Techniques for developing and integrating
secure software components
Jan Tobias Mihlberg

jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

QA&Test, Bilbao, October 2017

DistriN=t

jantobias.muehlberg@cs.kuleuven.be

My usual work: Trusted Computing for Embedded Control Systems

Brake
Hydraulics

“VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks”, Van Bulck et al., ACSAC 2017. [VBMP17]

v
2/4 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Developing and integrating secure software components

Today:

© Software security for the bad guys
Lazy ways of finding and exploiting software vulnerabilities

@® How to build “perfect software”
Probably there is no such thing; but let’s rule out as many vulnerabilities as
possible and affordable

©® How to protect perfect software at runtime
... because having no vulnerabilities in your code may not be enough

v
3/41 Jan Tobias Miihlberg Developing and integrating secure software D | Strl N =t

Software security for the bad guys

You want to hack an application!
Stand-alone or client software on a device you
control, you have (at least) the compiled binary.

Goals: Hard-coded secrets? Application flags/
enable features? Disable adds? Access or modify
application data? Understand remote communication?
Find and weaponize a vulnerability?

What'’s your approach?

4/41 Jan Tobias Miihlberg Developing and integrating secure sof

Software security for the bad guys

Option 1: Reversing, search manually

+ IDA, debugger, decompiler, experience, luck,
brain cycles

* You'll learn a lot about the program
* You may not find what you’re looking for
+ Can be entertaining, can be a big waste of time

Option 2: Fuzzing, automated search
« Clever fuzzing software, little experience, CPU cycles"

* You won't learn that much but you’ll probably
get crashes almost for free

Option 3: Combine manual reversing and fuzzing

5/41 Jan Tobias Miihlberg Developing and integrating secure sof

Option 2: Fuzzing, automated search

- Can we crash it: AFL [ZaI10] int t]__sl_zro;:less_heartbea; (SSL *(sj)t{
. . . unsigned char *p = s->s3->rrec.data;
+ Find an input that reproducibly leads s
to SIGSEGV, SIGILL, SIGABRT hbtype = *p; p++;
- This a library function, we can build :is Ei},otpzie/load)TIiS};lH; D oEsT) |
13 H 1 . y - - -
our own “client” as a test harness: unsigned char +buffer, +bp; int r;
int main(int c, charx v[]) { buffer = OPENSSL_malloc(l + 2 +
struct rrec r; struct SSL3 s3; payload + padding);
struct SSL s; bp = buffer;
if (c >= 2)
read_in(v[1], &r); *bp++ = TLS1_HB_RESPONSE;
s.s3 = &s3; s3.rrec = r; s2n (payload, bp);
return tlsl_process_heartbeat (&s); memcpy (bp, pl, payload);
}
r = ssl3_write_bytes(s,

* Provide a seed test case —_— TLS1_RT_HEARTBEAT, buffer,

+ Compile with instrumentation, run in AFL 3 + payload + padding);
VY2 S

6 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Option 2: Fuzzing, automated search

american fuzzy lop 2.52h (afl 02 hin)

» Test case for a crash within one
second: 0x20 0x64 0x20 0x20

+ Severity as a vulnerability depends
on executing context and skill of the
attacker

1,00 bitss
findings epth

But what happened?
@ Take next test case from queue

@ Trim the test case to the smallest size
that does not alter testee’s behavior, |8

© Repeatedly mutate the test case,

@ If any of the generated mutations
results in a new state transition, add it to the queue,

O Goto 1.

[+] We're done here, Have a nice day!

741 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N _t

Option 2: Fuzzing, automated search

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STILL THERE?
IF 56, REPLY *POTATO" (6 LETTERS).

)

ser Meg wants these 6 letters: POTATO.

ser Meg wants these 6 letters: POTATO.

I .Ool

o]

(o]

©
l

SERVER, ARE YOU STILL THERE?.
IF 50, REPLY “BIRD" (4 LETTERS). oer g wants
) ese 4 letters: BIRD.

Source: https://xkcd.com/1354/
8 /41 Jan Tobias Miihlberg

Developing and integrating secure software

int tlsl_process_heartbeat (SSL =*s) {

unsigned char *p = s->s3->rrec.data;

/S

hbtype = *p; pt+;

n2s (p, payload); pl = p;

if (hbtype == TLS1_HB_REQUEST) {
unsigned char +buffer, «<bp; int r;
buffer OPENSSL_malloc(l + 2 +
payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n (payload, bp);
memcpy (bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);
V2R S

DistriN=t

https://xkcd.com/1354/

Option 2: Fuzzing, automated search

v ts
o
(
o]

IF 50, mﬁﬁ-%% jser Meg wants these 500 letters: HAT.

/

ser Meg wants these 500 letters: HAT.

Source: https://xkcd.com/1354/
8 /41 Jan Tobias Miihlberg

Developing and integrating secure software

int tlsl_process_heartbeat (SSL =*s) {

unsigned char =xp

VIR

hbtype = *p; pt+;

n2s (p, payload); pl = p;

if (hbtype == TLS1_HB_REQUEST) {
unsigned char +buffer, «<bp; int r;
buffer = OPENSSL_malloc(l + 2 +
payload + padding);
bp = buffer;

s—->s3->rrec.data;

*bp++ = TLS1_HB_RESPONSE;
s2n (payload, bp);
memcpy (bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);
V2R S

DistriN=t

https://xkcd.com/1354/

But ...

But it’s a known vulnerability, extracted, simplified, ...
Yes, that’s why it took only 1s.

But the input was really simple!
AFL pulls compressed multimedia files out of thin air. Also, there are specialised
tools for network traffic, HW interactions, video streams. Problem: Crypto.

But you instrumented source code! We ship only binaries!
QEMU mode! What about your libraries?

But we also obfuscate them! And there’s an obscure interpreter in there!
Does it still execute? Let’s wait it out. Problem: Opaque predicate.

But we have anti-debugging! And the red stuff above!
Fuzzing coverage will reveal dead ends, which can be resolved manually.

Any vulnerability can be found. Understand your system,

your assets, your attacker — Threat Modelling }
9 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

Software security for application developers

How can we defend applications against fuzzing?
How can we defend against people with reverse engineering skills?

Fuzz harder? Testing?

Fuzz more cleverly? Buy an insurance?
Hire a bad guy and ask him Penetration testing?
to do good stuff? Formal verification?

Under what attacker model can we say that a thoroughly tested
or formally verified application is secure?

10 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

How much testing do we have to do? When are we done?

11/41

Function Coverage
foo(F, F, F);
Statement Coverage
foo(T, T, T);
Branch/Decision Coverage
foo (T, T, T);

foo (T, T, F);
Condition Coverage
foo(F, F, T);

foo(T, T, F);

MC/DC

foo(F, T, F);
foo(F, T, T);
foo(F, F, T);

foo(T, F, T);

int foo (bool a,

{

}

int ret = 0;
if ((a || b)
{

ret = 1;

}

return ret;

bool b, bool c)

&& <)

Multiple condition coverage, Parameter value coverage, ...

Jan Tobias Miihlberg

Developing and integrating secure software

DistriN=t

How much testing do we have to do? When are we done?

« Which criterion is best? int tlsl_process_heartbeat (SSL *s) {
- What about code that unsigned char *p = s->s3->rrec.data;
doesn’t branch? ;gtﬁ;é — wp; pH;
+ What about code that n2s (p, payload); pl = p;
is stimulated by 1/107? if (hbtype == TLS1_HB_REQUEST) {
-...H1scenaﬁosthat unsigned char +buffer, «bp; int r;

buffer = OPENSSL_malloc(l + 2 +

you can’t set up in the lab payload + padding);

(Delta Works, SDI, Space)? bp = buffer;
* How do we know that we
haven’t missed critical *bp++ = TLS1_HB_RESPONSE;
interactions? s2n(payload, bp);
Concurrency? memcpy (bp, pl, payload);
* Who writes all these tests? r = ssl3_write_bytes(s,
+ What about security TLS1_RT_HEARTBEAT, buffer,
: 3 + payload + padding);
2
properties”? S

12 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Life-critical, Safety-critical, Ultra-reliable

+ 102 probability of failure for a 1 hour mission
— life-test for > 114,000 years (safety!)

Not Just Space Tech!

i‘
Image: NASA, STS-132; FM @ NASA: https://shemesh.larc.nasa.gov/fm/fm-why.html

13 /41 Jan Tobias Miihlberg Developing and integrating secure software

DistriN=t

https://shemesh.larc.nasa.gov/fm/fm-why.html

Bazine Archive

A 12) CONTRIBUTE
1.474 How

Published on Fe

theorems.

10.1145/1646353.1646372

Comments
e By Chris New
Vogar COMMWNCA |y ps;) SHARE:
10.1145/269¢
Princi
Comments (1
e VIEW AS:
——
=
4 important trends are making the Indug
il > methods practical. The first i
i model-based development fol
the I systems. Tools such as MAT!
he libra Technologies SCADE Suite®
L It Iz narm in the design of avionics and
itis now graphical models produced
De Gow formal, or nearly formal, spe
R

amenable to formal analysis.

ond is the growing power of formal verification tools, particularly me
jany classes of models they provide a "push-button" means of determining

processo quirements. Since these tools examine all possible combinations of inputs &

in 2008, A' juch more likely to find design errors than testing.
one trillion olfficts.” Less than a year later it had grown to two trillion ohjects and was regula: Not
handling 1.1 million requests per second.* Fire

v
14 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N:t

How much testing do we have to do? When are we done?

“We’re building self-driving cars and planning Mars
missions — but we haven’t figured out how to make sure
people’s vacuum cleaners don’t join botnets.”

— Someone at JSConfAU16

Source: https://twitter.com/MelissaKaulfuss/status/8042099915109376002s=09

15 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

https://twitter.com/MelissaKaulfuss/status/804209991510937600?s=09

Between Testing and Formal Verification

Testing Formal Verification
e Find as many defects as Use mathematical methods to
reasonably possible convincingly argue that a system

is free of defects

e Gather evidence to show that a Prove that implementation is a
specification is correctly implemented refinement of the specification

e Relies on empirical evidence Aims to be exhaustive and
and intuition complete

e Expensive Expensive

16 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

VeriFast (working copy build) IDE

17 /141

File Edit View Verify Window(Top) Window(Bottom) Help

X Se| > o

tl_lib.c opensslh preluden | preluds_core.gh | list.gh |

Local Value

void memcpy (unsigned char *dest, unsigned char *src, unsigned size);
//@ requires destl[..size] |-> _ &*& src[..size] [-= ?cs;
//@ ensures dest[..size] |-> c¢s &*& src[..size] |-> cs;

void RAND_pseudo_bytes (unsigned char *buffer, unsigned size);
//@ requires buffer[..size] |->

dest ((buffer0 + (1+ 1)) + (
size payloado
src ((((s3 + SSL3_rrec_off

tl_lib.c ‘ openssLh preluden | prelude_core.gn | list.gh |

Local Value

int r;

buffer = OPENSSL_malloc (1u + 2u + payload + padding);
bp = buffer;

8 *bp = TLS1_HB_RESPONSE; bp+;
s2n(bp, payload);
memcpy (bp, pl, payload);

bp ((buffer0 + (1* 1))
buffer buffero

hbtype ¢

P (({(s3 + SSL3_rrec_|
padding 16

payload payloado

true <==> 0 <= ((s3 + S5L3_rrec_offset) + rrec_data_
(((s3 + S5L3_mmec_offset) + rrec_data_offset) + (1 * 10¢
l lengtho <= 10000

Producing assertion
Producing assertion

Consuming chunk (retry)

bp += (int)payload; pl ((t(s3 + 5513 _rrec_
RAND_pseudo_bytes (bp, padding); " v
r = ss13 write bytes(s, TLS1 RT_HEARTBEAT, buffer, 3 + payload + padding); : °
NPENSS] fraa(huffar):
Steps Assumptions I Heap chunks I
Producing assertion 10000 = length(dummy) OPENSSL_malloc_bleck(bufferd, (((1 + 2) + payload0) +

SSL_s3(s, s3)
rrec_lengthl(s3 + SSL3_rrec_offset), length0)
u_character(((((s3 + SSL3_rrec_offset) + rrec_data_offs

Jan Tobias Miihlberg

Developing and integrating secure software

DistriN=t

Normal Execution vs. Symbolic Execution

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output (unit tests, etc.)

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;

}

return ret;

v
18 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.
(declare—-const a Bool)

(declare—-const b Bool)
(declare—-const ¢ Bool)

(assert (and (or a b) c)) int foo (bool a, bool b, bool c¢)
(check-sat) t .
> sat int ret = 0;
(get—-model) if ((a [0) && c)
-> (model { £ o= 1
(define-fun ¢ () Bool true) ret = 4i
(define—-fun a () Bool true)) J

return ret;

}

Learn more: https://github.com/zZ3Prover <
18 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)
Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a “constraint solver” to find concrete inputs that satisfy
a specific path.

declare-const a Bool)

declare-const b Bool)
declare-const c¢ Bool)

(
(
(
(push)
(assert (and (or a b) c)) int foo (bool a, bool b, bool c)
(check-sat) (get-model) {
(pop) int ret = 0;
(assert (not if ((a || b) && <)
(and (or a b) c))) {
(check-sat) (get-model) ret = 1;
}
—> sat
~> (model return ret;
(define-fun ¢ () Bool false)) J

Learn more: https://github.com/zZ3Prover <
18 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

https://github.com/Z3Prover

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

VeriFast (working copy build) IDE

19/41

File Edit View Verify Window(Top) Window(Bottom) Help

X Se| > o

tl_lib.c opensslh preluden | preluds_core.gh | list.gh |

Local Value

void memcpy (unsigned char *dest, unsigned char *src, unsigned size);
//@ requires destl[..size] |-> _ &*& src[..size] [-= ?cs;
//@ ensures dest[..size] |-> c¢s &*& src[..size] |-> cs;

void RAND_pseudo_bytes (unsigned char *buffer, unsigned size);
//@ requires buffer[..size] |->

dest ((buffer0 + (1+ 1)) + (
size payloado
src ((((s3 + SSL3_rrec_off

tl_lib.c ‘ openssLh preluden | prelude_core.gn | list.gh |

Local Value

int r;

buffer = OPENSSL_malloc (1u + 2u + payload + padding);
bp = buffer;

8 *bp = TLS1_HB_RESPONSE; bp+;
s2n(bp, payload);
memcpy (bp, pl, payload);

bp ((buffer0 + (1* 1))
buffer buffero

hbtype ¢

P (({(s3 + SSL3_rrec_|
padding 16

payload payloado

true <==> 0 <= ((s3 + S5L3_rrec_offset) + rrec_data_
(((s3 + S5L3_mmec_offset) + rrec_data_offset) + (1 * 10¢
l lengtho <= 10000

Producing assertion
Producing assertion

Consuming chunk (retry)

bp += (int)payload; pl ((t(s3 + 5513 _rrec_
RAND_pseudo_bytes (bp, padding); " v
r = ss13 write bytes(s, TLS1 RT_HEARTBEAT, buffer, 3 + payload + padding); : °
NPENSS] fraa(huffar):
Steps Assumptions I Heap chunks I
Producing assertion 10000 = length(dummy) OPENSSL_malloc_bleck(bufferd, (((1 + 2) + payload0) +

SSL_s3(s, s3)
rrec_lengthl(s3 + SSL3_rrec_offset), length0)
u_character(((((s3 + SSL3_rrec_offset) + rrec_data_offs

Jan Tobias Miihlberg

Developing and integrating secure software

DistriN=t

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

Could we have found heartbleed with testing?
Yes, easily!

assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.
But: It's easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

20 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

VeriFast, specifically?
VeriFast finds the bug. Without a tester thinking about a specific test case.

VeriFast is automatic, complete and sound, and supports concurrency: Pre- and
post conditions must be satisfied for all executions

Static verification, no runtime overhead.

Writing pre- and post conditions isn’t easy. You may need a lot of annotations —
depending on program complexity and verification properties.

You are verifying one part of an application at the level of abstraction provided by
C or Java.

+ Layer-below attacks? Compilation errors?
+ Buggy or malicious libraries (not behaving to spec)?
+ Buggy OS? Kernel-level malware?

21 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Between Testing and Formal Verification

— A

Formal Specification Design Analysis
& Requirements Analysis & Verification
R‘Buirements Analysis & Design

Implementation
Planning Code Generation,
Initial Secure Compilation,
Planning Deductive Verification &

Software Model Checking
Deployment
Evaluation .
Testing

Software Model Checking,
Post-Hoc Verification,
& Test Case Generation

v
22 /41 Jan Tobias Miihlberg Developing and integrating secure software D | Strl N =t

KLEE (Stanford, [CDE*08])
KLEE is a symbolic virtual machine built on top of LLVM

* No annotations but symbolic test cases
+ Support for symbolic arguments, files and streams
+ Exploration can be bounded wrt. input sizes, memory and CPU consumption

int main (void) { int foo (bool a, bool b, bool c)
bool a, b, c; {
klee_make_symbolic (int ret = 0;
&a, sizeof(a), "a"); if ((a || b) && c)
// same for b and c {
return (foo(a, b, c¢)); ret = 1;

} }
return ret;
+ Combines concrete with symbolic exécution!
*+ Bug reports or crashes reported with real program inputs

+ Achieve > 90% coverage
23 /41 Jan Tobias Miihlberg

Developing and integrating secure software D | Strl N :t

Symbolic Execution in Attacks

Some techniques work on binary programs, in the
absence of source code.
AFL [Zal10], SAGE [GLMO08], SOCA [ML10], etc.

Automated Crash Generation

...search for paths where a well-chosen input leads to
undefined behaviour or unhandled exceptions.

You have seen this for AFL.

Automated Exploit Generation
... as above, but find exploitable behaviour and
derive a “crazy machine” to execute code:
+ Patch-based exploit generation [BPSZ08]
+ Crash analysis and exploit generation [HHH'14]
- End-to-end solutions to generate zero-days [ACRT 14174

24 /141 Jan Tobias Miihlberg Developing and integrating secure sof

Other Tools

MS PEX ...automatically generates test suites to achieve high code coverage in .NET
in a short amount of time [TdHO08].

|‘ Facebook Infer is a static analysis tool - if you give Infer some Java or
C/C++/Objective-C code it produces a list of potential bugs.
http://fbinfer.com/

CBMC ... is a Bounded Model Checker for C and C++ programs. CBMC verifies
array bounds (buffer overflows), pointer safety, exceptions and user-specified
assertions.
http://www.cprover.org/cbmc/

SATABS ... is a verification tool for ANSI-C and C++ programs. SATABS transforms a
C/C++ program into a Boolean program, which is an abstraction of the original
program in order to handle large amounts of code.
http://www.cprover.org/satabs/

25 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

http://fbinfer.com/
http://www.cprover.org/cbmc/
http://www.cprover.org/satabs/

6)§ Key Reinstallation Attacks [~]

26 /41

Breaking WPA2 by forcing nonce reuse: “The < —
attack works against all modern protected Wi-Fi networks. | #i™
[...]if your device supports Wi-Fi, it is most likely affected.” Stionce # MIC >
Analysis 4 consucs
- Problem in IEEE 802.11i (2004) < ”

+ Formal security properties by He et al. [HSD*05]
+ Crypto in Wi-Fi are highly secure (iff secure nonces)

What went wrong?
+ Two “unit proofs”, no “integration proof”
— Formal correctness of protocols in integrated scenarios!

— Correct implementations (verified and tested)
+ That’s expensive! As compared to what?

Discovered by Mathy Vanhoef at imec-DistriNet, https: //www.krackattacks.com/, paper at CCS (November 2017)

Discussion of verification efforts by Matthew Green, https://blog.cryptographyengineering.com/ M
Jan Tobias Miihlberg Developing and ?ntegratmg secure software D | Stn N =t

https://www.krackattacks.com/
https://blog.cryptographyengineering.com/

Preventing Vulnerabilities Through Testing and Verification
Modern (embedded) software systems are huge!

27 141

* Interactions with
safety-critical
components not
well defined

* There are bugs in
established standards
and well-tested code

+ Formal analysis and
verification reduces
the chance for bugs
to slip through

* Don’t forget to
isolate critical code!

Jan Tobias Miihlberg

Fora F150 Core) |
Mecosx 104

Facebook
Windows Vista [
Large Hadron Collider _
Windows 2000 _
Android | EEEEE
Boeing 787 |
meoL I
Android -
Goode Chrome [l
Windows31 [l

Hubble Space Telescope]

iOS app - photo editing
0 20 40 60

Steve McConnell
(programming guru):
10-50 errors/1000 lines of code.

Testing, code review etc
=>0.5 errors/1000 lines of code

150M lines of code
= 75000 errors

80 100 120 140

m Lines of code (M)

Image: Thomas Kallstenius @ imec ITF, May 2017

Developing and integrating secure software

DistriN=t

Trusted Computing

According to the Trusted Computing Group

Protect computing infrastructure at end points;

Hardware extensions to enforce specific behaviour and to provide cryptographic
capabilities, protecting against unauthorised change and attacks

+ Endorsement Key, EK Certificate, Platform Certificate: Unique private key
that never leaves the hardware, authenticate device identity

* Memory curtaining: provide isolation of sensitive areas of memory

- Sealed storage: Bind data to specific device or software

* Remote attestation: authenticate hardware and software configuration to a
remote host

 Trusted third party as an intermediary to provide (ano|pseudo)nymity

In practice: different architectures, subset of the above features, additions such
as “enclaved” execution, memory encryption or secure 1/O capabilities

Source: https://en.wikipedia.org/wiki/Trusted_Computing

28 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to the Trusted Compu) Possible Applications
Protect computing infrastructure at | pigital rights management cai)
Hardware extenS|onS to enforce Sp Trusted Computing would allow companies to create a digital rights management

though notimpossible. An example is downloading a music file. Sealed storage cc
Capab|l|t|es’ prOTeCtlng aga"]st unau with an unauthorized player or cormputer. Remote attestation ct?uld be used to aut

record company's rules. The music would be played from curtained memory, whic

copy of the file while itis playing, and secure I/O would prevent capturing what is

° Endorsement Key: EK Certlfl system would require either manipulation of the computer's hardware, capturing t
that never IeaVeS the hardware recording device or a microphene, or breaking the security of the system.

New business models for use of software (services) over Internet may be boosted

. ini - i i one could base a business model on renting programs for a specific time periods
emory curtaining: proviae |

download a music file which could only be played a certain number of times befo
. Sealed storage: B| nd data to only within a certain time period.
. . . Preventing cheating in online games [edit]
Remote attestation: authenti _ R
Trusted Computing could be used to combat cheating in online games. Some play

remote hOSt advantages in the game; remote attestation, secure I/0 and memory curtaining c«
a server were running an unmodified copy of the software.I1#]

* Trusted third party as an inte

Verification of remote computation for grid computing (e

In practice. dlfferent arChIteCtU res Trusted Computing could be used to guarantee participants in a grid computir
-)

they claim to be instead of forging them. This would allow large scale simulations

as “enclaved” eXGCUtlon, memory e redundant computations to guarantee malicious hosts are net undermining the re

Source: https://en.wikipedia.org/wiki/Trusted_Computing

v
28 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N =t

https://en.wikipedia.org/wiki/Trusted_Computing

Trusted Computing

According to Richard Stallman

Treacherous Computing: “The technical idea underlying treacherous computing is
that the computer includes a digital encryption and signature device, and the keys
are kept secret from you. Proprietary programs will use this device to control
which other programs you can run, which documents or data you can access, and
what programs you can pass them to. These programs will continually download
new authorisation rules through the Internet, and impose those rules automatically
on your work.”

In the light of recent incidents...
+ Buggy software: think of OpenSSLs Heartbleed in an enclave
+ Side channels: timing, caching, speculative execution, etc.
* Buggy system: CPUs, peripherals, firmware (Broadpwn, Intel ME, Meltdown)
* Malicious intent: Backdoors, ransomware, etc.

Source: https://www.gnu.org/philosophy/can-you-trust.html

29 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

https://www.gnu.org/philosophy/can-you-trust.html

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

30 /41

Jan Tobias Miihlberg

MCU

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

30 /41

Jan Tobias Miihlberg

MCU

R

A'pplicétions

LT TEEEETEEEECEEEEETEEEE T TP TP

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

30 /41

Jan Tobias Miihlberg

MCU

R

A'pplicétions

LT TEEEETEEEECEEEEETEEEE T TP TP

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

+ Applications share address space

30 /41

Jan Tobias Miihlberg

MCU

plications

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little

security functionality

+ Applications share address space
+ Boundaries between applications

30 /41

are not enforced

Jan Tobias Miihlberg

LT

Developing and integrating secure software D | Strl N :t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?

|||||N|||

30 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

+ Applications share address space
+ Boundaries between applications

+ Integrity? Confidentiality?

Trusted Computing aims to fix that:
+ Strong isolation, restrictive

30 /41

are not enforced

Authenticity?

interfaces, exclusive 1/0

Jan Tobias Miihlberg

MCU

Text
Data
PC

1/0

Applications

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little

security functionality

+ Applications share address space
+ Boundaries between applications

+ Integrity? Confidentiality?

Trusted Computing aims to fix that:
+ Strong isolation, restrictive

30 /41

are not enforced

Authenticity?

interfaces, exclusive 1/0

Jan Tobias Miihlberg

MCU

Crypto Unit

1/0

Applications

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs
LT

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?
Trusted Computing aims to fix that:

+ Strong isolation, restrictive
interfaces, exclusive 1/0

* Built-in cryptography and (remote)
attestation

30 /41 Jan Tobias Miihlberg

MCU

Crypto Unit

|||||h\||

1/0

Applications

Developing and integrating secure software

DistriN=t

Isolation and Attestation on Light-Weight MCUs

Many microcontrollers feature little
security functionality

+ Applications share address space

+ Boundaries between applications
are not enforced

+ Integrity? Confidentiality?
Authenticity?
Trusted Computing aims to fix that:

+ Strong isolation, restrictive
interfaces, exclusive 1/0

* Built-in cryptography and (remote)
attestation

30 /41 Jan Tobias Miihlberg

(<|||IINI||

LT

MCU
Curtaining
Crypto Unit

Engrypt/
Dectypt/
Auth

Text
Data
PC

Text
Data
PC

1/0

4

Developing and integrating secure software

DistriN=t

Comparing Hardware-Based Trusted Computing Architectures

31/41

o 8 o
&S ‘4\\0‘\ N © Q\\
<>"<\<\°“§@\?o‘a°\ B TN °°°6\
OO S ® \~§ \\%\o\’ée" =S 6"\)6‘ R
o\” \\e p:o\‘ B R o 9\“ o o
SIS \>0°‘<\ ‘0‘\\)?% o?p&o
AEGIS 00000 CO ONON N XN NON) e -
TPM ceeCe-°© cCee--06@ OO0 -
TXT 000000 ceeOCeOe O O xs6_64
TrustZone [JONOX NONOXC) O0CeeOe O O ARMm
Bastion [JON N N NON J ONoNON N N N J O @ UitraSPARC
SMART CeO0OeO- 0O 0eO00O--0@ O @ AVR/MSP430
Sancus 1.0 [X NON NON N© [JON NONONON) @ @ wMsP430
Soteria 000000 O [ZON NONONON) @ @ wnsPa30
Sancus 2.0 000000 O [XON N NONON) @ @ wnsPa30
SecureBlue++ @ O 0 @ ® O @ cCOCeeeOe O O POWER
SGX 00000 CO oxoNoN N N N) O O xs6_64

Iso-X [X JON NONON J cxonoN N N N) O @ openRISC
TrustLite [X _NONONON NGO 0000000 O @ siskiyou Peak
TyTAN 0000 0O 0000000 O @ siskiyou Peak
Sanctum 0000000 oNoNON N N N J @ @ Risc-v
@- Yes; o Partial; O-= No; — = Not Applicable
Jan Tobias Miihlberg Developing and integrating secure software

Adapted from
“Hardware-Based
Trusted Computing
Architectures for
Isolation and
Attestation”, Maene et
al., IEEE Transactions
on Computers, 2017.
[MGdC*17]

DistriN=t

Sancus: Strong and Light-Weight Embedded Security [NVBM*17]
Extends openMSP430 with

strong security primitives Sancus CPU core -
+ Software Component \ ARG ‘ P BN o
Isolation ﬁ H] rom
+ Cryptography & Attestation {; y || ¥ o
- Secure 1/0 through isolation -Rtm sl sE| | 3 Lo -
of MMIO ranges RIS o = &
- wlle] |2
Efficient § >
 Modular, < 2 kLUTs =
+ Authentication in us 57
* + 6% power consumption S
Cryptographic key hierarchy —

for software attestation
Isolated components are typically very small (< 1kLOC)
Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

32 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

https://distrinet.cs.kuleuven.be/software/sancus/

Sancus: Strong and Light-Weight Embedded Security [NVBM*17]
Extends openMSP430 with

strong securlty prlmltives N = NOde, SP = Software Provider / Dep|0yel’
- Software Component SM = protected Software Module
Isolation .
o Cryptography & Attestation SM text section SM protected data section
+ Secure I/O through isolation z =
Of MMI O ranges é Unprotected g Code & constants | Unprotected | Protected data | Unprotected
Efficient
* Modular, < 2 kLUTs Prmected‘ I TR v metadata
* Authentication in us storage
* + 6% power consumption e |

Layout Keys

Cryptographic key hierarchy

for software attestation

Isolated components are typically very small (< 1kLOC)

Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

33 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

https://distrinet.cs.kuleuven.be/software/sancus/

Attestation and Communication with Sancus
Ability to use Ky sp sy proves the integrity and isolation
of SM deployed by SPon N

* Only N and SP can compute Ky sp sy
N knows Ky and SP knows Kgp

* Kn.sp sy on N is computed after enabling isolation E\']
No isolation, no key; no integrity, wrong key —

* Only SM on N is allowed to use Ky sp sy
Through special instructions Sp @@

Remote attestation and secure communication by

Authenticated Encryption with Associated Data —
SM, SM,

+ Confidentiality, integrity and authenticity
* Encrypt and decrypt instructions use Ky sp sy of the calling SM
+ Associated Data can be used for nonces to get freshness

34 /41 Jan Tobias Miihlberg Developing and integrating secure software

SP,

DistriN=t

Secure Automotive Computing with Sancus [VBMP17]

(CDMA/3G/4G/LTE)

Modern cars can be hacked! /

Bluetooth

* Network of more than 50 ECUs

* Multiple communication networks
+ Remote entry points ’
+ Limited built-in Security mechanisms wier & vatasek, Remote:xpkl(zlltatlown of an unaltered passenger vehicle”, 2

TPMS

Electronic Control
Units

Sancus brings strong security for
embedded control systems:

+ Message authentication

« Trusted Computing: software component
isolation and cryptography

+ Strong software security
* Applicable in automotive, ICS, IoT, ...

Controller Area
Network (CAN)

v
35 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N:t

My usual work: Trusted Computing for Embedded Control Systems

Brake
Hydraulics

“VulCAN: Efficient Component Authentication and Software Isolation for
Automotive Control Networks”, Van Bulck et al., ACSAC 2017. [VBMP17]

v
36 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N :t

Summary
Fuzzing, Testing & Formal Verification
© There are automated techniques to find
vulnerabilities and to generate exploits
@ Securing application code requires dedicated
testing and verification e
©® Know your system, be selective 3

Trusted Computing & Sancus
© Strong application isolation and attestation
® Requires correct hardware and software

Security
© Understand the system
@ Understand the security requirements
©® Understand the attacker
O Understand and embrace change

37 /41 Jan Tobias Miihlberg Developing and integrating secure software

Thank you!

“Beware of bugs in the above code;
| have only proved it correct, not tried it.”

— Donald Knuth

Thank you! Questions?

https://distrinet.cs.kuleuven.be/

38 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStI‘I N :t

https://distrinet.cs.kuleuven.be/

References |

39 /41

B
[

) & & @

T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley.

Automatic exploit generation.

Commun. ACM, 57(2):74-84, 2014.

D. Brumley, P. Poosankam, D. Song, and J. Zheng.

Automatic patch-based exploit generation is possible: Techniques and implications.

In 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 143—157, 2008.

C. Cadar, D. Dunbar, D. R. Engler, et al.

Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs.
In OSDI, vol. 8, pp. 209-224, 2008.

P. Godefroid, M. Y. Levin, and D. Molnar.

Automated whitebox fuzz testing.

In NDSS 08. Internet Society (ISOC), 2008.

S. K. Huang, M. H. Huang, P. Y. Huang, H. L. Lu, and C. W. Lai.

Software crash analysis for automatic exploit generation on binary programs.

IEEE Transactions on Reliability, 63(1):270-289, 2014.

C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell.

A modular correctness proof of ieee 802.11i and tls.

In Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS '05, pp. 2-15, New York, NY, USA, 2005. ACM.
B. Jacobs, J. Smans, and F. Piessens.

VeriFast: Imperative programs as proofs.
In VSTTE 2010 workshop proceedings, pp. 63-72, 2010.

v
Jan Tobias Miihlberg Developing and integrating secure software D | Strl N =t

References Il

@ P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, and |. Verbauwhede.

Hardware-based trusted computing architectures for isolation and attestation.
IEEE Transactions on Computers, PP(99):1-1, 2017.

@ J. T. Mihlberg and G. Luttgen.

Symbolic object code analysis.

In SPIN 10, vol. 6349 of LNCS, pp. 4-21, Heidelberg, 2010. Springer.

C. Miller and C. Valasek.

Remote exploitation of an unaltered passenger vehicle.

Black Hat USA, 2015.

J. Noorman, J. Van Bulck, J. T. Mihlberg, F. Piessens, P. Maene, B. Preneel, |. Verbauwhede, J. Gétzfried, T. Miller, and F. Freiling.
Sancus 2.0: A low-cost security architecture for loT devices.

ACM Transactions on Privacy and Security (TOPS), 20:7:1-7:33, 2017.

P. Philippaerts, J. T. Miihlberg, W. Penninckx, J. Smans, B. Jacobs, and F. Piessens.
Software verification with VeriFast: Industrial case studies.

Science of Computer Programming (SCP), 82:77-97, 2014.

N. Tillmann and J. de Halleux.

Pex — White Box Test Generation for .NET, pp. 134—153.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

) & & & @

J. Van Bulck, J. T. Miihlberg, and F. Piessens.

VuICAN: Efficient component authentication and software isolation for automotive control networks.
In ACSAC 17, pp. 225-237. ACM, 2017.

v
40 /41 Jan Tobias Miihlberg Developing and integrating secure software D | Strl N =t

References llI

ﬁ M. Zalewski.

American Fuzzy Lop: A security-oriented fuzzer, 2010.
http://lcamtuf.coredump.cx/afl/.

v
41 /41 Jan Tobias Miihlberg Developing and integrating secure software DIStrI N:t

http://lcamtuf.coredump.cx/afl/

