VS
<>
MANICODE

SECUI

Cloud-Native Security

A little background dirt...

@jimmesta y

» 10 years of penetration testing,

teaching, and building security
programs

» OWASP AppSec California organizer
and Santa Barbara chapter founder

= Conference speaker

= Been on both sides of the InfoSec
fence

= | oves Clouds

COPYRIGHT ©2019 MANICODE SECURITY

ETODEVSECK

I'll BE Yllllll IiIIIIlE Axw

c0o12

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Cloud-Native

COPYRIGHT ©2019 MANICODE SECURITY 5

S

ALIIMIEL

COPYRIGHT ©2019 MANICODE SECURITY n

-1 CLOUD NATIVE

L= COMPUTING FOUNDATION

Create and drive the adoption of a new computing
paradigm that is optimized for modern distributed

systems environments capable of scaling to tens
of thousands of self healing multi-tenant nodes.

Fast - Open - Fair

COPYRIGHT ©2019 MANICODE SECURITY

Provide stewardship for projects
Foster growth and evolution of ecosystems
Promote of the underlying technologies

Make the technology accessible and reliable

CNCF Projects

kubernetes

Orchestration

4

CoreDNS

Service Discovery

O

Prometheus

Manitoring

l:untainerm

Container Runtime

COPYRIGHT ©2019 MANICODE SECURITY

U

OPENTRACING

Distributed Tracing AP

@ rkt

Container Runtime

b 4

fluentd

Logging

&

Networking API

s §
ilwll
linkerd

Service Mesh

Q) envoy

Service Mesh

‘GRPC:

Remote Procedure Call

.“r

.!\'4/2
-—
JAEGER

Distributed Tracing

CNCF Working Groups

Continuous Integration

Provides infrastructure to
hosted projects.

Looks to offer integration
testing between projects.

Networking

Providing a Container
Networking Interface
(CNI) specification.

Aims for connectivity and
portability in cloud native
application networking.

COPYRIGHT ©2019 MANICODE SECURITY

Storage

Providing a Container
Storage Interface (CSl)
specification.

Aims for portability
across cloud
orchestration systems.

Educate cloud native
developers on serverless
architectures.

Determine what the
CNCF should do in this
space.

Recommend involvement
in specifications and
projects.

Cloud Native Overview

= Microservice-centric
CIl/CD Support
Portable

» |nfrastructure as Code
= Monitoring and Logging
laaS / PaaS

COPYRIGHT ©2019 MANICODE SECURITY

[A

DevOps Continuous Delivery

Cloud-Native

Containers

Microservices

Cloud Native Security Challenges

= New stuff, new problems

= Network and infrastructure security still matter

= Microservices add networking, authZ / authN complexity
= Attack detection models change drastically

= New tooling and mindset

= Automation takes upfront work

THINGS ARE EITHER GOING

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Serverless Security

COPYRIGHT ©2019 MANICODE SECURITY

| l (: .
. ! .
-* L
P |
. |

/ f | \ & f
ATHESERVERLESS HYPEIS COMING

COPYRIGHT ©2019 MANICODE SECURITY

The Promise...

®®@

Serverless
architecture

&

High-availability Event-driven Zero administration

COPYRIGHT ©2019 MANICODE SECURITY

Serverless Overview

= Servers go away?!

- Kind of but no...we are offloading server admin to a
cloud provider.

*Ops go away?!

- Not really...we still do networking and sysadmin.
*Vulnerabilities go away?!

- Definitely not.

*Then why are we doing this?!

S\ (V) /

COPYRIGHT ©2019 MANICODE SECURITY

Serverless Top Ten

SAS-1: Function Event Data Injection

SAS-2: Broken Authentication

SAS-3: Insecure Serverless Deployment Configuration
SAS-4: Over-Privileged Function Permissions & Roles
SAS-5: Inadequate Function Monitoring and Logging
SAS-6: Insecure 3rd Party Dependencies

SAS-7: Insecure Application Secrets Storage

SAS-8: Denial of Service & Financial Resource Exhaustion

SAS-9: Serverless Function Execution Flow Manipulation

SAS-10: Improper Exception Handling and Verbose Error Messages

COPYRIGHT ©2019 MANICODE SECURITY

Hands-On Serverless Hacking

OWASP Serverless Goat

S\
. SERVERLESS GOAT <}

COPYRIGHT ©2019 MANICODE SECURITY

Introduction to Containers

COPYRIGHT ©2019 MANICODE SECURITY

Software Deployment is Changing

» Massive shift toward cloud computing

" Increased demand for application and infrastructure
portability across environments

» Avoid vendor “lock in” when possible
* Increase in microservices AKA loosely coupled services

~2000 Today

@ @ @ P
Monolithic I I I - 0 O O Services
Slow updated
- . I .

o -

‘ ‘ .. @ “ Loosely

Coupled

Many Small
Servers or devices

Modern Applications

» Breaking monolithic applications into smaller services
offers several advantages:

- Scale independently
- Stateless

- High Availability

- API-Driven

- Faster iteration times

asa

/ Monolithic
Microservices /

COPYRIGHT ©2019 MANICODE SECURITY

Issues with Modern Applications

» Organizations often operate in an Ops vs. Dev vs. Sec
world

* Applications and microservices are written in a variety of
languages and frameworks

* Applications need to run on different technology stacks:
-Virtual Machines
-Windows Server
-Bare Metal Servers
-Cloud Environments
-On-Prem Environments
-Developer Laptops

COPYRIGHT ©2019 MANICODE SECURITY

Containers, Containers, Containers, Containers...

COPYRIGHT ©2019 MANICODE SECURITY

Physical
Operating System H o St

Physical Server

Application

COPYRIGHT ©2019 MANICODE SECURITY

Application

Operating System

Physical Server

COPYRIGHT ©2019 MANICODE SECURITY

One application per server
Slow deployment times
Low resource utilization
Scaling challenges
Migration challenges

$$%

Difficult to replicate locally

Physical Server

Hypervisor

Host Operating System

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

Hypervisor

Host Operating System

COPYRIGHT ©2019 MANICODE SECURITY

One physical server and
multiple applications

Each application runs in a
Virtual Machine

Better resource utilization
Easier to scale
VMs live in the Cloud

Still requires complete
guest Operating Systems
Application portability not
guaranteed

Physical Server

Container || Container || Container

i |] | i

Bins Bins Bins
Libs Libs Libs

Docker (CRI)

Host Operating System

COPYRIGHT ©2019 MANICODE SECURITY

Container

Containers are an
application layer construct

VMs allow us to convert
one physical machine into

Physical Server

Container || Container || Container

Bins Bins Bins MEelth /AN AD RS
Libs Libs Libs No Operating System to
boot (fast!)
Docker (Container Runtime) Most portable out of all
Host Operating System optlons

Less OS overhead using
shared kernel model

COPYRIGHT ©2019 MANICODE SECURITY

Physical Server

VM 1

VM 2

VM 3

Container

App 1
Bins/Lib
S

Container

App 2
Bins/Lib
S

Container

App 3
Bins/Lib
S

| Docker |

| Docker |

| Docker |

Hypervisor

Host Operating System

COPYRIGHT ©2019 MANICODE SECURITY

Containers

and VMs

are Happy
Together

Containers 101

Image
@ The basis of a Docker container. The content at rest.

Container
i The image when it is ‘running.’ The standard unit for app service

Engine

The software that executes commands for containers. Networking and volumes are part of
Engine. Can be clustered together.

1T Registry
Stores, distributes and manages Docker images

bz 'H Control Plane
— Management plane for container and cluster orchestration

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

Client-Server application that includes a
few key components

= Docker Daemon (dockerd)

- Responsible for container l

orchestration dOCer
=REST API
- Used to talk to the Docker daemon
*Docker Client (CLI)

- Interface to interact with the Docker
daemon

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

N~

(n] r 1
Client | DOCKER_HOST}
docker build --{---4: Docker daemon
4 /' N L = -
docker pull B | A\
ocker pu | Il r - X g
I Contalners)— \.\ @;—
docker run —7 \,
N
\'

WL

COPYRIGHT ©2019 MANICODE SECURITY

Dockerfile

» Text document that is used to build images

= Contains all of the commands that could be used
in the CLI to assemble an image

= The docker build command creates the
command-line instructions

i

docker build

Dockerfile Docker Image

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images

»Read only templates from which containers are
launched from

»Each image consists of layers

*\When you change an image a new layer is
created

i

docker build

Dockerfile Docker Image

COPYRIGHT ©2019 MANICODE SECURITY

Container Security

COPYRIGHT ©2019 MANICODE SECURITY

OS Virtualization Security Building Blocks

Process Security

Process Isolation

COPYRIGHT ©2019 MANICODE SECURITY

Kernel Namespaces

» Limits what a process can see

- The pid namespace partitions kernel resources such that
one set of processes may be provided with an independent
set of process IDs (PIDs). Each container gets its own
network stack

-Network namespaces create virtual networking interfaces
to allow programs to run on any port without conflict

-Mount namespaces enable the mounting and un-
mounting of filesystems without affecting the host
filesystem

* No privileged access to the sockets or interfaces of
another container

COPYRIGHT ©2019 MANICODE SECURITY

PID Namespace

root PID Namespace

pid Namespace x

«”

COPYRIGHT ©2019 MANICODE SECURITY

Control Groups

»Ensures each container is provided with its fair
share of memory, CPU, disk I/O and more

*DoS anyone?
=Released in 2006 in kernel 2.6.24

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

Client-Server application that includes a
few key components

= Docker Daemon (dockerd)

- Responsible for container l

orchestration dOCer
=REST API
- Used to talk to the Docker daemon
*Docker Client (CLI)

- Interface to interact with the Docker
daemon

COPYRIGHT ©2019 MANICODE SECURITY

Docker Engine

N~

(n] r 1
Client | DOCKER_HOST}
docker build --{---4: Docker daemon
4 /' N L = -
docker pull B | A\
ocker pu | Il r - X g
I Contalners)— \.\ @;—
docker run —7 \,
N
\'

WL

COPYRIGHT ©2019 MANICODE SECURITY

Docker Security Gotchas

y
docker pull ~-| |

) - n
Client } DOCKER_HOST}
docker build /—)- Docker daesmon
/ N, = = _
. \ .'. —

docker run —

-

0oeg!

APl Exposed over HTTF
Untrusted Users

\ < :

App Vulnerabilitie

Sensjtive Volume Mounts

/

5

COPYRIGHT ©2019 MANICODE SECURITY

<n2
‘o, —
@ %
N\
\
e NGIMX

Untrusted Images

Container Security Benefits

» Patching Simplicity

= Typically Short Lifespans

*One Process Per Container (Ideally)
*|solation from Others

COPYRIGHT ©2019 MANICODE SECURITY

Docker is a daemon running as root

Docker daemon attack surface

Running containers (and applications) with Docker implies running the Docker daemon. This
daemon currently requires root privileges, and you should therefore be aware of some
important details.

First of all, only trusted users should be allowed to control your Docker daemon_ This is
a direct consequence of some powerful Docker features. Specifically, Docker allows you to
share a directory between the Docker host and a guest container; and it allows you to do so
without limiting the access rights of the container. This means that you can start a container
where the /host directory will be the / directory on your host; and the container will be
able to alter your host filesystem without any restriction. This is similar to how virtualization
systems allow filesystem resource sharing. Nothing prevents you from sharing your root
filesystem (or even your root block device) with a virtual machine.

From https://docs.docker.com/engine/security/security/

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images Running as Root

FROM ubuntu:latest
RUN apt-get update --fix-missing && \

apt-get install -y redis-server && \

rm -rf /var/lib/apt/lists/*
EXPOSE 6379

CMD redis-server

$ docker run --rm example whoami

root

COPYRIGHT ©2019 MANICODE SECURITY

Docker Images Running as Root

»Declare a non-root user in our Dockerfile

FROM ubuntu:latest
RUN apt-get update --fix-missing && \

apt-get install -y redis-server && \

rm -rf /var/lib/apt/lists/*
USER 9000
EXPOSE 6379

CMD redis-server

COPYRIGHT ©2019 MANICODE SECURITY

A House of Cards: An Exploration of Security
When Building Docker Containers

MARCH 08, 2018 - @) POSTED BY ETIENNE STALMANS

WE HEARD YOU LIKE DOCKER

E

SO'WEPUTADOCKERIN Yllllll DOCKER

https://blog.heroku.com/exploration-of-security-when-building-docker-containers

COPYRIGHT ©2019 MANICODE SECURITY

https://blog.heroku.com/exploration-of-security-when-building-docker-containers

It is possible to break out of a Docker container

root@precise64:~# docker run gabrtv/shocker

[***] docker VMM-container breakout Po(C) 2014 [***]
[***] The tea from the 90@'s kicks your sekurity again. [***]
[***] If you have pending sec consulting, I'll happily [***]
[***] forward to my friends who drink secury-tea too! [***]

[*] Resolving 'etc/shadow’
[*] Found vmlinuz
[*] Found vagrant
[*] Found 1ib64
[*] Found usr

[*] Found ...

*] Found shadow

[*]
[+] Match: shadow ino=3935729

[*] Brute forcing remaining 32bit. This can take a while...

[*] (shadow) Trying: ©x@0000000

[*] #=8, 1, char nh[] = {0xfl, ©xed, ©x3c, Ox00, Ox00, Ox00, Ox00, 0x00};
[!] Got a final handle!

[*] #=8, 1, char nh[] = {0xfl, ©xed, @x3c, Oxe0, ©x00, Ox00, ©x00, 0xe0};
[!] Win! /etc/shadow output follows:

root:!:15597:0:99999:7:::

daemon:*:15597:0:99999:7:::

bin:*:15597:0:99999:7:::

»
»

COPYRIGHT ©2019 MANICODE SECURITY

Even in 2019...

B® Microsoft
meetin

) with Of
SECLISTS.ORG

Nmap Security

Scanner R e .
Intro oss-sec mailing list archives
Ref Guide

Install Guide [+] By Date e a By Thread] Search
Download

SWaLIIl C VE-2019-5736: runc container breakout (all versions)
Docs

From: Aleksa Sarai <cyphar () cyphar com>
Security Lists Date: Tue, 12 Feb 2019 00:05:20 +1100
e Nmap
Announce
Nmap Dev
BUgH%q Hello,
Full Disclosure
Pen Test I am one of the maintainers of runc (the underlying container runtime
Basics underneath Docker, cri-o, containerd, Kubernetes, and so on). We

recently had a vulnerability reported which we have verified and have a
More
patch for.

[Patch CRD: 2019-02-11 15:00 CET]]
[[Exploit Code CRD: 2019-02-18 15:00 CET]]

Sec“rﬂY'TOOk The researchers who found this vulnerability are:
Password audit * Adam Iwaniuk
Sniffers * Borys Poptawski
Vuln scanners
Web scanners
Wireless
Exploitation == OVERVIEW ==
Packet crafters
More The vulnerability allows a malicious container to (with minimal user
interaction) overwrite the host runc binary and thus gain root-level
. code execution on the host. The level of user interaction is being able
Site Ne.w:&s to run any command (it doesn't matter if the command is not
Adverhﬂng attacker-controlled) as root within a container in either of these

About/Contact contexts:

In addition, Aleksa Sarai (me) discovered that LXC was also vulnerable
to a more convoluted version of this flaw.

* Creating a new container using an attacker-controlled image.
* Attaching (docker exec) into an existing container which the

SponsorS: attacker had previous write access to.

> X
MEET THE

ALL NEW
SIMPLISAFE.

This vulnerability is *not* blocked by the default AppArmor policy, nor
by the default SELinux policy on Fedora[++] (because container processes
appear to be running as container_ runtime_t). However, it *is* blocked
through correct use of user namespaces (where the host root is not
mapped into the container's user namespace).

COPYRIGHT ©2019 MANICODE SECURITY

Yes. Docker Images Have Vulnerabilities

Tainted, crypto-mining containers
pulled from Docker Hub

John Biggs @chnbiggs [Jun 15 2018 C] Comment

COPYRIGHT ©2019 MANICODE SECURITY

Docker vulnerability scanning

anchore

clair

(0 QUAY

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

'Ei\ ‘“‘“‘““““v‘_, B
i T = AT RS COR (LU
; TR L)

COPYRIGHT ©2019 MANICODE SECURITY

K8S - A Gentle Introduction

Kubernetes is an open-source
platform built to automate
deployment, scaling and
orchestration of containers.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

K8S - A Gentle Introduction

K8S is portable. Clusters can

be deployed on a public/private
cloud, on prem, and even on

your laptop.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

K8S - A Gentle Introduction

K8S is customizable. It Is
modular and extensible to fit a
variety of use-cases.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

K8S - A Gentle Introduction

K8S is scalable. It provides
self-healing, auto scaling, and
replication out of the box.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

COPYRIGHT ©2019 MANICODE SECURITY

virtual
machines that

Kubernetes
manages

||| I ClUSTEr

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

group of
containers

sharing
storage and
network

network interface

container container container

volume A volume B

COPYRIGHT ©2019 MANICODE SECURITY

apiVersion: vl
kind: Pod
metadata:

name: redis-rails

spec:
containers:
- name: key-value
image: redis
ports:
- containerPort: 6379

- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

pod.yaml

e[e | | - [POC.yaml

COPYRIGHT ©2019 MANICODE SECURITY

Mﬂﬂ pod.yaml

COPYRIGHT ©2019 MANICODE SECURITY

pod.yaml

COPYRIGHT ©2019 MANICODE SECURITY

deployment

.-'
El

memecrunch'com!

COPYRIGHT ©2019 MANICODE SECURITY

ensure N pods

are up and Fe[Ye] [}V 11 [:1gl
running

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value
image: redis
ports:
- containerPort: 6379
- name: rails-frontend
image: rails
ports:
- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

e[e | = | - [@ PlOY.Yyaml

COPYRIGHT ©2019 MANICODE SECURITY

deploy.yaml

COPYRIGHT ©2019 MANICODE SECURITY

master node

4\

deploy.yaml

10.0.0.2 10.0.0.4
10.0.0.3

COPYRIGHT ©2019 MANICODE SECURITY

abstraction
layer that

enables pod Se rVi Ce

communication

service

COPYRIGHT ©2019 MANICODE SECURITY

H
-1~ M service
¢ ko o

10.0.0.2 10.0.0.4
10.0.0.3

COPYRIGHT ©2019 MANICODE SECURITY

= Tl garvice

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

your.site.com

public load balancer

COPYRIGHT ©2019 MANICODE SECURITY

kind: Service
apiVersion: vl
metadata:

name: web-frontend
spec:

ports:

- name: http

port: 80
targetPort: 3000
protocol: TCP
selector:
app: rails
type: LoadBalancer

COPYRIGHT ©2019 MANICODE SECURITY

svc.yaml

kind: Service
apiVersion: vl
metadata:

name: web-frontend
spec:

ports:

- name: http

port: 80
targetPort: 80
protocol: TCP
selector:
app: rails
type: LoadBalancer

COPYRIGHT ©2019 MANICODE SECURITY

svc.yaml

kind: Service
apiVersion: vl
metadata:

name: web-frontend
spec:

ports:

- name: http

port: 80
targetPort: 80
protocol: TCP
selector:
app: rails
type: LoadBalancer

COPYRIGHT ©2019 MANICODE SECURITY

svc.yaml

kind: Service
apiVersion: vl
metadata:

name: web-frontend
spec:

ports:

- name: http

port: 80
targetPort: 80
protocol: TCP
selector:
app: rails
type: LoadBalancer

COPYRIGHT ©2019 MANICODE SECURITY

svc.yaml

Labels
and

Selectors

Metadata (key-
value) which

can be Labels
attached to a

resource

Used for
identification

such as app
name, tier,
environment

Labels

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

Provides loose
coupling

between Selectors

objects

kind: Deployment
apiVersion: apps/vl
metadata:
name: rails-deployment
labels:
app: rails
spec:
replicas: 4
selector:
matchLabels:
app: rails
template:
metadata:

labels:
eploy.yam
spec:
containers:
- name: key-value

image: redis

ports:

- containerPort: 6379
- name: rails-frontend

image: rails

ports:

- containerPort: 3000

COPYRIGHT ©2019 MANICODE SECURITY

App: Nifty App: Nifty
Phase: Dev Phase: Dev

Role: FE Role: BE

App: Nifty - App: Nifty
Phase: Test Phase: Test
Role: FE Role: BE

COPYRIGHT ©2019 MANICODE SECURITY

Ingress

COPYRIGHT ©2019 MANICODE SECURITY

configure

external .
Ingress.yami

access to your
cluster

kind: Ingress
apiVersion: extensions/vlbetal
metadata:
name: web-ingress
spec:
backend:
serviceName: web-frontend
servicePort: 80

Ingress.yami

COPYRIGHT ©2019 MANICODE SECURITY

kind: Ingress

apiVersion: extensions/vlbetal

metadata:

name: web-ingress-vhosts

rules:

- host: sub.domain.com

http:
paths:
- backend:

serviceName:
servicePort:
- host: other.domain.

http:
paths:
- backend:

serviceName:
servicePort:

COPYRIGHT ©2019 MANICODE SECURITY

web-frontend-1
80
com

web-frontend-2
80

ingress.yaml

manage
different

environments T o =12
In the same

cluster

kind: Namespace
apiVersion: vl

metadata:
name: development

COPYRIGHT ©2019 MANICODE SECURITY

ns.yaml

Kubernetes Security Model

COPYRIGHT ©2019 MANICODE SECURITY

« The REST API is the
fundamental fabric of
Kubernetes

« All operations and

master communications between
. components, and external
Server | Scheduler || GPntreter user commands are REST

. ' API calls that the API
| Server handles

* Everything in the
Kubernetes platform is
treated as an APl object
and has a corresponding

COPYRIGHT €2019 MANICODE SECURITY entry in the API

K8S Security Model

apiserver

Admission
Authentication Authorization Control

(Who can (What can (Which
kubectl access the they policies are
cluster? access?) applied for

Access
Granted

this user?

COPYRIGHT ©2019 MANICODE SECURITY

Transport Security

- K8S API typically serves traffic over

TLS
- Self-Signed Cert provisioned on
operators laptop in $USER/.kube/config

apiserver

Admission Access

Authentication Authorization Control
Granted

(Who can (What can (Which
access the they policies are

cluster? access?) applied for
this user?

COPYRIGHT ©2019 MANICODE SECURITY

Authentication

- Supports many authentication modules:

HTTP Basic, OpenlD, Tokens, Client Cert,
Keystone

- Multiple modules can be specified

apiserver

Admission
Authentication Authorization Control

(Who can (What can (Which

Access
Granted

access the they policies are

cluster? access?) applied for
this user?

COPYRIGHT ©2019 MANICODE SECURITY

Authorization

- Every HTTP request is authorized
get, list, create, update, efc.

- Request attributes are checked against
policy

apiserver

Admission
Authentication Authorization Control

(Who can (What can (Which

Access
Granted

access the they policies are

cluster? access?) applied for
this user?

COPYRIGHT ©2019 MANICODE SECURITY

Authorization

--authorization-mode=AlwaysAllow allows all
requests; use if you don’t need authorization

--authorization-mode=ABAC allows for a simple local-
file-based user-configured authorization policy

--authorization-mode=RBAC allows for authorization
to be driven by the Kubernetes API

COPYRIGHT ©2019 MANICODE SECURITY

Admission Controllers

- Intercept requests prior to object creation
- May mutate incoming request to apply
system defaults

apiserver

Admission \J

https:// o o Access
— > Authentication Authorization Control
Which Granted
(Who can (What can (Whi
access the they policies are
cluster? access?) applied for

COPYRIGHT ©2019 MANICODE SECURITY

Admission Controllers

AlwaysPullImages
DenyEscalatingExec
ResourceQuota

NamespaceExists

http://kubernetes.io/docs/admin/admission-controllers/

COPYRIGHT ©2019 MANICODE SECURITY

http://kubernetes.io/docs/admin/admission-controllers/

Attacking and Defending Kubernetes

COPYRIGHT ©2019 MANICODE SECURITY

Let's Play a Game - Kubernetes Threat Model

COPYRIGHT ©2019 MANICODE SECURITY

Cluster

Node
Access to machines/V/Ms —— L Access to etcd AP|
Access via Kubernetes p!
APl or proxy ! Control-plane components

: — Intercept/modify/ inject

control-plane traffic

Node
Access via Kuelet API > Kubelet

Pod

Container

Escape container to host <
through vulnerability or
volume mount

Application — [ntercept/modify/inject

application traffic

|
Exploit vulnerability
in application code

Source: Kubernetes Security - Operating Kubernetes Clusters and Applications Safely

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

User Compromise and Insider Threats

* Cluster admin account compromise

« Rogue Employee

« Tenant account compromise leads to the application compromise

Application Vulnerabilities

« Lack of authentication and authorization, both k8s internal and
external

« Weak or incorrect usage of cryptography

« Application and API vulnerabilities - remote code execution (RCE),
web vulnerabilities (XSS, CSRF, SSRF, SQL Injection etc.)

« Unsecured third party components

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

Network and Infrastructure

* Network snooping, ARP spoof attacks

« Compromising infrastructure services (etc. NTP, DNS, SSH)
« Kernel and other operating system vulnerabilities

Application Containers

« Container breakout and unauthorized access control plane and other
containers

« Denial of Service - resource hogging, eating up CPU/Mem/Disk/IO to
impact or even crash other containers

« Compromised or malicious image or pipeline

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Threat Model

Misconfiguration

* Insecure default configurations - unused open ports, services, not
enforcing system/application limits, failing to implement security
features

« Misuse of passwords, passphrases, TLS private keys (*cough*
checking them into git *cough*. Bad handling include key reuse,

insecure handling of keys, no key rotation, weak passwords, not
using MFA etc.

» Lack of network segmentation - exposing critical systems to various
network attacks

COPYRIGHT ©2019 MANICODE SECURITY

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes security threats in the wild

Unsecured Kubernetes User could access kubelet Public images with
dashboard with cloud - credentials and replay, embedded malware
account credentials ﬂ namely kubelet cert and Hacker images pulled
Hackers used these to shoplfy private key 5M times to mine $90k
mine cryptocurrency Reported by researcher of cryptocurrency
AVIVA/ oct 2017 May 2018 docker” ;ine 2018

Feb 2018

Unsecured Kubernetes
dashboard with cloud
account credentials
Hackers used these to
mine cryptocurrency

June 2018 OWei
Weight

Unsecured Kubernetes
dashboard, with access to
sensitive data including
cloud account credentials

Reported by researchers

COPYRIGHT ©2019 MANICODE SECURITY

O boy.

HACK BRIEF: HACRERS
ENLISTED TESLA'S PUBLIC
GLOUD TO MINE
CRYPTOCURRENCY

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Attack: Unauthorized Dashboard Access

[#!/secret/default/aws-s3-credentials?namespace=default

A Not Secure https://!

| Name | - = =

kubernetes Q, Search

= Config and storage > Secrets > aws-s3-credentials

default .
Details
Overview
Name: aws-s3-credentials
Workloads Namespace: default

Creation time: 2017-10-12T22:29
Daemon Sets

Type: Opaque
Deployments

Jobs

Pod

0ds Data

Replica Sets

Replication Controllers Q aws-s3-access-key-id:

Stateful Sets
Q aws-s3-secret-access-key:

Discovery and Load Balancing

Ingresses

Services

Confin and Starane

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Unauthorized Dashboard Access

= Always run RBAC on your cluster

» By default, the Dashboard ServiceAccount has very
limited privileges. Do not grant the Kubernetes dashboard
service account elevated privileges such as root!

» |f access is needed, create SAs per user with limited

permissions
T

*Don’t expose to the internet
*Don’t be Tesla
T=SLnA

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Elevated Pod Privileges

* Pods may be deployed with containers that require
elevated privileges:

- “privileged mode” grants containers the ability to
manipulate the network stack or access devices

- Containers may run as root (User ID = 0)

- Containers may request to mount sensitive volumes or
request write access to volumes

- Containers may request to bind to host ports
- Containers may request elevated Linux capabilities

» Compromised containers can take full advantage of these
privileges to attack the cluster and cloud infrastructure

COPYRIGHT ©2019 MANICODE SECURITY

Pod Security Context

» Pod security context is defined in the pod or deployment
manifest

» Defines the the privilege and access control for a pod

» The security context defined in a pod applies to all containers
within the pod

» Examples include:
» Defining seccomp, SELinux, or AppArmor profiles
» Defining users and groups containers use to run
= Whitelisting certain Linux privileges to the container

#KubernetesSecurityTip: Pod Security Context should be used

along with Pod Security Policies to enforce strict security
admission controls

COPYRIGHT ©2019 MANICODE SECURITY

apiVersion: vl
kind: Pod
metadata:
name: priv-pod
spec:
securityContext:
privileged: true
securityContext:
runAsUser: 1001
containers:
- name: pause
image: k8s.gcr.io/pause
securityContext:
capabilities:
add: ["NET ADMIN", "SYS TIME"]

priv-pod.yaml

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Pod Security Policies

* Pod security policies are represented by the
PodSecurityPolicy resource

» Defines conditions a pod must meet to be scheduled
» Examples include:
= Disallow privileged containers from running
» Disallow containers that require root privileges
» Disallow containers that access certain volume types
» Disallow containers that access certain host ports

#KubernetesSecurityTip: Use the PodSecurityPolicy admission

controller to restrict the use of privileged pods in your cluster

COPYRIGHT ©2019 MANICODE SECURITY

apiVersion: policy/vlbetal
kind: PodSecurityPolicy
metadata:
name: my-psp
spec:
privileged: false
selLinux:
rule: RunAsAny
supplementalGroups: I
rule: RunAsAny ps p . ya m
runAsUser:
rule: 'MustRunAsNonRoot'
volumes:
- 'configMap'
- 'emptyDir’
- 'secret’
- 'persistentVolumeClaim'

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unauthorized Network Access

= |f you run an APl endpoint in your cluster such as Redis
without authentication, other pods may have unrestricted
access to the pod

= A compromised pod may be able to read, alter, or delete
data from another pod in the cluster

= |t is important to isolate these workloads using granular
Network2galici '

#KubernetesSecurityTip: Third-party technologies such as Istio

and Linkerd offer proxy services or "sidecar” containers which can
help deploy mTLS / proxying throughout your cluster

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unauthorized Network Access

= |f you run an APl endpoint in your cluster such as Redis
without authentication, other pods may have unrestricted
access to the pod

= A compromised pod may be able to read, alter, or delete
data from another pod in the cluster

#KubernetesSecurityTip: Third-party technologies such as Istio

and Linkerd offer proxy services or "sidecar” containers which can
help deploy mTLS / proxying throughout your cluster

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Network Policies

» The Kubernetes object NetworkPolicy allows you to block
traffic to pods

» Acts as a "pod firewall” where rules are administered by
cluster admins

» Best practice is to start with a default “deny all” and only
add what you need

» Default Deny — You must build the whitelist

COPYRIGHT ©2019 MANICODE SECURITY

kind: NetworkPolicy
apiVersion: networking.k8s.io/vl
metadata:
name: web-deny-all
spec:
odSelector:
F matchlLabels: np-deny-a"'yaml
app: web
ingress: []

namespace: default

I
| |
I
1
Any container

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/01-deny-all-traffic-to-an-application.md

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/01-deny-all-traffic-to-an-application.md

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1l
metadata:
name: api-allow
spec:
podSelector:
matchLabels:
app: bookstore
role: api
ingress:
- from:
- podSelector:
matchLabels:
app: bookstore

np-limit-traffic.yaml

app=coffeeshop | % app=bookstore app=bookstore
role=api role=api role=frontend

[D & LY N P Y D P § A | D R P T D - Y | P I Y A e T o Y o N LY B R o o A - N |

https://github.com/ahmetb/kubernetes-network-policy-recipes/blob/master/02-limit-traffic-to-an-application.md

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:

name: limit-egress
spec:

podSelector:

matchLabels:
app: foo

policyTypes:

- Egress

egress:

- ports:

- port: 53
protocol: UDP
- port: 53
protocol: TCP
- to:
- namespaceSelector: ({}

COPYRIGHT ©2019 MANICODE SECURITY

limit-egress.yaml

Defense: Istio Service Mesh

» |stio is a service mesh for ‘
microservices (not just Kubernetes)

= Offers: a
- Monitoring
- Metrics
- Traffic Management and Routing
- Security
- Tracing

COPYRIGHT ©2019 MANICODE SECURITY

Defense: Istio Service Mesh

Control Plane API

Control flow during
request processing [Pilot] [Mixer } { Istio-Auth]
rS
I
Config datato ! TLS
Envoys Y certs
to Envoy

Policy checks,

> telemetry A/\ <
/Pod / \\ 4
HTTP/1.1, HTTP/2, Enve HTTP/1.1, HTTP/2, .
gRPC, TCP with or y gRPC, TCP with or y
without TLS [without TLS 1
SVCA /Z/Z/ \\& svcB
Service A Service B

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Envoy Proxy

* High performance load balancer
= Config management via API
= L7 Visibility
= Rate-limiting, health checks,
retries, eftc.
* In Kubernetes... _
- Envoy container is injected asjisi
a “sidecar” container |

- Controls pod ingress / egress
routing

- Config is via Pilot

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Pilot

= Control plane for distributed
Envoy instances

= Configures Istio configurations
and pushes to other system
components oo

= System of record for the
service mesh S“/\

. O Proxy O Proxy O Proxy O Proxy
= Exposes API for service
discovery, load balancing, etc.

Kubernetes
Mesos
CloudFoundry

Platform Adapter

Abstract Model

Rules API
10|d

COPYRIGHT ©2019 MANICODE SECURITY

Istio: Mixer

» Responsible for providing
policy controls

* Handles telemetry
collection (Grafana,
Prometheus)

= Envoy sidecar calls Mixer
before each request to
perform precondition
checks and report
telemetry

COPYRIGHT ©2019 MANICODE SECURITY

L=
g
&0 pe)
o Q c
@ Q
@ Service A § 2 9 3
X = c b
Q a o 0
] o =
Fs] 8 m =
o o £ 9
= @ =} &
(=] - = T
O proxy 2 S| 5 £
S & a £
Adapter API =
nd x
Y Chec\(a 2
o
O proxy vep

I

@ Service B

Data plane traffic

Control plane traffic

Access Cloud Metadata

» Simple SSRF can lead to Cloud Metadata leak

= Using curl we can hit the AWS Metadata API endpoint from
a pod and depending on the configuration, sensitive data
may be returned

» http://169.254.169.254/latest/meta-data/iam/security-
credentials/IAM_USER ROLE HERE

#KubernetesSecurityTip: Use a tool like KIAM or Kube2lAM to

limit access to the AWS Metadata API. Better yet, apply a
NetworkPolicy to stop traffic outbound.

COPYRIGHT ©2019 MANICODE SECURITY

kind: NetworkPolicy

apiVersion: networking.k8s.io/vl
metadata:

name: deny-all

namespace: default

spec:

podSelector: {}

egress: d
- to: ‘E"1N!,“-
- podSelector:

hLabels:
ma]tgsl—-.:pzzskube—dns al I lya m I

- ports:
- protocol: UDP
port: 53
policyTypes:
- Ingress
- Egress

COPYRIGHT ©2019 MANICODE SECURITY

Attack: Unprotected Kubelet API

= The Kubelet handles Master <-> Node communication

»By default, the Kubelet API allows for unauthenticated
access to ports 10255 (read-only) and 10250 (read /

write)

*|f a user has network access to your nodes the
Kubelet APl may be exposed

#KubernetesSecurityTip: This is a big deal and is not trivial to

address. Some bootstrap tools enable certificate authentication
between the master and nodes by default. Some don’t. YMMV.

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets ‘Q

» Kubernetes Secret objects are designed to store small
amounts of sensitive data such as API keys, tokens, or
passwords

» Secrets are only sent to a node if a pod on that node
requires it

» Secrets may be exposed to a Pod as a mounted volume
or as an Environment Variable

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets

» Secret data on nodes is stored in tmpfs volumes and not
stored at rest on disk (technically)

= Communication between api-server to Kubelet is
encrypted with TLS

» Secrets are tied to a particular namespace and must be
encoded using base64

S echo -n "admin" | base64
YWRtaW4=

S echo -n "1f2d1e2e67df" | baseb4
MWYyZDF1MmU2N2Rm

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets Risks %

» Secrets are stored in plain text by default in etcd
*Very little separation of duties

* During etcd replication, secrets are sent in plaintext
* People still love pushing secrets to version control
» Modifying secrets requires rolling out new objects

COPYRIGHT ©2019 MANICODE SECURITY

Kubernetes Secrets ‘Q

Which is the most secure way to pass secrets to a pod?

1. Pass secrets as an environment variable

2. Mount volume in container that has secrets in a file
3. Build the secrets into the container image
4. Query a "Secrets API” over your network

5. Other

COPYRIGHT ©2019 MANICODE SECURITY

Building Secrets into Container Images

» Access to image == access to secrets
-Who has access to your images?
= Rotation becomes a new image build

»Secrets are likely stored in source code control ending
up on laptops, cloud environments, etc.

» Chance of accidentally making the secrets “public”
Increases

COPYRIGHT ©2019 MANICODE SECURITY

Pass Secrets as Environment Variables @

» Twelve-Factor App suggests this mechanism
»Passed into containers at runtime

= Can still end up checked in to source control via
hardcoding in YAML

=Native Secrets in Kubernetes support this out of the
box
" In-cluster RBAC needs to be tight to prevent misuse

=\Watch out for secrets in logs and error messages
= Accessible using docker inspect’ or "kubectl describe

COPYRIGHT ©2019 MANICODE SECURITY

Pass Secrets as Files @

*Mount a volume in the pod that has a file with secret
values usually as key-value pairs

=Your app needs to support this

*\Writing to a temporary filesystem prevents secrets
from being written to disk (auditors <3 this)

*Make sure your app doesn’t just rewrite this file
elsewhere

*Not accessible using docker inspect’ or kubecitl
describe

COPYRIGHT ©2019 MANICODE SECURITY

Rotating and Revoking Secrets @

»Rotation and revocation depend on your threat model
and internal security policies

*You need a mechanism in place no matter what

*Pods may need restarted for app to recognize new
secrets

= |f using mounted volumes for secrets, pods do not
need to be restarted

*Your app should know how to handle rotation and
revocation gracefully

COPYRIGHT ©2019 MANICODE SECURITY

CONTAINERS & KUBERNETES

Exploring container security:
Encrypting Kubernetes secrets with
Cloud KMS

O«

N\

X

NS
A

. .
§ O
'U - o
© Oy © O

COPYRIGHT ©2019 MANICODE SECURITY

Where do we go from here?

COPYRIGHT ©2019 MANICODE SECURITY

. . The Practice of Cloud System
The Phoenix Project Administration

Gene Kim, Kevin Behr and Thomas A. Limoncelli, Strata R. Chalup,

George Spafford Christina J. Hogan

From the authors of The Visible Ops Handbook
THE PRACTICE OF
CLOUD SYSTEM

ADMINISTR ATION

Phoenix
Project

A Novel About IT, DevOps,
and Helping Your Business Win

THOMAS A. LIMOMNCELLI » STRATA R. CHALUP = CHRISTINA J. HOGAN

Gene Kim, Kevin Behr, and George Spafford

COPYRIGHT ©2018 MANICODE SECURITY

It's been a pleasure.

jmesta@manicode.com

Jimmy Mesta Secure Coding Instructor www.manicode.com

