Trusted Execution Environments
and how far you can trust them

Jan Tobias Muhlberg

jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

SecAppDeyv, Leuven, February 2019

DistriN=t

jantobias.muehlberg@cs.kuleuven.be

Lecturer: Jan Tobias Mdhlberg, @ jtmuehlberg

Short Bio:

* Research Manager at imec-DistriNet, KU Leuven
https://distrinet.cs.kuleuven.be/people/muehlber

+ Hardware & Software Co-Design for Security

+ Embedded Systems Security

+ Secure Processors & Trusted Computing

+ Automated Software Testing and Formal Verification
+ Safety-Critical Systems, Automotive Computing

v
2 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

@jtmuehlberg
https://distrinet.cs.kuleuven.be/people/muehlber

Automated Detection and Prevention of Vulnerabilities

Frank Piessens: “New trends in system software security”

JT on Tuesday: Developing and testing SW

© Software security for the bad guys
Lazy ways of finding and exploiting software vulnerabilities

@ How to build “perfect software”
Probably there is no such thing; but let’s rule out as many vulnerabilities as
possible and affordable

JT on Thursday: Trusted Computing

©® How to protect perfect software at runtime
... because not having vulnerabilities in your code may not be enough

O Building security into distributed systems

Raoul Strackx: “Foreshadow — from oversight to a tech nightmare”

v
3/54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Review of Tuesday: Exploiting a Buffer Overflow

/* stackl.c; https://github.com/gerasdf/InsecureProgramming x/
#include <stdio.h>
int main() {

int cookie;

char buf[80];

printf ("buf: %08x cookie: %08x\n", &buf, &cookie);
gets (buf) ;

if (cookie == 0x41424344) {
printf ("you win!\n");

}

Task: Compile and exploit to get “you win!”. Manually!

4 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

Security in Smart Environments

Smart
government Smart health
@ Smart Smart grid/
= Mobility/ Open T farming/ energy/
H Wi-Fi data i agriculture utilities
S
Smart Smart @
manufacturing buildings i

transportation

Infrastructure needs to be developed with safety, security and privacy in
mind! What is critical infrastructure? What is critical code? Where is personal
data being processed? What’s the impact of failure?

Image source: https://internetofthingsagenda.techtarget.com/definition/smart-city

v
5/54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

https://internetofthingsagenda.techtarget.com/definition/smart-city

Security in Smart Environments

Device level i Hublevel : Cloud level i RESTFul API
i Remote Device Management : 3rd Party Applications
i Remote Software Update

Understanding can be really difficult: What stake holders are involved? What
are their objectives and abilities? What hardware and software is involved?
Software quality? Data flows? Security requirements and guarantees?

Image source: https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

v
6 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

Security in Smart Environments

Facebook Is Breached by Hackers,
Putting 50 Million Users’ Data at Risk

One of the challenges for Facebook's chief executive Mark Zuckerberg is convincing
users that the company handles their data responsibly.

Source: https://www.nytimes.com/2018/09/28/technology/facebook—hack-data-breach.html

7 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

Security in Smart Environments

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect
lives, not just our data.”

— Bruce Schneier, [Sch18]

8/54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

Security in Smart Environments

m I E] EE] Technology Science Culture Gear Business Politics

the looming deluge of
connected dildos is a
security nightmare

Just because the teledildonics patent has expired, sex tech
companies shouldn't rush to bring connectivity to their products

Source: https://www.wired.co.uk/article/teledildonics—hacking-sex—toys (2017)

9 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N _t

https://www.wired.co.uk/article/teledildonics-hacking-sex-toys

Security in Smart Environments

m I El E E] Technology Science Culture Gear Business

Smart dildos and vibrators
keep getting hacked - but
Tor could be the answer to
safer connected sex

Connected sex toys are gathering huge amounts of data about
our most intimate moments. Problem is, they're always getting
hacked. Welcome to the emerging field of Onion Dildonics

Source: https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix (2018)

10/54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N _t

https://www.wired.co.uk/article/sex-toy-bluetooth-hacks-security-fix

Security in Smart Environments
——— INSIDE TIIF, CUNNING,
SSSSS UNPRECEDENTED HACK OF
G URRAINE'S POWER GRID

’’’’’

Source: https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines—-power—grid/

11 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

Security in Smart Environments

CYBERCRIME
DEPENDENCIES

\

s o 5oty

‘@

LEGEND
—
: ==

[y '7 fr bttt s e

l (Y]
- - = . = == =
=
mmmmm = L1 vooeo | oo _
e -
= EURTPOL / Cross-Crime Factors

uopewiojul iqnd jodoin3

Source: https://www.europol.europa.eu/publications—documents/cybercrime—dependencies—-map

12 /54 Jan Tobias Miihlberg

Developing and testing secure software

DistriN=t

https://www.europol.europa.eu/publications-documents/cybercrime-dependencies-map

Security in Smart Environments

DO VE JUST SUCK
AT...COMPUTERS?
vup ESPECMLLY&IHRED ONES.

i

Source: https://www.xkcd.com/1938/

13 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://www.xkcd.com/1938/

Security

© Understand the system.
+ Context, hardware, software, data, users,
use cases, etc.
©® Understand the security requirements.
+ Requirements are not features!
+ “Only authenticated users can do X
©® Understand the attacker.

+ “Attackers can listen to all communication,
can drop, reorder or replay messages, may
compromise Y% of the system, can’t break crypto.”

O Understand and embrace change!

+ Discovery of vulnerabilities

+ Different understanding of the system

+ New (functional|security) requirements

+ New attacks, different attackers

Source of images 1,2, 3: https://en.wikipedia.org/

v
14 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

https://en.wikipedia.org/

Security in the Software Development Life-Cycle

Analysis & Design

Requirements
Implementation
Planning
Initia
Deployment
Evaluatio .
Testing

Understand the system * Understand the security requirements - Understand
the attacker - Understand and embrace change!

Threat Modelling: Ask the right questions at the right moment, learn about
attacks and defenses, and argue why and when something is trustworthy.

v
15/54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

What can we trust?

S
Software? GD

Hardware?

Supply Chains? t{;
People? s ’

v
16 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

What can we trust?

* Reasoning about security is about setting boundaries
+ Which parts are considered trusted, and which parts are not?
+ How far do we want to go in defending your application?
+ What kind of security is economically viable?

* Building secure systems requires rigorous security arguments

+ Having a good idea about what you are building.

+ Determining which attackers are considered to be in scope.

+ Analysing potential vulnerabilities, and introducing appropriate
countermeasures.

+ A security argument is a rigorous argument that under a given
adversary model, a countermeasure effectively counters a threat
or a security mechanism achieves a security goal.

17 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

Q Bloomberg B

The Big Hack: How
ChinaUsed aTiny
Chip to Infiltrate U.S.
Companies

The attack by Chinese spies reached almost 30 U.S. companies,
including Amazon and Apple, by compromising America’s
technology supply chain, according to extensive interviews with
government and corporate sources.

ctober 2018, 11:00 CEST

. ¢
£
' =
n; a =
= =
| =5 ~f
| =
—_]
= 5
— _
—_
= .
= = = 3
p bloomberg.co e e e 018-10-0 e-big 0 ed p-to e e

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies

Gathering Platform Requirements — A Thought Experiment

Device level i Hublevel : Cloud level i RESTFul API
i Remote Device Management : 3rd Party Applications
i Remote Software Update i

Sensors come from different vendors. Why would you trust them?

The cloud is “other people’s computers”. Why trust them?

Terminals may be used and managed by health care professionals. ..

There are huge software and hardware stacks with multiple vendors everywhere.

Image source: https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

v
19 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

https://medium.com/connected-news/iot-foundation-what-is-an-iot-platform-c37c5e72d4a0

Gathering Platform Requirements — A Thought Experiment
Reasoning about security is about setting boundaries!

How would you design this system?
+ Get a cyber insurance!
» Thread modelling, risk assessment, etc.
+ Anonymisation of data, if possible
+ Zero Trust, micro-segmentation and granular perimeters

How can the execution environment (= hardware) help you?
* Encryption
* Isolation, Security Rings

* Minimise Trusted Computing Base:
remove hypervisors, OSs, libraries from TCB

20 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

Gathering Platform Requirements — A Real System

“We don’t want the Signal service to have visibility
into the social graph of Signal users. Signal is
always aspiring to be as ‘zero knowledge’ as
possible, and having a durable record of every
user’s friends and contacts on our servers would
obviously not be privacy-preserving.”

© Run a contact discovery service in a secure SGX enclave.

@ Clients that wish to perform contact discovery negotiate a secure connection
over the network all the way through the remote OS to the enclave.

© Clients perform remote attestation to ensure that the code which is running in
the enclave is the same as the expected published open source code.

O Clients transmit [...] their address book to the enclave.

@ The enclave looks up a client’s contacts in the set of all registered users and
encrypts the results back to the client.

Source: https://signal.org/blog/private-contact—-discovery/

v
21 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

https://signal.org/blog/private-contact-discovery/

Motivation: Application Attack Surface

App App
oS

1 o

-

Hardware

Hardware
I

Attack Surface :-

Attack Surface Without Enclaves Attack Surface With Enclaves

iApp! !

https://software.intel.com/en-us/articles/intel-software-guard-extensions—tutorial-part-1-foundation

22 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Motivation: Application Attack Surface

Attack Surface Without Enclaves

Hardware
I

Attack Surface :-

- -

Attack Surface With Enclaves

App

l'ostl

App

Hardware

App

https://software.intel.com/en-us/articles/intel-software-guard-extensions—tutorial-part-1-foundation

Layered architecture «» hardware-only TCB

22 /54

Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Comparing Hardware-Based Trusted Computing Architectures

23 /54

o 8 o
’b\\ é\\o‘\ \ © Q\\
<>"<\<\°“§@\?o‘a°\ P TR N o
OO S ® \~§ \\%\o\’ée" =S 6"\)6‘ R
o\” \'@ e’b\‘ % ° e ‘?\“ o L
SIS \>0°‘<\ ‘0‘\\)?% o?p&o
AEGIS 00000 CO ONON N XN NON) e -
TPM ceeCe-°© cCee--06@ OO0 -
TXT 000000 ceeOCeOe O O xs6_64
TrustZone [JONOX NONOXC) O0CeeOe O O ARMm
Bastion [JON N N NON J ONoNON N N N J O @ UitraSPARC
SMART CeO0OeO- 0O 0eO00O--0@ O @ AVR/MSP430
Sancus 1.0 [X NON NON N© [JON NONONON) @ @ wMsP430
Soteria 000000 O [ZON NONONON) @ @ wnsPa30
Sancus 2.0 000000 O [XON N NONON) @ @ wnsPa30
SecureBlue++ @ O 0 @ ® O @ cCOCeeeOe O O POWER
SGX 00000 CO oxoNoN N N N) O O xs6_64

Iso-X [X JON NONON J cxonoN N N N) O @ openRISC
TrustLite [X _NONONON NGO 0000000 O @ siskiyou Peak
TyTAN 0000 0O 0000000 O @ siskiyou Peak
Sanctum 0000000 oNoNON N N N J @ @ Risc-v
@- Yes; - Partial; O-= No; — = Not Applicable
Jan Tobias Miihlberg Developing and testing secure software

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC*17]

DistriN=t

Trusted Computing

According to the Trusted Computing Group

Protect computing infrastructure at end points;

Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

+ Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

+ Memory curtaining: provide isolation of sensitive areas of memory

- Sealed storage: Bind data to specific device or software

* Remote attestation: authenticate hardware and software configuration to a
remote host

* Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure 1/O capabilities

Source: https://en.wikipedia.org/wiki/Trusted_Computing

24 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to the Trusted Computing Group

Protect computing infrastructure at end points;

Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

+ Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

+ Memory curtaining: provide isolation of sensitive areas of memory

- Sealed storage: Bind data to specific device or software

* Remote attestation: authenticate hardware and software configuration to a
remote host

* Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure 1/O capabilities

Source: https://en.wikipedia.org/wiki/Trusted_Computing

24 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to the Trusted Computing Group

Protect computing infrastructure at end points;

Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

+ Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

+ Memory curtaining: provide isolation of sensitive areas of memory

- Sealed storage: Bind data to specific device or software

* Remote attestation: authenticate hardware and software configuration to a
remote host

* Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure 1/O capabilities

Source: https://en.wikipedia.org/wiki/Trusted_Computing

24 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to the Trusted Computing Group

Protect computing infrastructure at end points;

Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

+ Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

+ Memory curtaining: provide isolation of sensitive areas of memory

- Sealed storage: Bind data to specific device or software

* Remote attestation: authenticate hardware and software configuration to a
remote host

* Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure 1/O capabilities

Source: https://en.wikipedia.org/wiki/Trusted_Computing

24 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to the Trusted Compu| Possible Applications
Protect computing infrastructure at | pigital rights management cai)
Hardware eXTenSIOI’]S to enforce Sp Trusted Computing would allow companies to create a digital rights management

though notimpossible. An example is downloading a music file. Sealed storage cc

Capab|l|t|es’ prOTeCtlng aga|nst unau with an unauthorized player or computer. Remote attestation could be used to au

record company’s rules. The music would be played from curtained memory, whic
copy of the file while itis playing, and secure I/O would prevent capturing what is

° Endorsement Key: EK Certlfl system would require either manipulation of the computer's hardware, capturing
that never IeaVeS the hardware recording device or a microphene, or breaking the security of the system.

New business models for use of software (services) over Internet may be boosted

. ini - i i one could base a business model on renting programs for a specific time periods
emory curtaining: proviae |

download a music file which could only be played a certain number of times befo

° Sealed storage: B| nd data to only within a certain time period.
. . . Preventing cheating in online games |edit)
RemOte atteStatlon " aUthentI Trusted Computing could be used to combat cheating in online games. Some play

remote hOSt advantages in the game; remote attestation, secure I/0 and memory curtaining c«
a server were running an unmodified copy of the software.I1#]

 Trusted third party as an inte

Verification of remote computation for grid computing (e

Trusted Computing could be used to guarantee participants in a grid computing sy

In praCtlce: dlfferent arChIteCtu res’ they claim to be instead of forging them. This would allow large scale simulations
as “enclaved” eXGCUtIOn, memory e redundant computations to guarantee malicious hosts are net undermining the re

Source: https://en.wikipedia.org/wiki/Trusted_Computing

v
24 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to Richard Stallman

Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents...
+ Buggy software: think of OpenSSLs Heartbleed in an enclave
+ Side channels: timing, caching, speculative execution, etc.
* Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
* Malicious intent: Backdoors, ransomware, etc.

Source: https://www.gnu.org/philosophy/can-you-trust.html

25 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

https://www.gnu.org/philosophy/can-you-trust.html

Trusted Co_mputlng (and why Sancus:?) @ o 2 —
Good design practice for trusted computing? '
Good use cases for trusted computing? Truth bomb * % @ #JSConfAU16

* non-invasive, understandable,
measurably secure

« stuff that matters: critical applications, We're
critical infrastructure, embedded

haven't : -but
. ven we
Don’t restrict the user but enable them, Sure peop|e-sﬁg"’ed out how to make

convince them to trust.

Build to validate, invite to scrutinise:
hardware and software.

Build upon well-understood OSS building
blocks: hardware, crypto, compilers, OS, libs
Divide and conquer: memory curtaining
and isolation make validation easier

Source: https://twitter.com/MelissaKaulfuss/status/8042099915109376002s=09

v
26 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N =t

https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

Isolation and Attestation on Light-Weight MCUs

LT TE TP
MCU

Many microcontrollers feature little
security functionality

v
27 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

27 /54

Jan Tobias Miihlberg

MCU

R

A'pplicétions

LT TEEEETEEEECEEEEETEEEE T TP TP

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

27 /54

Jan Tobias Miihlberg

MCU

R

A'pplicétions

LT TEEEETEEEECEEEEETEEEE T TP TP

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

+ Applications share address space

27 /54

Jan Tobias Miihlberg

MCU

plications

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

27 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little
security functionality

+ Applications share address space
+ Boundaries between applications

MCU

+ Integrity? Confidentiality?

27 /54

are not enforced

Authenticity?

Jan Tobias Miihlberg

|||||N|||

plications

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

+ Applications share address space
+ Boundaries between applications

+ Integrity? Confidentiality?

Trusted Computing aims to fix that:
+ Strong isolation, restrictive

27 /54

are not enforced

Authenticity?

interfaces, exclusive 1/0

Jan Tobias Miihlberg

MCU

Text
Data
PC

1/0

Applications

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs

LT TE P EE PP
MCU I/0

Crypto Unit

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?

Applications

Trusted Computing aims to fix that:

+ Strong isolation, restrictive
interfaces, exclusive 1/0

27 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?
Trusted Computing aims to fix that:

+ Strong isolation, restrictive
interfaces, exclusive 1/0

* Built-in cryptography and (remote)
attestation

27 /54 Jan Tobias Miihlberg

MCU

Crypto Unit

|||||h\||

1/0

Applications

Developing and testing secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?
Trusted Computing aims to fix that:

+ Strong isolation, restrictive
interfaces, exclusive 1/0

* Built-in cryptography and (remote)
attestation

27 /54 Jan Tobias Miihlberg

(<|||IINI||

LT

MCU
Curtaining
Crypto Unit

Engrypt/
Dectypt/
Auth

Text
Data
PC

Text
Data
PC

1/0

4

Developing and testing secure software

DistriN=t

Sancus: Strong and Light-Weight Embedded Security [NVBM*17]
Extends openMSP430 with

strong security primitives Sancus CPU core -
+ Software Component \ ARG ‘ P BN o
Isolation ﬁ H] rom
+ Cryptography & Attestation {; y || ¥ o
- Secure 1/0 through isolation -Rtm sl sE| | 3 Lo -
of MMIO ranges RIS o = &
- wlle] |2
Efficient § >
 Modular, < 2 kLUTs =
+ Authentication in us 57
* + 6% power consumption S
Cryptographic key hierarchy —

for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

28 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

https://distrinet.cs.kuleuven.be/software/sancus/

Sancus: Strong and Light-Weight Embedded Security [NVBM*17]
Extends openMSP430 with

strong securlty prlmltives N = NOde, SP = Software Provider / Dep|0yel’
- Software Component SM = protected Software Module
Isolation .
o Cryptography & Attestation SM text section SM protected data section
+ Secure I/O through isolation z =
Of MMI O ranges é Unprotected g Code & constants | Unprotected | Protected data | Unprotected
Efficient
* Modular, < 2 kLUTs Prmected‘ I TR v metadata
* Authentication in us storage
* + 6% power consumption e |

Layout Keys

Cryptographic key hierarchy

for software attestation

Isolated components are typically very small (< 1kLOC)

Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

29 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://distrinet.cs.kuleuven.be/software/sancus/

Attestation and Communication with Sancus
Ability to use Ky sp sy proves the integrity and isolation
of SM deployed by SPon N

* Only N and SP can compute Ky sp sy
N knows Ky and SP knows Kgp

* Kn.sp sy on N is computed after enabling isolation E\']
No isolation, no key; no integrity, wrong key —

* Only SM on N is allowed to use Ky sp sy
Through special instructions Sp @@

Remote attestation and secure communication by

Authenticated Encryption with Associated Data —
SM, SM,

+ Confidentiality, integrity and authenticity
* Encrypt and decrypt instructions use Ky sp sy of the calling SM
+ Associated Data can be used for nonces to get freshness

30 /54 Jan Tobias Miihlberg Developing and testing secure software

SP,

DistriN=t

Comparing Hardware-Based Trusted Computing Architectures

31/54

o 8 o
’b\\ é\\o‘\ \ © Q\\
<>"<\<\°“§@\?o‘a°\ P TR N o
OO S ® \~§ \\%\o\’ée" =S 6"\)6‘ R
o\” \'@ e’b\‘ % ° e ‘?\“ o L
SIS \>0°‘<\ ‘0‘\\)?% o?p&o
AEGIS 00000 CO ONON N XN NON) e -
TPM ceeCe-°© cCee--06@ OO0 -
TXT 000000 ceeOCeOe O O xs6_64
TrustZone [JONOX NONOXC) O0CeeOe O O ARMm
Bastion [JON N N NON J ONoNON N N N J O @ UitraSPARC
SMART CeO0OeO- 0O 0eO00O--0@ O @ AVR/MSP430
Sancus 1.0 [X NON NON N© [JON NONONON) @ @ wMsP430
Soteria 000000 O [ZON NONONON) @ @ wnsPa30
Sancus 2.0 000000 O [XON N NONON) @ @ wnsPa30
SecureBlue++ @ O 0 @ ® O @ cCOCeeeOe O O POWER
SGX 00000 CO oxoNoN N N N) O O xs6_64

Iso-X [X JON NONON J cxonoN N N N) O @ openRISC
TrustLite [X _NONONON NGO 0000000 O @ siskiyou Peak
TyTAN 0000 0O 0000000 O @ siskiyou Peak
Sanctum 0000000 oNoNON N N N J @ @ Risc-v
@- Yes; - Partial; O-= No; — = Not Applicable
Jan Tobias Miihlberg Developing and testing secure software

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC*17]

DistriN=t

Secure Automotive Computing with Sancus [VBMP17]

(CDMA/3G/4G/LTE)

Modern cars can be hacked! /

Bluetooth

* Network of more than 50 ECUs

* Multiple communication networks
+ Remote entry points ’
+ Limited built-in Security mechanisms wier & vatasek, Remote:xpkl(zlltatlown of an unaltered passenger vehicle”, 2

TPMS

Electronic Control
Units

Sancus brings strong security for
embedded control systems:

+ Message authentication

« Trusted Computing: software component
isolation and cryptography

+ Strong software security
* Applicable in automotive, ICS, IoT, ...

Controller Area
Network (CAN)

v
32 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Secure Automotive Computing with Sancus [VBMP17]

Con

VUICAN: Generic design to exploit light-weight TC in CAN-based control
networks; https://distrinet.cs.kuleuven.be/software/vulcan/
Implementation: based on Sancus [NVBM™17]; we implement, strengthen and
evaluate authentication protocols, vatiCAN [NR16] and LeiA [RG16]

v
33 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

https://distrinet.cs.kuleuven.be/software/vulcan/

Attacking the CAN

Anti-lock i
Braking System!

(1) CAN Nodes

|05, Networking, |
TAN] [Protocols, etc. i

Controller i AN] |unspecified
- aop Module AL conotier | ISoptware

|

e
Sensor Driver | L. i 1
App Module

¥ L} R
AN 0S.
Transceiver [Protocols, etc.

(2) Controller Area
Network (CAN)

{Rotation
iSenst

H HRE
Actuator Driver| Sensor Driver

App Module App Module ||

¥ x0s. Networking,
e | Transcciver [Protocols, etc.
—

[Protocols, etc.

Complex bus system with many ECUs and gateways to other communication
systems; no protection against message injection or replay attacks.
— Message Authentication; specified in AUTOSAR, proposals: vatiCAN, LeiA;
no efficient and cost-effective implementations yet }
34 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Attacking CAN Message Authentication

fAntiiock |
Braking System
(1) CAN Nodes i

|05, Networking, |
TAN] [Protocols, etc. i

Controller i AN] |unspecified
- aop Module AL conotier | ISoptware

|

Abused Driver
vvvvvvv Il\z App|Module

0s, i
Protocols, etc.

(2) Controller Area
Network (CAN)

{Rotation
iSenst

RS
Sensor Driver

Actuator Driver|

. |[App Module App Module ||

¥ x0s. Networking,
] Transcciver [Protocols, etc.
—

[Protocols, etc.

What about Software Security?

Lack of security mechanisms on light-weight ECUs leverages software

vulnerabilities: attackers may be able to bypass encryption and authentication.
— Software Component Authentication & Isolation

v
35 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Vulcanising Distributed Automotive Applications

Electronic Control {anti-lock Rogue
Units Braking System Control Unit
.................... Microcontroller Microcontroller
ISBrake Pedal
ensor 5
CAN CAN ‘l
Microcontrolier | { \\ ol Controller
Sensor Driver App Module o
CAN H anscei
Conrolier |INGRRIMIGEHIENE 7 | — | |
[
Brake iRotation
Hydraulics iSensor
Microcontrolle i {
et rver
N TAN
Qo Conly App Module EpliodilE
CAN CAN H C
[1 [[

+ Critical application components in enclaves: software isolation + attestation

v
36 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Vulcanising Distributed Automotive Applications

Electronic Control
Units

Rogue
Control Unit

Microcontroller

0S, Networking,|
A Protocols, etc. CAN
ol Controller
App Module
A A

A

Sensor Driver
‘App Module

0S,
or |Protocols, etc.

Controller Area
Network (CAN)

Brake Brake i] \ iRotation Brake
Hydraulics Hydraulics Ip u_iSensor Hydraulics
Microcontrolier Microcontrolier | { ~ — { [Microcontrotier Microcontroller
Actuator Driver|, / .| Sensor Driver
5 M [App Module L App Module CAN 5

ontroller

[
¥ L}

0S, i TAN
[Protocols, etc. | Transceiver

[[

= 10S, Networking,
an ulcr Protocols, etc.

+ Critical application components in enclaves: software isolation + attestation
+ Authenticated CAN messages over untrusted system software/network

DistriN=t

36 /54 Jan Tobias Miihlberg Developing and testing secure software

Vulcanising Distributed Automotive Applications

Electronic Control {anti-iock i
Units Braking System;

Brake Pedal | 0S, Networking,

ensor \“ TAN |Protocols, etc.
ferocontrotier] Controller

App Module

S, Networking, | A | |
tocols, etc. \ |

Controller Area
Network (CAN)

\ iRotation Brake

\ y/_gSensor Hydraulics
\, i . Microcontrofler
N Sensor Driver

App Module

|

Brake Brake i |
Hydraulics Hydraulics i_/ |

Microconiroller Microconroer] |
Actuator Driver],
TAN 7 _L: =
Controller anoller || APP Module /7
nsceiver

|0S, Networking,
ansceiver_[Protocols, etc.

0S, i
Protocols, etc.

+ Critical application components in enclaves: software isolation + attestation

+ Authenticated CAN messages over untrusted system software/network

* Rogue ECUs, software attackers and errors in untrusted code cannot interfere
with security, but may harm availability

v
36 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Vulcanising Distributed Automotive Applications

36 /54

Electronic Control
Units

—— |
Brake Pedal |
Sensor

CAN | |Protocols, etc.
Controller

0S, Networking,|

App Module

Brake
Hydraulics

Brake
Hydraulics

—rif

Microcontroller Microcontromler | | -

Actuator Driver],

uw—l v :L>
Controller ontroller || APP Module:

|0S, Networking,
ansceiver_[Protocols, etc.

Ne

Controller Area

iRotation
N ‘/_gSensor

twork (CAN)

Sensor Driver

App Module

0s, i
Protocols, etc.

Brake
Hydraulics

Microcontroller

Critical application components in enclaves: software isolation + attestation
Authenticated CAN messages over untrusted system software/network
Rogue ECUs, software attackers and errors in untrusted code cannot interfere
with security, but may harm availability
Infrastructure support: isolation, attestation, fast crypto — Sancus

Jan Tobias Miihlberg

Developing and testing secure software

DistriN=t

Authentic Execution of Distributed Event-Driven Applications

“Authentic Execution of Distributed Event-Driven Applications with a Small TCB”,
Noorman et al., STM 2017. [NMP17]

v
37 /54 Jan Tobias Miihlberg Developing and testing secure software D | Strl N =t

Trusted Execution for Everyone

Fortanix solves cloud security and privacy using runtime encryption technology
build upon Intel SGX. https://fortanix.com/

SCONE enables secure execution of containers and programs using Intel SGX.
https://sconecontainers.github.io/

Graphene-SGX: A practical library OS for unmodified applications on SGX.
https://github.com/oscarlab/graphene

Open Enclave is an SDK for building enclave applications in C and C++.
https://github.com/Microsoft/openenclave

Our Tutorial: Building distributed enclave applications with Sancus and SGX
https://github.com/sancus—-pma/tutorial-dsnl$8

https://fortanix.com/
https://sconecontainers.github.io/
https://github.com/oscarlab/graphene
https://github.com/Microsoft/openenclave
https://github.com/sancus-pma/tutorial-dsn18

Tutorial Overview — Learning Outcomes

Programming Enclaves 0s, Libraries, etc. . Buttons
. o | CAN Driver Dri
+ Remote attestation IR . AVEr jumio
+ ECALLs and OCALLs S oy
« Untrusted pointers SGX < Attestation > Sancus
« Secure random numbers BNV S mmamcaton T Encave
* Local attestation \
+ Secure 1/0 . LED
CAN Driver .
. . Driveriyuo
Tricky bits

+ Sanitising untrusted pointers

* Information leakage and side channels

» Freshness and non-repudiation: nonces and session keys
+ Attesting SGX enclaves — what is the root of trust?

Concepts
+ Authentic Execution: end-to-end security for distributed applications on

heterogeneous Protected Module Architecture §
DistriN=t

39 /54 Jan Tobias Miihlberg Developing and testing secure software

Tutorial Overview — Learning Outcome

Programming Enclaves
* Remote attestation
+ ECALLs and OCALLs
* Untrusted pointers
+ Secure random numbers
 Local attestation
+ Secure 1/0

Tricky bits
+ Sanitising untrusted pointers T g e
« Information leakage and side channels ol ol
» Freshness and non-repudiation: nonces and session keys
+ Attesting SGX enclaves — what is the root of trust?

Concepts
+ Authentic Execution: end-to-end security for distributed applications on

heterogeneous Protected Module Architecture .
40 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

When not to trust your TEE. ..

Trusted Execution does not help you against bugs in your own (trusted)
code.

Trusted Execution does not help you if you don’t know what to protect.

(Trusted) Execution can be observed through indirect channels and may
leak secrets through these channels.

41 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

Motivation: Application Attack Surface

App App
oS

1 o

-

Hardware

Hardware
I

Attack Surface :-

Attack Surface Without Enclaves Attack Surface With Enclaves

iApp! !

https://software.intel.com/en-us/articles/intel-software-guard-extensions—tutorial-part-1-foundation

42 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Motivation: Application Attack Surface

Attack Surface Without Enclaves Attack Surface With Enclaves

App App App

l'ostl

[

Hardware

-y

Hardware
I

Attack Surface :-

- -

https://software.intel.com/en-us/articles/intel-software-guard-extensions—tutorial-part-1-foundation

Layered architecture «» hardware-only TCB .
42 /54 Jan Tobias Miihlberg Developing and testing secure software D | Strl N =t

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Motivation: Application Attack Surface

Attack Surface Without Enclaves

Hardware

Attack Surface :

- -

Attack Surface With Enclaves

App App

!

>
o
T
(o

(015

Hardware

https://software.intel.com/en-us/articles/intel-software-guard-extensions—tutorial-part-1-foundation

Untrusted OS — new class of powerful side-channels

42 /54

Jan Tobias Miihlberg

Developing and testing secure software

DistriN=t

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation

Side-Channel Attack PrlnC|pIe

il ‘!aaia\m*"h |

v
Jan Tobias Miihlberg . Developing and testing secure software DIStrI N =t

https://commons.wikimedia.org/wiki/File:WinonaSavingsBankVault.JPG

Side-Channel Attack Principle

Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://flic.kr/p/69sHDa

Fetch-Decode-Execute CPU Operation

Fetc_hj Decode Execute
yes ‘

PC = IVT]irq] Secure IRQ /ogic}

44 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Fetch-Decode-Execute CPU Operation

Note: IRQ only served after current instruction has completed

Fetc_hj Decode Execute
yes ‘

PC = IVT]irq] Secure IRQ /ogic}

44 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Wait a Cycle ...

= IRQ latency leaks instruction execution time (!)

Variable instruction latency

Fetch Decode Execute
{ =))
yes ‘

PC = IVT]irq] <—[Secure IRQ logic]

44 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

Interrupt Latency as a Side-Channel
(o N O O S I A I

INS 2 X INST; X IRQ logic X ISR

RQ | \
TSC x X sl X 42 X x+2+1 X X x4y +2 X x+y+3 X X:

2 execute cycles hardware latency ATSC

INS Jz X INST, X IRQ logic X ISR

rRQ __| \
TSC x X x+1 X X+2 X X+3 X x+3+1 X X x+y+3 X xt+y+4 ><:

3 execute cycles hardware latency

45 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N _t

Intel SGX Helicopter View

@ Application

/_ Untrusted Part
of App

.

Create Enclave /
-
CallTru stedt}

Cont. o

Call Gate

Trusted Part)
of App

Process
Secrets

Return o

-

Privileged System Code
0S, VMM, BIOS, SMM, ...

/

ht+tng://anfruware intel ~am/an—pe/env/Aetaile

46 /54

Jan Tobias Miihlberg

+ Protected enclave in application’s virtual
address space

+ x86 CPU: 3 pipeline, cache, out-of-order

execution, ...
+ Secure interrupt hardware mechanism:
AEX/ERESUME
Developing and testing secure software DiStl‘I N :t

https://software.intel.com/en-us/sgx/details

Interrupting and Resuming Enclaves

Goal: single-step through SGX enclave: interrupt each instruction sequentially
and record corresponding /RQ latency trace

47 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N :t

Interrupting and Resuming Enclaves

@

retrieve
ERESUME_
DELTA

(.

wrmsr TSC_DEADLINE

popq %rW
iret iret

Jan Tobias Miihlberg

47 /54

LKM

entry_64.S

apic_timer_interrupt:
pushq %rax.

(® rdtscp
([

iret

-)

syscall entry:

TINYIN

@ callback

i\

L%rdx

®) iret

® syscall

‘\

enclave

d3asn

while true do
IR
INST @ Q

PP~
(2 AEX — INST
INST
INST
endwh

— aep_trampoline.S

(.o0)

—— syscall
| > mov $3, %rax
lea aep_trampoline, %rcx
ERESUME

(9 ERESUME

Developin

g and testing secure software

DistriN=t

Macrobenchmark: Modular Exponentiation

function SQUARE_AND_MULTIPLY(c,d,e,n)
r < rand()
c« cxréemodn
m<+1
for most to least significant bit b in d do
m <« m?mod n
if b then
m<+ mxcmodn
end if
end for
return m« r~' mod n
end function

48 /54 Jan Tobias Miihlberg Developing and testing secure software

DistriN=t

Extracted IRQ Latency Trace

14500

14000

13500

IRQ Latency (TSC cycles)

Time (instruction number)

+ “X-ray” extracted from a single dummy RSA decryption

v
49 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Extracted IRQ Latency Trace

RDRAND

IRQ Latency (TSC cycles)

Time (instruction number)

+ “X-ray” extracted from a single dummy RSA decryption
+ Distinct instructions for stack canary + blinding: RDRAND

DistriN=t

49 /54 Jan Tobias Miihlberg Developing and testing secure software

Extracted IRQ Latency Trace

14500

Init thread Apply blinding Square and multiply Unblind result

14000

a
z
<
o«
a
«

13500

IRQ Latency (TSC cycles)

Time (instruction number)

+ “X-ray” extracted from a single dummy RSA decryption
+ Distinct instructions for stack canary + blinding: RDRAND
+ Sharply defined algorithm phases

v
49 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Extracted IRQ Latency Trace

Init thread Apply blinding Square and multiply Unblind result

RDRAND

+ “X-ray” extracted from a single dummy RSA decryption
+ Distinct instructions for stack canary + blinding: RDRAND

+ Sharply defined algorithm phases
* Full 16-bit key recovery

1

I

1

I

IRQ Latency (TSC cycles)

Time (instruction number)

|

DistriN=t

49 /54 Jan Tobias Miihlberg Developing and testing secure software

Extracted IRQ Latency Trace

Zero threshold

=

0] 1 |o‘ 1 [o]o o] 1 0/0]1 ‘0|oo 1

Flush page table entry for global variable accessed every loop iteration

v
49 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

Side Channels: Be Aware!

Nemesis [VBPS18] is the first remote side-channel for embedded + high-end
trusted computing hardware

IRQ latency trace reveals micro-architectural behavior:

« Lots of noise/non-determinism on modern CPUs

+ Abuse subtle timing differences with machine learning?
Defense techniques:

+ Eliminate secret-dependent control flow «+» practice
+ Sancus secure hardware patch to mask IRQ latency

50 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

Summary

[Tuesday: Fuzzing, Testing & Formal Verification] g
© There are automated techniques to find - “"’Eﬂ’“mwmm
vulnerabilities and to generate exploits ;T\ ‘{D x%

@ ...orto build really secure software
© Correct code still needs protection against
layer-below attacks!

H\HHHHHHH\HHHHH\H (TN A
MCl)

Trusted Execution Technology
© Strong application isolation and attestation
@ No protection against buggy software!
© Potential for invasive use

Sancus
© The Open-Source Trusted Computing Architecture
@ Built upon openMSP430 16-bit MCU, applications
in loT and embedded control systems
© Research prototype under active development!

51 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

Thank you!

“The risks are about to get worse, because computers are
being embedded into physical devices and will affect
lives, not just our data.”

— Bruce Schneier, [Sch18]

Thank you! Questions?

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18

52 /54 Jan Tobias Miihlberg Developing and testing secure software DIStI‘I N :t

https://distrinet.cs.kuleuven.be/
https://github.com/sancus-pma/tutorial-dsn18

References |

@ P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, and |. Verbauwhede.

Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, PP(99):1-1, 2017.

@ C. Miller and C. Valasek.

Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015.

J. Noorman, J. T. Miihlberg, and F. Piessens.

Authentic execution of distributed event-driven applications with a small TCB.
In STM ’17, vol. 10547 of LNCS, pp. 5571, Heidelberg, 2017. Springer.

S. Nurnberger and C. Rossow.

— vatiCAN — Vetted, Authenticated CAN Bus, pp. 106—124.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

J. Noorman, J. Van Bulck, J. T. Miihlberg, F. Piessens, P. Maene, B. Preneel, |. Verbauwhede, J. Gétzfried, T. Miiller, and F. Freiling.

Sancus 2.0: A low-cost security architecture for loT devices.
ACM Transactions on Privacy and Security (TOPS), 20:7:1-7:33, 2017.

A.-l. Radu and F. D. Garcia.

LeiA: A Lightweight Authentication Protocol for CAN, pp. 283-300.
Springer International Publishing, Cham, 2016.

B. Schneier.

Internet hacking is about to get much worse.
The New York Times, 10 2018.

) & & @

v
53 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

References Il

@ J. Van Bulck, J. T. Mihlberg, and F. Piessens.

VuICAN: Efficient component authentication and software isolation for automotive control networks.
In ACSAC '17, pp. 225-237. ACM, 2017.

@ J. Van Bulck, F. Piessens, and R. Strackx.

Nemesis: Studying microarchitectural timing leaks in rudimentary cpu interrupt logic.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 178—-195. ACM, 2018.

v
54 /54 Jan Tobias Miihlberg Developing and testing secure software DIStrI N:t

