www.pwc.com

Secure Development
Lifecycles:
Motivation & Overview

SecAppDev 2019

Bart De Win

pwc

{
Bart De Win ?

-

]
| -
L 4 *
i
b o

+20 years of Information Security Experience -
*Ph.D. in Computer Science - Application Security M
«Author of >60 scientific publications

*ISC2 CSSLP & CISSP certified
*Director @ Cyber&Privacy PwC Belgium:
*Leading the Threat & Vuln. Mngt. team
*(Web) Application tester (arch. review, code review, dynamic review, ...)

*Proficiency in Secure Software Development Lifecycle (SDLC) and Software
Quality (ISO25010)

« OWASP SAMM co-leader

+ Contact me at bart.de.win@pwc.com

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
2

SecAppDev 2019

19/02/2019

19/02/2019

R

Agenda

1. Setting the Scene
. Process Models
. Modern Development
. Maturity Models
. Good Practices
. Conclusion

[(d
What’s in a name ...

“Secure Development”

Secure Development Lifecycles: Motivation and Overview *SecAppDev 2019
-4

SecAppDev 2019 2

19/02/2019

| Application Security Problem

Ts 1T okaY To DO) | —
SPEED IS THINGS LJRONG TF H NOW T'™ ALL
THE KEY TO WE'RE REALLY, CONFUSED,
SUCCESS. THANK YOU

REALLY FAST?

VERY MUCH.

www.dilbert.com scattadames acl.com

[Bl
Copyright 9 2600 United Feature Sundicate, Inc.
Redistribution in whale or in part prohibited

Multi-channel Technology stacks daptability

Software complexity Outsourcing
Apr's Integration Faster
Cloud Usability

Open Source

Speed of

Delivery

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
5

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
6

SecAppDev 2019 3

19/02/2019

| Application Security during Software Development

Design

4

’/

—~

e=Bugs esFlaws «=Cost

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
7

[I
The “classic” approach to secure software

Maintain

Penetrate &
Patch

Pentest

Problematic, since:
+ Focus on bugs, not flaws
+ Penetration can cause major harm
» Not cost efficient
» No security assurance
- All bugs found ?
- Bug fix fixes all occurences ? (also future ?)

- Bug fix might introduce new security vulnerabilities

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
8

SecAppDev 2019 4

' Secure Development Lifecycle ?

Maintain

Enterprise-wide software security program

« Strategic approach to assure software quality S b °

+ Goal is to increase systematicity and avoid surprises 'Iﬁ
* Goal is NOT to have fully secure applications L

+ Focus on security functionality and security hygiene ﬁ

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019

| SDLC Cornerstones

People + Roles & Responsibilities

« Activities
Process « Deliverables
« Control Gates

Training

« Standards & Guidelines

G Y FSl - Compliance
« Transfer methods

« Development support

Technology » Assessment tools
» Management tools

SecAppDev 2019

19/02/2019

| (Some) SDLC-related initiatives

*TouchPoints
«Microsoft SDL ™
National Institute of SEM 9 5& ‘
Standards and Technology| ":‘.‘." iy AT PR “4 ‘vl
*SP800-64 SN C I I
1 SAFECode 5o

1
@@ Driving Security and Integrity

Gartner.

1
1
1

+CLASP

*TSP-Secure

<GASSP
Secure Development Lifecycles: Motivation and e

%% Software Engineering Institute ’ CarnegieMellon

*-BSIMM

Software Assurance

*SAMM

g ISO/IEC 27034

Agenda

1. Setting the Scene
2. Process Models
3. Modern Development

4. Maturity Models
5. Good Practices

6. Conclusion

SecAppDev 2019

19/02/2019

http://www.gartner.com/silentlocalechooser.jsp?locale=wcw

' Textbook Example: Microsoft SDL (SD3+C)

Requirements
Establish Security
Requirements

CoreSecurity
Training

Create Quality

Gates / Bua Bar- Surfara

Se wit wPri ty 1, at
Rit (As ‘t‘ Modetn-

Secure Development Lifecycles: Motivation and Overview

Establish Design
Requirements

Analyze A%~

Verification
Use Approved Dynamic
Tools -

)
g epre- U e ‘ \ Z
» B im 185ty

’ = Attack Surface
Analysis Review

Release
Seuent
i RETN

o SeCIFF-
Keview

Release
Archive

\

SecAppDev 2019
13

Training

Training
Requirements
Design .
Implementation

Verification

Release

Response

NoorwNE

Secure Development Lifecycles: Motivation and Overview

Secure design
Threat modeling
Secure coding
Security testing

Privacy

SecAppDev 2019
14

SecAppDev 2019

19/02/2019

Requirements

Training
Requirements
Design When you consider security and

Implementation
Verification
Release
Response

privacy at a foundational level

NogoswNE

Cost analysis

© What'sthe) ~

R :
Determine if development and -~ s% N we_/
support costs for i 1mprov1ng *“‘ > F 3%
security and privacy are
consistent with business
needs

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
15

Design
|

ol e 3 —
)
\

Establish and follow best
practices for Design

A = = f
- g Sk
il PV B
L e [\e” # secure-coding g p;‘ —
. Training %2 T
2. Requirements %ﬁ best practlces = oz
3. Design | ﬁ(,[
4. Implementation \ @ T r 290 .
5. Verification
6. Release Risk analysis
7. Response
i
I I
! — i .
| 3 Threat modeling
I I
- I |
. [& ERE . STRIDE
I I T T T 1
I I
B onesomeaucoce e e e e o s s I
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
16

SecAppDev 2019

19/02/2019

Implementation

Creating documentation and tools for
users that address security and privacy

s

Training
Requirements
Design
Implementation
Verification
Release
Response

[

W

Establish and follow best practices for
development

Nogarwbr

1. Review available information resources
2. Review recommended development tools

3. Define, communicate and document all best
practices and policies

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
17

Verification
|

Training
Requirements
Design
Implementation

Verification 1. Confidentiality, integrity and availability of the

Release
Response

NoosrwNE

software and data processed by the software

2. Freedom from issues that could result in
security vulnerabilities

Security push

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
18

SecAppDev 2019

19/02/2019

19/02/2019

Release
[
o 1. Privacy | .—\7‘}‘
1. Training . — ’”i " _g& i
2. Requirements 2. Security . St
3. Design - oy g
4. Implementation ——— T~ P
5. Verification = Tame
6. Release
7. Response
CELLULAR
PHONE
Preparation for
incident response
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
1
Release
[
1. Training
2. Requirements \
3. Design \
4. Implementation
5. Verification Outcomes:
6. Release
7. Response - Passed FSR
- Passed FSR with exceptions
- FSR escalation
Sign-off process to ensure security, privacy and other policy compliance
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
20

SecAppDev 2019 10

NogoswNE

Response
{

e

!)

Training
Requirements
Design
Implementation
Verification
Release
Response

=> able to respond appropriately to reports of vulnerabilities
in their software products, and to attempted exploitation of
those vulnerabilities.

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
21

|
Microsoft SDL Practices (Anno 2019)

=

Provide Training

2. Define Security Requirements

3. Define Metrics and Compliance Reporting

4. Perform Threat Modeling

5. Establish Design Requirements

6. Define and Use Cryptographic Standards

7. Manage the Security Risk of Using Third-Party Components
8. Use Approved Tools

9. Perform Static Analysis Security Testing (SAST)

10. Perform Dynamic Analysis Security Testing (DAST)

11. Perform Penetration Testing

12. Establish a Standard Incident Response Process

Source: www.microsoft.com

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
22

SecAppDev 2019

19/02/2019

11

| Microsoft SDL Example - Using Open Source

4 mus: take 12 properly manage i fisk.

Inventory Open Source Perform Security Analysis
1 apen source ified compenens ar

Secure Development Lifecycles: Motivation and Overview

ich open source campanent are in use compenents are free of securiny

7= E/_
= = —

Align Security Response process

Keep Open Source Up to Date
Xsep open source st aligns wich your oversl

companents up to dars.

Source: www.microsoft.com

SecAppDev 2019
24

[e
Final note on process models

Process models provide a good starting point into secure development

lifecycles

« Overview of different activities that are relevant
+ Indication of ordering and dependencies

Only few companies still work using a traditional, waterfall-only

paradigm

+ Process models will not suffice for modern development

environments

* Need to be complemented (or replaced) with other techniques to be

useful

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
25

SecAppDev 2019

19/02/2019

12

R

Agenda

1. Setting the Scene

2. Process Models

3. Modern Development
4. Maturity Models

5. Good Practices

6. Conclusion

{
Rationale and Fundamentals

* Many traditional, large-scale software development projects are
going wrong

» Combination of business and technical causes
+ Software is delivered late in the lifecycle

« Little flexibility during the process

Agile models focus on:
+ TFrequent interaction with stakeholders
+ Short cycles

=> to increase flexibility and reduce risk

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
27

SecAppDev 2019

19/02/2019

13

; > SCRUNMASTER

N

DOiey Sceurt
w/Team

AR FRRR

Review u[Tenxfo Treaa po.orn
SPRINT SpRIOT / — =] |—> Rewasrxnve
PEARREG gpe fiog 7!CMHCE&! PaTEmTIAL
TRoOK T = Dow!T Touwew TROCUET CoMPORENT
RackLog Scobe & TIME OR USAZLE DELIVERES
PueIn G SPRINT
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
28

|
Modern & Secure development: a mismatch ?

Agile Dev. Security
Speed & Flexibility Stable & Rigorous
Short cycles Extra activities

Limited documentation Extensive analysis

Functionality-driven Non-functional

?

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
29

SecAppDev 2019

19/02/2019

14

19/02/2019

' Modern Development

‘-\Q’b lI / S\ce_\n’\

»ou to mptement,

_AGILE ILE JM

J =
’uh\sK,S : qsTROSPE, @

Y e

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
30

Secure Modern Development
General principles

» Make security a natural part of the lifecycle, but don’t overdo
« lightweight, in-phase and iterative

» Preventive, detective and reactive controls

* Beinvolved at key moments in the lifecycle
* Automate security

» Work on established concepts & practices

» Continuous testing

* Small steps at a time (i.e. continuous improvement)

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
31

SecAppDev 2019 15

xskﬁ . i

‘ . . .
Security Tactics for Agile Development N L 75

AG.ILE XP

Deploy
User SPrint Modeling
Model Retrospective

Zero Sacuribys""

Incremenbal Dare Planning

Definition IGeration
Accepbtance Chal;!es buser

Criveria Spotify " Threab

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019

|
Secure Agile Manifesto

1. Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

2. Working valuable software is the primary measure of progress.

3. Security is a shared responsibility between everybody involved in the life cycle of the product.

4. Welcome changing (security) requirements, even late in development, taking into account
that enough security is enough.

5. Dare to deploy software. Not every release requires full assurance.

6. Provide security elements to use in development projects. These elements should be known,
readily available and continuously evolving.

7. Security should be automated and incorporated in the development practices.

8. Build projects around motivated individuals. Knowing how to build secure software is an
intrinsic motivator.

9. The most effective solution emerges from self-organizing teams able to call upon security
experts when needed.

10. Atregular intervals, the team reflects on how to become more effective, adjusting its
processes and technical solutions accordingly.

+Secure Development Lifecycles: Motivation and Overview *SecAppDev 2019

SecAppDev 2019

19/02/2019

16

19/02/2019

[

Security Tactics for CI/CD

)

cture

sajausagny £

Sa1I0}IS003. S auIe)UD
INd= a___v_.um__uu

Alien
%__Hm.rsm_%:

& 20Uel|dwoy JuawuoJiAu]
paadSAaua)sISung Ssajanag
LTI
S3531J0)1S0(a
- i
alinumo
uoljewioing

hels

ArtefactR

ler

SecAppDev 2019

Secure Development Lifecycles: Motivation and Overview

34

[

mation

suojeladg S
uonenfijuoy —

Pt

¢ ddaNd]Sedju]
g SEuoeayoy oM

: E2 sojgualufyy

P = Dupessgahy

.m Jaauifu]

3 Sy

5 stgoy

%

SecAppDev 2019

Secure Development Lifecycles: Motivation and Overview

35

17

SecAppDev 2019

.
Final note on modern development

Modern development changes the way security can be considered and
evaluated throughout the software lifecycle

» New types of security challenges need to be considered and catered
for

+ At the same time, a new risk model creates opportunities for more
“lightweight” security assurance

Development methods are changing very rapidly, and it is difficult to
keep up for security

+ Empowerment, shared responsibility and automation are
the key to a modern secure development approach

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
6

SecAppDev 2019

-

Agenda

1. Setting the Scene

2. Process Models

3. Modern Development
4. Maturity Models

5. Good Practices

6. Conclusion

19/02/2019

18

| Why Maturity Models for SDLC?

An organization’s behavior changes slowly over time.

+ Changes must be iterative while working toward long-term goals

There is no single recipe that works for all organizations

A solution must enable risk-based choices tailored to the
organization

Guidance related to security activities must be prescriptive

+ A solution must provide enough details for non-security-people

Overall, must be simple, well-defined, and measurable

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
38

To answer questions like

What should we be doing in our SDLC?

What are others doing in terms of software assurance?
What are good practices for software assurance?
Should we focus on threat modelling or code reviews?

How much time/effort/cost will this take?

Secure Development Lifecycles: Motivation and Overview *SecAppDev 2019
-39

SecAppDev 2019

19/02/2019

19

Textbook Example: OWASP SAMM

Software Assurance

Maturity Model

Scope: Entire software lifecycle, rather than just development.

https://owaspsamm.org/

Version 1.5, 2017

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
40

{
Core Structure

SAMM Overview

Software
Development
Construction | Verification

Business Functions

(0] Gevreance]

Security Practices

(%]

Strategy & Education & Security Design Security Environment
Metrics Guidance Requirements Review Testing Hardening
Policy & Threat Secure Implementation Issue Operational
Compliance Assessment. Architecture Review M Enabl
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
41

SecAppDev 2019

19/02/2019

20

19/02/2019

|
Notion of Maturity

Implicit starting point representing the activities in the practice being unfulfilled
Initial understanding and adhoc provision of security practice
Increase efficiency and/or effectiveness of the security practice

Comprehensive mastery of the security practice at scale

CN‘““?

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
42

|
An example

OBJECTIVE Opportunistically find basic Make implementation Mandate comprehensive
code-level vulnerabilities and review during development implementation review
other high-risk security issues. more accurate and efficient process to discover

through automation. language-level and

application-specific risks.

AcCTIVITIES A.Create review checklists from A.Utlize automated code A.Customize code analysis for
known security requirements analysis tools application-specific concerns
B. Perform point-review B. Integrate code analysis into B. Establish release gates
of high-risk code development process for code review
Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
43

SecAppDev 2019 21

SAMM also defines

Objective
Activities
Results

Success Metrics

Costs

Personnel

Related Levels

Security Testing

and software

Establish process to perform basic security tests based on

AcriviTies

A. Derive test cases from known security requirements

From the known security requirements for 2 project, identfy a se of test cases to check
the for correct functionality. Typicall, these test cases are derived from security
concerns surrounding the functional requirements and business logic of the system, but
should akso include generic tests for comman il based on the i i

ASSESSMENT

Do projects specity security testing.
based on defined securiy requirements!

Is penesration testing performed on
high risk projects prior to releste!

language or technology stack.

Often, it is most effective to use the project team's time to build application-specific test
cases and udize publicly avaible resources or purchased knowledge bases to select
applicable general test eases for security. Although not required, auomated security testing
tools can alse be utilized to cover the general security test cases.

This test case planning should occur during the requiremencs andior design phases, but
must ceur before final testing prior to release. Candidate test eases should be reviewed
for applicability, efficacy, and feasibility by relevant development, security, and quality

B. Conduct penetration testing on software releases

Using the set of security test cases identified for each project, penetration testing should
be conducted to evaluate the system's performarnce against each case. It is common for this
ta oecur during the testing phase prior to release

Penetration testing cases should include bath application-specific tests to check soundness
of business logic as well as common vulnerability tests to check the design and
implementation. Once specified, security test cases can be executed by security-savvy
quality assurance or development staff, but first-time execution of security test cases for 2
project team should be monitored by 2 security auditor to assist and coach team members.
Prior to relesse or deployment, stakeholders must review results of security tests and
accept the risks indicated by failing security tests ac release tme. In the kascer case, 3
concrete timeline should be established to address the gaps over time.

+ aware of the
security test scats prior to release!

Resutrs

+ Ingependent verification of expected
security mechanisms surrounding
eriteal business functions

+ Highdlevel due diigence
toward security testing

Ad hoe growth of a security test
suite for each software project

Success MeTrics

+ >50% of projects speciying security
test cases in the past 12 months

+ 250% of sukeholders briefed on
project statws againse securicy tests
in the pasc six months

Costs

+ Buldout or license of securty test cases

+ Ongoing project overbead from
mainterance and evaliation
of scuriey test cases

PERsONNEL
+ QATescers
* Security Auditor
+ Developers

RELATED LEVELS

Secure Development Lifecycles: M SecAppDev 2019
+ Security Requirements « | 24
Conducting assessments
Secure Architecture ScoRe 0.0 0.5 1.0
+ Are project teams provided with a list of No Per Team ORG WinE INTEGRATED
recommended third-party compenents? PROCESS
+ Are project teams aware of secure design principles No s [e
and do they apply them consistently?
+ Do you advertise shared security services e Bus AREA OrG WiDE OrG WIDE
with guidance for project teams? & REQUIRED
4+ Are project teams provided with prescriptive design No PRI T INTEGRATED
patterns based on their application architecture? Process
4 Do project teams build software from centrally- - - - Mosr

centrolled platforms and frameworks?

+ Are project teams audited for the use of
secure architecture components?

No ONce

EVERY 2-3 YRS ANNUALLY

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
45

SecAppDev 2019

19/02/2019

22

|
Assessments and Roadmaps

Current Maturity Score |

Strategy & Mefpaic

3.00
Operational Enablement
250 Strategy & metrics
3.00
Operational Enablement B
Environment Hardening
2.00

Issue Management

Enviranment Hardening /

__Policy & Compliance
™

", Education & Guidance

Security Testing

Implementation Review

Design Analy

Secure Development Lifecycles: Motivation and Overview

Phase 4
W Phase 3
Issue | Threat A Phase 2
W Phase 1
\ Start
Security Testing \ / Security Requirements
A~ Ve .
Review Secure Architecture
Design Analysis
SecAppDev 2019
46

|
Roadmap templates

» To make the “building blocks” usable, SAMM defines
Roadmaps templates for typical kinds of organizations

+ Independent Software Vendors
* Online Service Providers
» Financial Services Organizations
* Government Organizations
+ Organization types chosen because

+ They represent common use-cases

Phase |
Phase 2
Phase 3
Phase 4
Phase §

Strategy &
Metrics

Palicy &
Compliance

Education &
Guidance

Threat
Assessment

Securicy
Requirements

Secure
Architecture

Design
Review

Code
Review

. Se
+ Each organization has variations in typical software-inc feir;

* Optimal creation of an assurance program
is different for each

+Secure Development Lifecycles: Motivation and Overview

Vulnerabilicy
Management

Environment
Hardening

Cperational
Enablement

L

|

ki

SecAppDev 2019

19/02/2019

23

| SAMM Tools

‘ Language Spanish, Japanese,
s German
Assessments T o‘\(}l?ox ‘
‘ “ Roadmap, project plan
oo, SRR ‘

*Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
48

| Challenges in v1.5

» Waterfall-like setup

» Lacking activities/perspectives

+ Logical flow between activities

» Measuring quality of implementation (vs. coverage)

» Lack of a good dataset

These will be tackled in the upcoming v2.0 of the model (foreseen for

Summer 2019).

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
49

SecAppDev 2019

19/02/2019

24

| SAMM v2.0 (sneak preview)

« Strategy & « Threat « Secure Build
Metrics Assessment « Secure

« Policy & « Security Deployment
Compliance Requirements « Defect

» Education & » Security Management
Guidance Architecture

Secure Development Lifecycles: Motivation and Overview

« Architecture « Incident

Assessment Management
» Requirements « Environment
Driven Testing Management

« Security « Operational
Testing Management

SecAppDev 2019

50

|
Final note on maturity models

Maturity models (such as SAMM) provide an excellent framework for
reasoning on software assurance, on a strategic level:

+ Evaluate your as-is
* Define and improve towards your to-be
« Compare against peers

Popular approach for companies today that work on software assurance

Different flavours exist, choose one that fits your company’s context.

The models are easy to start with, but challenging to fully grasp. Don’t

let this scare you, and get started!

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
51

SecAppDev 2019

19/02/2019

25

Setting the Scene
Process Models
Modern Development
Maturity Models

. Good Practices

Conclusion

R

Agenda

Keep it small and simple
Secure by design

Least privilege

Defence in depth
Threat Modelling

It's everybody's responsibility
Clear roles & agreements
Good documentation is important,
also in Agile

Sign your applications

|
Good Practices for Secure Development

Define a company standard
Validate input & encode output
Default deny

Avoid hardcoded passwords
Obfuscate client-side code
Protect against automated
attacks

Standardized dev. environment
Central code repository

Central build system

Controlled promotion mechanism
Continuous integration

Screen & scan external libraries
Regularly update tools & libraries
Host third-party libraries locally

+Secure Development Lifecycles: Motivation and Overview

Automated quality scanning
Peer review

Automated static analysis
Automated dynamic testing
Intelligent fuzzing can help
Integrate with bug tracking
systems

Security awareness training
Appoint security champions
Establish a central knowledge
portal

Use Google wisely

Don't post internal code on Github
Reuse proven crypto

“SecAppDev 2019

53

SecAppDev 2019

19/02/2019

26

19/02/2019

R

Agenda

Setting the Scene
. Process Models
. Modern Development
. Maturity Models
. Good Practices
6. Conclusion

Summary and key take-aways

* Secure development is ...
* in the eye of the beholder
+ everybody’s responsibility

SDLC flavours exist for traditional and modern development methods

« Maturity models can help in reasoning about progress

+ All models need to be adapted and fine-tuned to your organisation’s
context and culture to become effective

+ This is the challenging part

+ It’s a continuous journey

Secure Development Lifecycles: Motivation and Overview SecAppDev 2019
55

SecAppDev 2019 27

‘ .
Questions ?

Secure Development Lifecycles: Motivation and Overview

SecAppDev 2019
56

SecAppDev 2019

19/02/2019

28

