 — SCHEDULE TWEETS ON BEHALF OF A USER

8:00

9:00

10:00

11:00 For the 15th ...

12:00

SecAppDev o...

Erlend Ofted...

13:00

14:00

14:32 o
15:00 With a lot of ... Security is of... KRvW #[Stan...

y @PhilippeDeRyck

THE AUTHORIZATION CODE GRANT FLOW

o Request client authorization

e Authenticate yourself

USER o Login credentials

Authorization code e
with client credentials

Redirect to o
request access

Redirect with

authorization code /
RESOURCE

© Authorization code CLIENT /@) protected resource SERVER

BROWSER

13

THE AUTHORIZATION CODE GRANT FLOW

-

AUTHORIZATION

~

SERVER

o Start the delegation process

e Redirect to the authorization server
o Authenticate the user

o Approve access delegation

e Redirect with authorization code
e Exchange code for access token

o Access protected resources

RESOURCE
SERVER

14

REQUESTING AN AUTHORIZATION CODE

1 https://twitter.example.com/auth

2response type=code
&client id=PragmaticWebSecurity

&scope=read write
&redirect uri=https://pragmatic../twittercallback.php
&state=sOwzojm2w8c23xzprkké6

o O & WD

RESPONSE CONTAINING AUTHORIZATION CODE

1 https://pragmatic../twittercallback.php
2 2code=eyJhb...0X4UeQ
3 &state=sOwzojm2w8c23xzprkké6

, @PhilippeDeRyck

15

REQUESTING AN ACCESS TOKEN

1 POST /auth
Authorization: Basic UmFuZG9tQ2xpZw50SU...tODd1YTJmZDVhN2Rm
Host: twitter.example.com

grant type=authorization code

&redirect uri=https$3A%2F%$2Fpragmaticweb..32Ftwittercallback.php
&client id=PragmaticWebSecurity

&code=eyJhb...0X4UeQ

0O J o O s WD

RESPONSE CONTAINING ACCESS TOKEN

1 {

2 "access token": "eyJhbGciO...du6TY9w",
3 "expires in": 300,

4 "token type": "bearer"

5 "refresh token": "eyJdhbGciO...E4wRw",
6 }

, @PhilippeDeRyck

HOW DO YOU USE A
REFRESH TOKEN?

@PhilippeDeRyck

"REFRESHING" AN ACCESS TOKEN

POST /auth
Authorization: Basic UmFuZG9tQ2xpZw50SU...tODd1YTJmZDVhN2Rm
Host: twitter.example.com

grant type=refresh token
&refresh token=eyJhbGciO...E4wRw

o O W W DN K

RESPONSE CONTAINING NEW TOKENS

1 {

2 "access token": "eyJhbGciO...0iJdC",

3 "expires in": 300,

4 "token type": "bearer"

5 "refresh token": "eydhbGciO...0aW9uIll9"”,
6 }

, @PhilippeDeRyck

@) CLIENT CREDENTIALS GRANT

- DIRECT ACCESS BY THE CLIENT APPLICATION
- ACCESS TOKEN OBTAINED USING CLIENT CREDENTIALS

@ AUTHORIZATION CODE GRANT

- DELEGATED ACCESS TO A BACKEND APPLICATION
- ACCESS TOKEN OBTAINED BY EXCHANGING CODE WITH CLIENT CREDENTIALS
- REFRESH TOKEN CAN BE USED WITH CLIENT CREDENTIALS

, @PhilippeDeRyck

19

SCENARIO 3 — ALLOW LIVE INTERACTION ON BEHALF OF A USER

Retweeted by you

i Commmmmputer @jimmesta
Come early for the trainings and hang out with me for the day to talk all things Kubernete

s security! https://twitter.com/SecAppDev/status/1033988775712571397

Add to Queue v

y @PhilippeDeRyck

20

y @PhilippeDeRyck

THE IMPLICIT GRANT FLOW

o Request client authorization

e Authenticate yourself

RESOURCE
SERVER

CLIENT e Protected resource

21

THE IMPLICIT GRANT FLOW

[C00 —7——

[]
LOGIN []

-

Sl

ves W No
~>

~

AUTHORIZATION
SERVER

y @PhilippeDeRyck

RESOURCE

SERVER

o Start the delegation process

0 Authenticate the user

e Approve access delegation

o Load callback with access token

e Access protected resources

22

REQUESTING AN ACCESS TOKEN

1 https://twitter.example.com/auth
?response type=token
&client id=PragmaticWebSecurity

&scope=read write
&redirect uri=https://pragmatic../twittercallback.html

&state=sOwzojm2w8c23xzprkké6

o O & W DN

RESPONSE CONTAINING ACCESS TOKEN

1 https://pragmatic../twittercallback.html
#access token=eyJhb...0X4UeQ

&token type=bearer

&expires in=300
&state=sOwzojm2w8c23xzprkké6

O = WD

, @PhilippeDeRyck

23

@) CLIENT CREDENTIALS GRANT

- DIRECT ACCESS BY THE CLIENT APPLICATION
- ACCESS TOKEN OBTAINED USING CLIENT CREDENTIALS

@ AUTHORIZATION CODE GRANT

- DELEGATED ACCESS TO A BACKEND APPLICATION
- ACCESS TOKEN OBTAINED BY EXCHANGING CODE WITH CLIENT CREDENTIALS
- REFRESH TOKEN CAN BE USED WITH CLIENT CREDENTIALS

@) IMPLICIT GRANT

- DELEGATED ACCESS TO A FRONTEND APPLICATION
- ACCESS TOKEN DIRECTLY OBTAINED THROUGH THE REDIRECT
- NOT SUPPOSED TO HAVE ACCESS TO REFRESH TOKENS

, @PhilippeDeRyck

24

THE IMPLICIT GRANT FLOW

Start the delegation process
LOGIN -
» Authenticate the user
AUTHORIZATION Approve access delegation

SERVER

Load callback with access token

Access protected resources

Access token susceptible for

interception (i.e., mobile inter-
app communication)

RESOURCE
SERVER

y @PhilippeDeRyck 25

THE AUTHORIZATION CODE GRANT FLOW

o Request client authorization

o Authenticate yourself

Step 9 requires client
authentication to ensure

AUTHORIZATION

USER o Login credentials SERVER

that the authorization code
\ | is not being abused

Authorization code e
with client credentials

Redirect to 9
request access

Redirect with
authorization code

E o Request access
RESOURCE

BROWSER © Authorization code CLENT /' @) protected resource SERVER

26

THE AUTHORIZATION CODE GRANT FLOW WITH PKCE

o Request client authorization

e Authenticate yourself

AUTHORIZATION
USER e Login credentials SERVER o Store code challenge

e Authorize client @ Match code challenge to verifier

Authorization code m

. . @ Access token & refresh token
with code verifier

Redirect to e
request access

[

BROWSER

Redirect with
authorization code
o)
Request access with code challenge g
3
O RESOURCE
@ Authorization code CLIENT @ Protected resource SERVER

Generate code verifier o

27

DETAILS OF THE PKCE-BASED AUTHORIZATION CODE GRANT FLOW

e PKCE allows public clients to run a more secure Authorization Code Grant
* Even though the client is public, it is still expected to be a secure environment
* Native applications were the primary target, but the same advice extends to SPAs as well
* Refresh tokens are optional, but their use cannot be protected with the client secret

* It is crucial to ensure that the right client exchanges the authorization code
* Instead of using client credentials, PKCE uses a code challenge and code verifier

* The code verifier is a cryptographically secure random string
* Between 43 and 128 characters of this character set: [A-Z] [a-z] [0-9] -. ~

* The code challenge is a SHA256 hash of the code verifier
* The hash function uniquely connects the code challenge to the code verifier
* The code verifier cannot be derived from the code challenge

y @PhilippeDeRyck 28

REQUESTING AN AUTHORIZATION CODE

1 https://twitter.example.com/auth

2response type=code

&client id=PragmaticWebSecurity

&scope=read write

&redirect uri=com.pragmaticwebsecurity:/handleToken
&state=sOwzojm2w8c23xzprkké6

&code challenge=608891507E432E...0A47106CCF9504A526694
&code challenge type=s256

00 J o U WDN

RESPONSE CONTAINING AUTHORIZATION CODE

1 https://reviewer.restograde.com/index.html
2 #code=eyJhb...0X4UeQ
3 &state=sOwzojm2w8c23xzprkk6

, @PhilippeDeRyck

29

REQUESTING AN ACCESS TOKEN

1 POST /auth
Authorization: Basic UmFuZG9tQ2xpZw50SU...tODd1YTJmZDVhN2Rm
Host: twitter.example.com

grant type=authorization code

&redirect uri=com.pragmaticwebsecurity:?32FhandleToken
&client id=PragmaticWebSecurity

&code=eyJhb. . .0X4UeQ

9 &code verifier=eolom2qk30a8hv5p68o... d23k46rd4nrké

0O J o O s WD

RESPONSE CONTAINING ACCESS TOKEN

1 {

2 "access token": "eyJhbGciO...du6TY9w",
3 "expires in": 300,

4 "token type": "bearer"

5 "refresh token": "eyJdhbGciO...E4wRw",
6 }

@) CLIENT CREDENTIALS GRANT

- DIRECT ACCESS BY THE CLIENT APPLICATION
- ACCESS TOKEN OBTAINED USING CLIENT CREDENTIALS

@ AUTHORIZATION CODE GRANT

- DELEGATED ACCESS TO A BACKEND APPLICATION
- ACCESS TOKEN OBTAINED BY EXCHANGING CODE WITH CLIENT CREDENTIALS
- REFRESH TOKEN CAN BE USED WITH CLIENT CREDENTIALS

@) AUTHORIZATION CODE GRANT WITH PKCE

- DELEGATED ACCESS TO A FRONTEND APPLICATION (WEB / MOBILE)
- ACCESS TOKEN OBTAINED BY EXCHANGING CODE WITH CODE VERIFIER
- REFRESH TOKEN CAN BE USED, BUT NOT PROTECTED WITH CLIENT CREDENTIALS

®) IMPLICIT GRANT

- IMORE OR LESS DEPRECATED

31

INTRODUCTION TO OAUTH 2.0 AND OPENID CONNECT

THE CLIENT'S PERSPECTIVE

THE RESOURCE SERVER'S PERSPECTIVE

INTRODUCING OPENID CONNECT

CONCLUSION

y @PhilippeDeRyck 32

AUTHORIZATION
SERVER

e Verify client
access

Request access
from the
resource owner

I CLIENT

Access tokens are opaque to
the client.

RESOURCE
SERVER

They are intended for the
resource server

RESOURCE
SERVER

RESOURCE
SERVER

RESOURCE
SERVER

RESOURCE
SERVER

y @PhilippeDeRyck

33

2YotnFZFEjrlzCsicMWpAA

eyJhbGciOiJSUzI1IN1J9.eyJzdWIi0iJqZG910GV4YW1lwbGUuY29tIiwi
Y¥YXVkIjoiaHROCHM6Ly9hcGkuZXhhbXBsZS5jb20iL.CThenAiOiJSY

W5kb21DbGl1bnRIJRCIsImlzcyI6ImhOdHBz0i8vYXV0aG9yaXphdGlvbn
NlcnZlci51eGFtcGx1LmNvbS8iLCJ1eHAiOjJEOMTkzNTYyMzgsIml

hdCI6MTQOxOTMIMDIzOCwic2NvcGU101JyZWFkIHdyaXRlIiwianRpIjoi
NDA1YjRkNGUtODUWMSOOZTFhLWExMzgtZWQ4NDU1Y20xZDQ3InO.
FCk3Wo8DnFEHb02JCd9BWAHQ48BBt3n2YLQV6TpLMpFVTRNCZJAA-

aEH4LrE70VejvGd7YWGDy2Vzb7x-Bpg7yMYxozUerCkMy F4Iw xctgE
J3WF_TTJFhISGNoWlFXspM5d9EQvVMvkOJxAovhEOHfXv5GCosGy-

0oT7ShQrwZLBIwWE9dOceUcmly42dvDZSsqHDIzPjrFzvpXwbZqq sRFnh

6MHlmmug7t1UCs85caoLhfSweaT0z7ED8P2Tsg HgmnaaeDapszG6Lcke
BglqYwbRHy6X6LAcJfAkkwAlqrUOVu4azsuE8BsSLPKMYzu9ZeCoH

dLHYdtz-IOyKQ

y @PhilippeDeRyck

34

2YotnFZFEjrlzCsicMWpAA

eyJhbGciOiJSUzI1IN1J9.eyJzdWIi0iJqZG910GV4YW1lwbGUuY29tIiwi
Y¥YXVkIjoiaHROCHM6Ly9hcGkuZXhhbXBsZS5jb20iL.CThenAiOiJSY

W5kb21DbGl1bnRIJRCIsImlzcyI6ImhOdHBz0i8vYXV0aG9yaXphdGlvbn
NlcnZlci51eGFtcGx1LmNvbS8iLCJ1eHAiOjJEOMTkzNTYyMzgsIml

hdCI6MTQOxOTMIMDIzOCwic2NvcGU101JyZWFkIHdyaXRlIiwianRpIjoi
NDA1YjRkNGUtODUWMSOOZTFhLWExMzgtZWQ4NDU1Y20xZDQ3InO.
FCk3Wo8DnFEHb02JCd9BWAHQ48BBt3n2YLQV6TpLMpFVTRNCZJAA-

aEH4LrE70VejvGd7YWGDy2Vzb7x-Bpg7yMYxozUerCkMy F4Iw xctgE
J3WF_TTJFhISGNoWlFXspM5d9EQvVMvkOJxAovhEOHfXv5GCosGy-

0oT7ShQrwZLBIwWE9dOceUcmly42dvDZSsqHDIzPjrFzvpXwbZqq sRFnh

6MHlmmug7t1UCs85caoLhfSweaT0z7ED8P2Tsg HgmnaaeDapszG6Lcke
BglqYwbRHy6X6LAcJfAkkwAlqrUOVu4azsuE8BsSLPKMYzu9ZeCoH

dLHYdtz-IOyKQ

y @PhilippeDeRyck

35

TOKEN INTROSPECTION FOR REFERENCE TOKENS

CLIENT

Access protected resource
with access token

o Exchange access token for stored claims

RESOURCE
SERVER

AUTHORIZATION

e Stored claims about the client
SERVER

o Access control decision
y @PhilippeDeRyck

37

TOKEN INTROSPECTION REQUEST

1 POST /token_info
Authorization: Bearer eyJhb...N2Rm
Host: twitter.example.com

token=2YotnFZFEjrlzCsicMWpAA
&token type hint=access token

o O & LW DN

TOKEN INTROSPECTION RESPONSE

1 {

2 "active": true

3 "client id": "PragmaticWebSecurity"”,
4 "sub": "Z503upPC880rAjx00dis"”

5 "exp": 1419356238,

6 "scope": "read write"

7}

, @PhilippeDeRyck

REFERENCE TOKENS

- AN IDENTIFIER POINTING TO METADATA KEPT BY THE AUTHORIZATION SERVER
- AUTHORIZATION SERVER RETAINS FULL CONTROL OVER THE METADATA
- REQUIRES A BACKCHANNEL REQUEST WHEN RECEIVED BY THE RESOURCE SERVER

- EASY TO REVOKE IF NEEDED

y @PhilippeDeRyck

39

2YotnFZFEjrlzCsicMWpAA

eyJhbGciOiJSUZIINiJ9.eyJzdWIiOiJqZG910GV4YW1lwbGUUY29tIiwi
YXVkIjoiaHROCHM6Ly9hcGkuZXhhbXBsZS5jb20iLCJhenAi10iJSY

W5kb21DbGllbnRIJRCIsImlzcyI6ImhOdHBz0i8vYXV0aG9yaXphdGlvbn
NlcnZlci5leGFtcGx1lLmNvbS8iLCJ1leHALiO0jEOMTkzNTYyMzgsIml

hdCI6MTQOxXOTMIMDIZOCwic2NvcGUiOiJyZWFkIHdyaXRlIiwianRpIjoi
NDA1YjRkNGUtODUWMSOOZTFhLWExMzgtZWQ4NDU1Y20xZDQ3InO.
FCk3Wo8DnFEHb02JCd9BWAHQ48BBt3n2YLOQV6TpLMpFVTRNCZJAA-

aEH4LrE70VejvGd7YWGDy2Vzb7x-Bpg7yMYxozUerCkMy F4Iw xctgE
J3WF_TTJFhISGNoWlFXspM5d9EQvMvkOJxAovhEOHfXv5GCosGy-

0o0T7ShQrwZLBIwWE9dOceUcmly42dvDZSsqHDIzPjrFzvpXwbZqq sRFnh

6MHIlmmug7t1UCs85caoLhfSweaT0z7ED8P2Tsg HgmnaaeDapszG6Lcke
BglgYwbRHy6X6LAcJfAkkwAlgqrUOVu4azsuE8BSLPKMYzu9ZeCoH

dLHYdtz-I0yKQ

, @PhilippeDeRyck

40

PAYLOAD: DATA

{

"sub”: "philippe@secappdev.org”,

"azp":. "PragmaticWebSecurity”,

"iss”: "https://twitter.example.com/",

"exp": 1419356238,

"iat": 1419350238,

"scope”: "read write",

"jti": "405b4d4e-8501-4e1a-a138-ed8455cd1d47"”
}

, @PhilippeDeRyck

REFERENCE TOKENS

- AN IDENTIFIER POINTING TO METADATA KEPT BY THE AUTHORIZATION SERVER

- AUTHORIZATION SERVER RETAINS FULL CONTROL OVER THE METADATA

- REQUIRES A BACKCHANNEL REQUEST WHEN RECEIVED BY THE RESOURCE SERVER
- EASY TO REVOKE IF NEEDED

SELF-CONTAINED TOKENS

- THE TOKEN ITSELF CONTAINS THE METADATA USED BY THE AUTHORIZATION SERVER
- STORED ON THE CLIENT, SO OUT OF REACH FROM THE AUTHORIZATION SERVER

- CAN BE USED INDEPENDENTLY BY THE RESOURCE SERVER AFTER INTEGRITY CHECK
- HARD OR IMPOSSIBLE TO REVOKE

y @PhilippeDeRyck 42

THE ESSENCE OF OAUTH 2.0 AUTHORIZATION DECISIONS

* The resource server needs to authorize both the client and the resource owner
* The decoupling of these concepts in OAuth 2.0 causes a lot of confusion
e Authorization of only one of these aspects creates severe security vulnerabilities

/ADMIN

Access protected resource e 0 Access protected resource

CLIENT

RESOURCE

Obtain access token

~ "Philinne"
-— < for user 'Philippe
AUTHORIZATION

SERVER

Obtain access token
for user 'Philippe'

CLIENT
COMMON CLIENT ADMINISTRATIVE CLIENT

Access protected resource 6 RESOURCE
SERVER

Y @PphilippeDeRyck /PROFILES N

THE ESSENCE OF OAUTH 2.0 AUTHORIZATION DECISIONS

* The resource server needs to authorize both the client and the resource owner
* The decoupling of these concepts in OAuth 2.0 causes a lot of confusion
e Authorization of only one of these aspects creates severe security vulnerabilities

AUTHORIZATION
SERVER

Obtain access token o
for user 'Philippe'

e Access profile: /profiles/Philippe

CLIENT

RESOURCE

) e Access profile: /profiles/Jim
SERVER

y @PhilippeDeRyck 44

scope=read write

@PhilippeDeRyck

SCOPES AS USED BY THE SLACK API

B

Anvil will be able to connect to Acme Corp and...

Confirm your identity on Acme Corp. Change teams
Send messages as Anvil. ®
Access information about your public channels. @
Access content in your public channels. AN

Anvil will be able to access any messages and activity you can
see in public channels.

y @PhilippeDeRyck

OAuth Scope Associated Methods

channels:history channels.history channels.replies

channels:read channels.info channels.list

channels:write channels.archive channels.mark

channels.create channels.rename

channels.invite channels.setPurpose
channels.join channels.setTopic
channels.kick channels.unarchive
channels.leave conversations.join

chat:write:bot chat.delete chat.postMessage

chat.postEphemeral chat.update

chat:write:user chat.delete chat.postMessage
chat.meMessage chat.update
chat.postEphemeral

SCOPES AS USED BY THE GOOGLE API

Google Analytics API, v3
https://www.googleapis.com/auth/analytics View and manage your Google Analytics data
https://www.googleapis.com/auth/analytics.edit Edit Google Analytics management entities
https://www.googleapis.com/auth/analytics.manage.users Manage Google Analytics Account users by email address

https://www.googleapis.com/auth/analytics.manage.users.readonly View Google Analytics user permissions

https://www.googleapis.com/auth/analytics.provision Create a new Google Analytics account along with its default
property and view

https://www.googleapis.com/auth/analytics.readonly View your Google Analytics data

https://www.googleapis.com/auth/analytics.user.deletion Manage Google Analytics user deletion requests

Analytics Reporting API, v4

https://www.googleapis.com/auth/analytics View and manage your Google Analytics data

https://www.googleapis.com/auth/analytics.readonly View your Google Analytics data

48

BEST PRACTICES WHEN USING SCOPES

* Clients should request an access token with minimal scopes
* A minimal scope limits the harm that can be done with a stolen access token
e Security engineering best practice

* Granting scopes is the responsibility of the authorization server
e Scopes can be hardcoded, but can also be approved by the user

* If needed, clients can request additional scopes afterward

* Traditionally, this involves running a second OAuth 2.0 flow

* A new flow issues a new authorization code or access token, which is quite noisy
* New specification proposes incremental authorization to make this easier

* The current access token is augmented to include the new scopes

’ @PhilippeDeRyck

49

INTRODUCTION TO OAUTH 2.0 AND OPENID CONNECT

THE CLIENT'S PERSPECTIVE

THE RESOURCE SERVER'S PERSPECTIVE

INTRODUCING OPENID CONNECT

CONCLUSION

y @PhilippeDeRyck 50

PSEUDO-AUTHENTICATION WITH OAUTH 2.0

o Request client authorization

e Authenticate yourself

USER 0 Login credentials How do you know if
© ~uthorize client the user was present?

Authorization code
with client credentials 0 Where dO YOU gEt the
user info?

Redirect to o
authenticate

Redirect with

authorization code /

e Authorization code CLIENT Q User info

RESOURCE
SERVER

BROWSER

51

CONCEPTUAL OVERVIEW OF OPENID CONNECT

IDENTITY
PROVIDER

Request identity information e
e Issue an identity token and access token

{}g o Authenticate user with identity token

USERINFO

e Access /UserInfo endpoint ENDPOINT

CLIENT

y @PhilippeDeRyck

52

PAYLOAD: DATA

"nickname” : "philippe”,

"name"” : "Philippe De Ryck",

"updated_at": "2019-02-17T05:35:37.127Z2",
"email"”: "philippe@pragmaticwebsecurity.com",
"email_verified": true,

"iss": "https://pragmaticwebsecurity.eu.auth@.com/",
"sub": "auth@|5c4720e833d46068468cc7ca”,
"aud": "zqTuXYxr8Xnrwtnl6uNEeTgdSidRéqcZ",
"iat": 1550400912,

"exp": 1550422512,

"nonce": "6fb13493044f4fdf92b587ca42c3068b"

, @PhilippeDeRyck 53

PAYLOAD: DATA

"nickname"”: "philippe”,

"name"” : "Philippe De Ryck",

"updated_at": "2019-02-17T05:35:37.127Z2",

"email"”: "philippe@pragmaticwebsecurity.com",
"email_verified": true,

"iss": "https://pragmaticwebsecurity.eu.auth@.com/",
"aud": "zqTuXYxr8Xnrwtnl6uNEeTgdSidRéqcZ",
"iat": 1550400912,

"exp": 1550422512,

"nonce": "6fb13493044f4fdf92b587ca42c3068b"

The "sub" claim is
guaranteed to be

unique for this issuer

y @PhilippeDeRyck

54

y @PhilippeDeRyck

THE OIDC IMPLICIT GRANT FLOW

o Request client authorization

e Authenticate yourself

IDENTITY

USER e Login credentials PROVIDER

Request authentication
(response_type=id_token token)

CLIENT

e Access token and identity token

0 Authenticate user with identity token

e Access token

0 Protected resource

RESOURCE
SERVER

55

@) IMPLICIT GRANT

- IDENTITY TOKEN IS INTENDED FOR THE FRONTEND APPLICATION
- ALLOWS ESTABLISHING THE USER'S IDENTITY IN THE FRONTEND ONLY

, @PhilippeDeRyck

56

THE OIDC AUTHORIZATION CODE GRANT FLOW

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Redirect to
request authentication
(response_type=code)

Authorization code e
with client credentials

@ Access token and identity token

Redirect with

4 @ Authenticate user with identity token

authorization code
E © recuest uthentication /
RESOURCE

BROWSER © Authorization code CLENT /€@ protected resource SERVER

57

@) IMPLICIT GRANT

- IDENTITY TOKEN IS INTENDED FOR THE FRONTEND APPLICATION
- ALLOWS ESTABLISHING THE USER'S IDENTITY IN THE FRONTEND ONLY

@ AUTHORIZATION CODE GRANT

- IDENTITY TOKEN IS INTENDED FOR THE BACKEND APPLICATION
- ALLOWS CONNECTING THE IDENTITY OF THE USER TO AN INTERNAL USER CONCEPT

, @PhilippeDeRyck

58

THE OIDC HYBRID FLOW

o Request client authorization

e Authenticate yourself

IDENTITY

USER o Login credentials PROVIDER

Redirect to

request authentication
(response_type=code
id_token)

[

BROWSER

Authorization code @ @ Access token
with client credentials
Redirect with

authorization code
and identity token

o Request authentication

RESOURCE
@ Protected resource SERVER

Authorization code
and identity token

Authenticate user with identity token o

CLIENT

59

@) IMPLICIT GRANT

- IDENTITY TOKEN IS INTENDED FOR THE FRONTEND APPLICATION
- ALLOWS ESTABLISHING THE USER'S IDENTITY IN THE FRONTEND ONLY

@ AUTHORIZATION CODE GRANT

- IDENTITY TOKEN IS INTENDED FOR THE BACKEND APPLICATION
- ALLOWS CONNECTING THE IDENTITY OF THE USER TO AN INTERNAL USER CONCEPT

@ HyBRrID

- IDENTITY TOKEN IS INTENDED FOR THE BACKEND APPLICATION
- ALLOWS CONNECTING THE IDENTITY OF THE USER TO AN INTERNAL USER CONCEPT
- THE BACKEND MUST CHECK IF THE AUDIENCE OF THE TOKEN MATCHES ITS CLIENT ID

, @PhilippeDeRyck 60

_ g dainaania de el b

JSON Raw Data Headers

Save Copy Collapse All Expand All

issuer:
v authorization_endpoint:
v token_endpoint:
userinfo_endpoint:
v mfa_challenge_endpoint:
v jwks_uri:
v registration_endpoint:
v revocation_endpoint:
» scopes_supported:
» response_types_supported:
» response_modes_supported:
» subject_types_supported:

0:
1:

0:
1:
» claims_supported:

v id_token_signing_alg_values_supported:

v token_endpoint_auth_methods_supported:

<« C @ ® & https://pragmaticwebsecurity.eu.authO.com/.well-known/openid-configuration

""HS256"
""RS256"

"client
"client

[...]

280% | see % | | Q search

://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.
://pragmaticwebsecurity.

_secret_basic"
_secret_post"

eu.
eu.
eu.
eu.
eu.
eu.
eu.
eu.

autho
autho

moez o

Y Filter JSON

.com/"

.com/authorize"
autha.
autho.
autha.
autha.
autho.
autho.

com/oauth/token"
com/userinfo"
com/mfa/challenge"
com/.well-known/jwks.json"
com/oidc/register"
com/oauth/revoke"

y @PhilippeDeRyck

61

INTRODUCTION TO OAUTH 2.0 AND OPENID CONNECT

THE CLIENT'S PERSPECTIVE

THE RESOURCE SERVER'S PERSPECTIVE

INTRODUCING OPENID CONNECT

CONCLUSION

y @PhilippeDeRyck 62

RECAP

* OAuth 2.0 is not about authentication or authorization, but delegation
* |t allows a resource owner to delegate access to a protected resource to a client
* The authorization server plays a central role in establishing that delegation

* OpenlD Connect is about delegating authentication to a third-party
* OIDC flows result in an identity token containing properties about the authentication
 OIDC combines with OAuth 2.0, as the same flow can also issue access tokens

e Authorization is the responsibility of the resource server
* |t uses the access token to make authorization decisions on incoming requests
* Making a proper authorization decision requires careful attention to detail

y @PhilippeDeRyck

63

BEST PRACTICES

* Choose the right flow for the right scenario
* Do not combine flows, or transfer tokens from one location to another
* Use the proper flow for your use case, without modifications

* Do not implement custom authentication with OAuth 2.0
* OpenlD Connect went through a lot of trouble to get it right, use it

* Minimize the attack surface following from using OAuth 2.0
* Use fine-grained scopes to limit the power of an access token
* Only store the tokens that you need
* Strengthen the security of token storage through encryption and isolation
* Use strict redirect URIs to prevent token stealing attacks
e Use the state parameter to prevent CSRF attacks against the flow's integrity

y @PhilippeDeRyck

64

FREE SECURITY CHEAT SHEETS FOR MODERN APPLICATIONS

Pragmatic Web Security SECURITY CHEAT SHEET

@ Pragmatic Web Security SECURITY CHEAT SHEET
Version 201

The OWASP top 10 is one of the most influential security documents of all time. But how do these top 10 vulnerabi
in a frontend JavaScript application?
This cheat sheet offers practical advice on handling the most relevant OWASP top 10 vulnerabilities in Angular applications.

JSON Web Tokens (JWTs) have become extremely popular. JWTs seem deceivingly simple. However, to ensure their security
properties, they depend on complex and often misunderstood concepts. This cheat sheet focuses on the underlying concepts.
The cheat sheet covers essential knowledge for every developer producing or consuming JWTs.

DISCLAIMER This I5 an opionated e 2017). apphed ¥
‘. 2L injection), but are cut of scape K - Fence, they

1) USING DEPENDENCIES WITH KNOWN VULNERABILITIES
WASP 89
(7] Ptan for a periodical release schedule
23 Usenpm sudit to scan for known vulnerabilities
/7 Setup automated dependency checking to receive alerts
Sithab offers automatic dependency check "

7 Integrate dependency checking into your build pipeline

2 BROKEN AUTHENTICATION

alternatives exist, eac!

SERVER-SIDE SESSION STATE
() Use long and random session identifiers with high entropy

OWASP has a great cheat sheet of fering practical advice (1]

(7] Setup key management / key rotation for your signing keys
/7 Ensure you can handle session expiration and revocation

COOKIE-BASED SESSION STATE TRANSPORT
(1) Enable the proper cookie security properties

AUTHORIZATION HEADER-BASED SESSION STATE TRANSPORT
(| omy send the authorization header to whitelisted hosts

[1) hetps frwwm.c

mend Anguiar apphoascns. Many backend related Issues apply 1o the APYside of an Angular
ttied

3 CROSS-SITE SCRIPTING

ASP &7
PREVENTING HTML/SCRIPT INJECTION IN ANGULAR
([Use interpolation with {{} } to automatically apply escaping
() Use binding to linnerHTML] to safely insert HTML data

SecurityTrust* () On untrusted data
ot apply protection

PREVENTING CODE INJECTION OUTSIDE OF ANGULAR
[} Avmd direct DOM manipulation

() Dormwmhvl-mmwwmdynlmlc pages
() Use Ahead-Of-Time compilation (AOT)

BROKEN ACCESS CONTROL

OWASP
AUTHORIZATION CHECKS
() implement proper authorization checks on API endpoints

Check if the is et
Check if the user is al access the specifi

(7} Do not rely on client-side authorization checks for m:umy

CROSS-ORIGIN RESOURCE SHARING (CORS)

(C] Prevent unauthorized cross-origin access with a strict policy
(7} Avoid whitelisting the nuil origin in your policy

(] Avoid blindly reflecting back the value of the origin header
() Avoid custom CORS mplememmons

Origin-matchi

SENSITIVE DATA EXPOSURE

DATA IN TRANSIT

() Serve everything over HTTPS
(") Ensure that all traffic is sent to the HTTPS endpoint
TTP to HTTPS o & ealing with page loads
sable HTTP an endy

() Enable Strict Transport Security on all HTTPS endpoints
DATA AT REST IN THE BROWSER

() Encrypt sensitive data before persisting it in the browser
() Encrypt sensitive data in JWTs using JSON Web Encryption

INTRODUCTION

A JWT is a convenient way to represent claims securely. A
claim is nothing more than a key/value pair. One common
use case is a set of claims representing the user's identity.
The claims are the payload of a JWT. Two other parts are
the header and the signature.

JWTs should always use the appropriate signature scheme
/7 |fa JNT contains sensitive data, it should be encrypted
JWTs require proper cryptographic key management
7 Using JWTs for sessions introduces certain risks

JWT INTEGRITY VERIFICATION

Claims in a JWT are often used for security-sensitive op-
erations. Preventing tampering with previously generated
claims is essential. The issuer of a JWT signs the token,
allowing the receiver to verify its integrity. These signatures
are crucial for security.

Symmetric signatures use an HMAC function. They are easy to
setup, but rely on the same secret for generating and verifying
signatures. Symmetric signatures only work well within
application.

Asymmetric signatures rely on a public/private key pair. The
private key is used for signing, and is kept secret. The public key
used for verification, and can be widely known. Asymmetric

signatures are ideal for distributed scenarios

[] Always verify the signature of JWT tokens
[J Avoid Haruy functions that do not verify signatures
The .
(m} mckmme lecmolsymmem: signatures is not shared
(7] Adistributed setup should only use asymmetric signatures

JWT Encryp camplex tapic. | v sheet

VaupaTting JWTs

Apart from the signature, a JWT contains other security
properties. These properties help enforce a lifetime on a
JWT. They also identify the issuer and the intended target
audience. The receiver of a JWT should always check these
properties before using any of the claims.

(7] Check the exp claim to ensure the JWT is not expired

(7] Check the nbf claim to ensure the JWT can already be used
(C) Check the i== claim against your list of trusted issuers

() Check the aud claim to see if the JWT is meant for you

CRYPTOGRAPHIC KEY MANAGEMENT

The use of keys for signatures and encryption requires
careful management. Keys should be stored in a secure lo-
cation. Keys also need to be rotated frequently. As a result,
multiple keys can be in use simultanecusly. The application
has to foresee a way to manage the JWT key material.

O vaekeymnlenll in a dedicated key vault service
be fe ynamically, instead

[} Uuﬂ-mchlmmm-hudumldumfy-lpu:lﬁcby

(7] Validate an embedded public key against a whitelist

il cause an aftack

() Validate a key URL against a whitelist of URLS / domains

Failure to whitellst will cause an attack T to be sccepted

UsING JWTS FOR AUTHORIZATION STATE

Many modern applications use JWTs to push authoriza-
tion state to the client. Such an architecture benefits from
a stateless backend, often at the cost of security. These
JWTs are typically bearer tokens, which can be used or
abused by whoever obtains them.

/7 Ris hard to revoke a self-contained JWT before it expires
(C) JWTs with authorization data should have a short lifetime
(] Combine shortived JWTs with a long-lived session

Reach out to learn more about our in-depth training program for developers

Web Security Essentials

2-day training course

Modern-day best practices

Hands-on labs on a custom
April 25th — 26th 2019 training application

Leuven, Belgium

https://essentials.pragmaticwebsecurity.com

Pragmatic Web Security

/in/PhilippeDeRyck @PhilippeDeRyck

philippe@pragmaticwebsecurity.com

