
@PhilippeDeRyck

THE SECURITY MODEL OF THE WEB

Philippe	De	Ryck
SecAppDev 2017

https://www.websec.be

@PhilippeDeRyck

THE CONCEPT OF AN ORIGIN

scheme host port path query fragment

http://www.example.com:80/test?color=blue#section2

@PhilippeDeRyck

SAME-ORIGIN POLICY (SOP)

Content	retrieved	from	one	origin	can	freely	interact	with	other	content	from	

that	origin,	but	interactions	with	content	from	other	origins	are	restricted

http://example.com

http://example.com
http://example.com

http://forum.example.com

http://private.example.com
http://private.example.com

@PhilippeDeRyck

ORIGIN-PROTECTED RESOURCES

§Modern	browsers	offer	plenty	of	origin-protected	resources

− The	DOM	and	all	its	contents

−Client-side	storage	facilities
• Web	storage,	In-browser	file	systems,	Indexed	DB

−Permissions	to	various	”invasive”	features

• Geolocation,	full-screen	capabilities,	media	capture,	…

−WebRTC video	and	audio	streams

−Ability	to	load	and	inspect	resources	from	same-origin	servers

−Ability	to	send	XHR	requests	without	restrictions

§ You	want	to	be	in	control	of	what	happens	in	your	origin

@PhilippeDeRyck

WHY IS THIS SO IMPORTANT?

§Understanding	the	basic	security	model	of	the	web

−More	and	more	software	is	moving	towards	the	web

−Modern	features	strongly	depend	on	the	Same-Origin	Policy

§Web	security	is	an	important	aspect	of	SecAppDev

−Many	of	the	attacks	covered	this	weak	abuse	the	SOP

−Countermeasures	depend	on	the	SOP	for	their	security

§Most	security	problems	are	caused	by	a	lack	of	knowledge

− If	developers	are	not	aware	of	security	problems,	they	can’t	fix	them

@PhilippeDeRyck

ABOUT ME – PHILIPPE DE RYCK

§My	goal	is	to	help	you	build	secure	web	applications

−Hosted	and	customized	in-house	training

− Specialized	security	assessments	of	critical	systems

− Threat	landscape	analysis	and	prioritization	of	security	efforts
−More	information	and	resources	on	https://www.websec.be

§My	security	expertise	is	broad,	with	a	focus	on	Web	Security

−PhD	in	client-side	web	security
−Main	author	of	the	Primer	on	client-side	web	security

6

@PhilippeDeRyck

BROWSING CONTEXTS

@PhilippeDeRyck

WHAT IS A BROWSING CONTEXT?

@PhilippeDeRyck

AUXILIARY BROWSING CONTEXTS

@PhilippeDeRyck

NESTED BROWSING CONTEXTS

@PhilippeDeRyck

BROWSING CONTEXTS AND ORIGINS

@PhilippeDeRyck

THE SOP	ISOLATES BROWSING CONTEXTS

http
www.example.com

80

http
private.example.com

80

http
www.example.com

80

@PhilippeDeRyck

WHAT ABOUT THIS?

http://www.stroopwafels.com

Would	you	like	some	Stroopwafels delivered	to	your	home?

Naah,	thanks Hell	yeah!

@PhilippeDeRyck

UI	REDRESSING ATTACKS MISLEAD THE USER

http://www.stroopwafels.com

Would	you	like	some	Stroopwafels delivered	to	your	home?

Naah,	thanks

Shall	we	ban	kitty	pics	from	the	web?

Oh	noes! Hell	yeah!

@PhilippeDeRyck

CLICKJACKING IS ANOTHER UI	REDRESSING ATTACK

http://www.stroopwafels.com

Would	you	like	some	Stroopwafels delivered	to	your	home?

Naah,	thanks Hell	yeah!

@PhilippeDeRyck

SENDING CLICKS TO A TRANSPARENT FRAME

@PhilippeDeRyck

PREVENTING UI	REDRESSING ATTACKS

§ Framing	is	the	enabler	for	UI	redressing	attacks

− JavaScript-based	framebusting is	not	very	effective

−Best	practice	is	to	strictly	whitelist	origins	that	are	allowed	to	frame	you

§ X-Frame-Options header	is	the	oldest	mechanism

− Supports	SAMEORIGIN,	DENY or	ALLOW-FROM with	an	origin
− ALLOW-FROM not	supported	by	all	browsers,	so	combine	with	frame-ancestors

§ Content	Security	Policy	has	a	frame-ancestors directive
− Supports	‘self’, ‘none’ or	a	list	of	allowed	origins
−Not	supported	by	all	browsers,	so	combine	with	X-Frame-Options

@PhilippeDeRyck

PREVENTING UI	REDRESSING ATTACKS

X-Frame-Options: ALLOW-FROM http://www.example.com

Content-Security-Policy: frame-ancestors http://www.example.com

Content-Security-Policy: frame-ancestors ‘none’

X-Frame-Options: DENY

@PhilippeDeRyck

BROWSER SUPPORT – X-FRAME-OPTIONS

http://caniuse.com/#search=sri

@PhilippeDeRyck

BROWSER SUPPORT – CONTENT SECURITY POLICY

http://caniuse.com/#search=sri

@PhilippeDeRyck

USING THE OPENER FOR TABNABBING

https://github.com/molnarg/tabnabbing-demo

@PhilippeDeRyck

CUTTING OPENED WINDOWS LOOSE

§ In	most	cases,	there	does	not	need	to	be	a	link	back	to	the	opener

− The	rel attribute	on	anchor	tags	can	be	set	to	noopener
− The	opener	will	be	null,	thereby	preventing	potential	abuse

§ Browser	support	is	limited,	so	other	options	are	available

−A	workaround	via	JavaScript,	explicitly	setting	the	opener	to	null	before	loading	a	page
− The	noreferrer option	achieves	something	similar	in	older	browsers

…

@PhilippeDeRyck

BROWSER SUPPORT FOR REL=“NOOPENER”

http://caniuse.com/#search=noopener

@PhilippeDeRyck

RESTRICTING FRAMED CONTENT

§With	the	default	security	policies,	framed	content	has	a	lot	of	freedom

−All	permissions	a	normal	web	page	has

−Possibility	to	navigate	the	top	level	browsing	context
−Possibility	to	enable	full-screen	mode

−Possibility	to	load	video	or	objects	(Flash,	Java)

§ In	some	scenarios,	you	want	a	frame	to	be	more	restrictive

−HTML5	introduced	the	sandbox attribute	for	this	purpose

− Imposes	a	set	of	restrictions	on	the	frame,	before	loading	the	content

<iframe src=“…” sandbox>…</iframe>

@PhilippeDeRyck

THE SANDBOX IS RESTRICTED BY DEFAULT

§ Default	set	of	restrictions	that	are	applied
− Separate,	unique	origin
−No	script	execution
−No	form	submission

−No	external	navigations	or	popups
−No	plugin	content
−No	fullscreen
−No	autoplay
−…

<iframe src=“…” sandbox>…</iframe>

@PhilippeDeRyck

RELAXING THE SANDBOX

§ Restrictions	can	be	lifted	by	adding	specific	keywords
− E.g.	allow-scripts,	allow-same-origin,	…

§ Some	restrictions	cannot	be	lifted

−Plugin	content	cannot	be	re-enabled
−Navigating	arbitrary	contexts	is	not	allowed	(only	top-level	or	auxiliary)

§ Enabling	allow-scripts	together	with	allow-same-origin	is	dangerous
−Allows	the	sandboxed	script	to	break	out	of	the	sandbox	

<iframe src=“…” sandbox=“allow-scripts”>…</iframe>

@PhilippeDeRyck

ALL BROWSERS PROVIDE A SANDBOXED IFRAME

http://caniuse.com/#search=sandbox

@PhilippeDeRyck

COMBINING SANDBOX WITH SRCDOC

§ Sandboxing	is	really	powerful	when	combined	with	srcdoc
− Lightweight	mechanism	to	load	content	in	an	isolated	environment

−Directly	specify	the	HTML	in	the	attribute,	without	requiring	a	page	load	first

−Use	the	sandbox attribute	to	leverage	the	SOP	and	apply	additional	restrictions

§ The	src attribute	can	be	used	as	a	fallback	mechanism

− Supporting	browsers	will	use	srcdoc and	ignore	src
−Older	browsers	ignore	srcdoc and	use	src

<iframe src=“…” srcdoc=“<p>…</p>” sandbox>…</iframe>

@PhilippeDeRyck

COMMUNICATION BETWEEN BROWSING CONTEXTS

§Until	HTML5,	there	was	no	designed	communication	channel

−Hacky	workarounds	leveraged	the	URI	fragment	to	send	messages

− Today,	we	have	the	Web	Messaging	API

frame.contentWindow.postMessage(“Moar Wafels”, “http://www.example.com”);

window.addEventListener(“message”, function(e) {
if(e.origin === “http://wafels.example.com”) {

console.log(”Incoming message: “ + e.data);
}

}

@PhilippeDeRyck

COMMUNICATING WITH A SANDBOXED CONTEXT

§ A	sandboxed	content	has	a	unique	origin
− This	is	canonicalized as	null,	which	is	not	a	valid	origin
− For	Web	Messaging,	this	means	using	the	wildard *

frame.contentWindow.postMessage(“Moar Wafels”, “*”);

window.addEventListener(“message”, function(e) {
if(e.origin === “http://wafels.example.com”) {

console.log(”Incoming message: “ + e.data);
}

}

@PhilippeDeRyck

SCRIPT CONTEXTS

@PhilippeDeRyck

SCRIPTS CAN COME FROM ANYWHERE

Angular

Ads

User	Data

@PhilippeDeRyck

SCRIPT CONTEXTS AND BROWSING CONTEXTS

§Unlike	documents,	scripts	are	not	loaded	in	a	separate	context

− Each	browsing	context	only	has	one	script	context
−All	scripts	in	the	document	run	within	this	one	context

− The	browsing	context	has	one	shared	scope	and	namespace

§ The	lack	of	code	isolation	has	resulted	in	a	few	serious	security	problems

−User	injected	script	runs	within	the	document’s	context	(Cross-Site	Scripting)

− Including	an	external	library	requires	full	trust	in	the	third-party	provider
− It	is	common	practice	to	embed	third-party	components	without	any	isolation

@PhilippeDeRyck

CROSS-SITE SCRIPTING (XSS)

§ In	an	XSS	attack,	malicious	content	is	injected	into	your	application’s	pages

− In	the	“original”	XSS	attacks,	an	attacker	injected	JavaScript	code
− Today,	injected	content	can	be	JavaScript,	CSS,	HTML,	SVG,	…

34

@PhilippeDeRyck

THE TRUE POWER BEHIND XSS

http://colesec.inventedtheinternet.com/beef-the-browser-exploitation-framework-project/

35

@PhilippeDeRyck

YOU ARE WHAT YOU INCLUDE …

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

“88.45%	of	the	Alexa	top	10,000	

web	sites	included	at	least	one	

remote	JavaScript	library”

@PhilippeDeRyck

YOU ARE WHAT YOU INCLUDE …

https://seclab.cs.ucsb.edu/media/uploads/papers/jsinclusions.pdf

@PhilippeDeRyck

Everywhere

@PhilippeDeRyck

WHEN YOU LOAD A SCRIPT,	ALL YOU HAVE IS A NAME …

https://some-cdn.com/angular/2.0.0.js

@PhilippeDeRyck

https://arstechnica.com/security/2015/03/massive-denial-of-service-attack-on-github-tied-to-chinese-government/

@PhilippeDeRyck

KNOW WHAT YOU LOAD WITH SUBRESOURCE INTEGRITY

https://…/2.0.0.js<script src=“https://…2.0.0.js”
integrity=“sha384-814a3…Yzi=”>

</script>
Verify	

checksum

@PhilippeDeRyck

DATA LEAKAGE THROUGH SRI

<script src=“https://…/api/accountbalance.js”
integrity=“sha256-…=”
crossorigin=“use-credentials”></script>

{“balance”: 1234.00} dPdFnnWdXY6eHXiK+3O/OSi3OeLFHlLch1qZ3iqD3MGNXck+Oz4LETv8lnsoNyFI

{“balance”: 1235.00} RasWnvVTFAiT+6NeqIJFRDDDSklMaljV0FxUQysJqUB65TGm/lFqKJkrGif2wzYj

{“balance”: 1236.00} uSCKm1yloPZ7VexjyLQ+sUvakZKycl3CsblGH/9XpGV09ymyf1nKAzU5tXTFH5oi

{“balance”: 1237.00} 4SI2gcfIFhX2NRE5KPbeXR87PaiCSAan6PL2mxKWndBp8wvE2Dfcn7HenpNXD0oJ

@PhilippeDeRyck

ON THE WEB,	IT’S NEVER THAT SIMPLE …

§ SRI	allows	an	attacker	to	determine	the	existence	of	a	predetermined	file

− If	no	error	is	generated,	the	checksum	matches	and	the	file	exists

§ To	avoid	this	privacy	leak	on	legacy	servers,	CORS	must	be	used

− The	server	needs	to	opt-in	to	use	SRI	by	sending	a	CORS	response	header
−Can	either	be	anonymous	(no	cookies)	or	authenticated	(with	cookies)

…
<script src=“…”
integrity=“sha384-814a3…Yzi=”
crossorigin=“anonymous”>

</script> Verify	
checksum Cross-Origin-Allow-Access: *

Origin: https://example.com

@PhilippeDeRyck

ON A POSITIVE NOTE,	MANY CDNS MAKE SRI	REALLY EASY

https://cdnjs.com/libraries/angular.js/

@PhilippeDeRyck

BUT DOING IT YOURSELF IS NOT VERY HARD

https://www.srihash.org/

@PhilippeDeRyck

WIDESPREAD BROWSER SUPPORT IS COMING

http://caniuse.com/#search=sri

@PhilippeDeRyck

LEVERAGING BROWSING CONTEXTS FOR PRIVILEGE SEPARATION

§ Different	browsing	contexts	can	have	different	privileges
−All	contexts	within	the	same	origin	will	have	the	same	privileges	(permissions,	data,	…)

§ Privilege	separation	is	possible,	but	requires	some	effort

−Works	well	for	standalone	components

−Difficult	for	cross-cutting	libraries,	such	as	JS	frameworks,	analytics	code,	…

§ Privilege	separation	in	practice
− Loading	a	document	from	a	different	origin	leverages	the	SOP

− Loading	a	document	in	a	sandboxed	frame	creates	a	unique	origin

−Communication	can	be	enabled	with	the	Web	Messaging	API

@PhilippeDeRyck

PRIVILEGE SEPARATION AT DROPBOX

https://blogs.dropbox.com/tech/2015/09/csp-third-party-integrations-and-privilege-separation/

@PhilippeDeRyck

THE GOAL OF CONTENT SECURITY POLICY (CSP)

§ CSP	is	intended	as	a	defense-in-depth	mechanism	against	injection	attacks

−Gives	developers	a	way	to	lock	down	their	application	in	various	ways
−Constrains	an	attacker	in	case	of	an	injection	vulnerability	in	the	application
−CSP	is	not	a	replacement	for	traditional	XSS	mitigation	techniques

§ CSP	places	two	kinds	of	restrictions	on	a	page
− It	disables	“dangerous	features”	(e.g.	inline	scripts,	inline	styles	and	the	use	of	eval)
− It	only	loads	resources	that	are	explicitly	whitelisted,	and	blocks	everything	else

§ CSP	is	an	extensive	security	policy,	with	a	wide	variety	of	features
−We	will	focus	on	its	capabilities	to	restrict	XSS	attacks	first

49

@PhilippeDeRyck

CSP	CAN ALSO RESTRICT OTHER TYPES OF CONTENT

§ Injection	attacks	do	not	necessarily	depend	on	JavaScript
−CSS	injection	can	allow	for	the	extraction	of	information

−HTML	injection	can	modify	the	UI,	tricking	the	user	into	performing	certain	actions

§ CSP	has	plenty	of	directives	to	constrain	behavior	in	the	context
−Directives	to	control	included	content	(styles,	images,	fonts,	frames,	…)

−Directives	to	control	outgoing	requests	(XHR,	form	submissions,	...)

−Directives	to	define	a	sandbox	on	the	current	resource

§ Additionally,	other	security	features	have	been	added	to	CSP	as	well
− The	mechanism	to	upgrade	insecure	requests	and	to	block	mixed	content

−A	replacement	mechanism	for	the	X-FRAME-OPTIONS	header

50

@PhilippeDeRyck

BROWSER SUPPORT – CONTENT SECURITY POLICY

http://caniuse.com/#search=sri

@PhilippeDeRyck

SESSIONS,	COOKIES AND TOKENS

@PhilippeDeRyck

COOKIE-BASED SESSION MANAGEMENT

GET http://www.example.com

200 OK
<html>…</html>

GET http:// www.example.com /contacts.js

200 OK
… contact info …

www.example.com

@PhilippeDeRyck

THE SECURITY PROPERTIES OF COOKIES

§ Cookies	are	associated	with	a	domain,	not	with	an	origin

−Cookies	are	shared	over	HTTP	and	HTTPS
−Cookies	can	be	read	and	set	by	a	header,	and	from	JavaScript

§ These	properties	are	suboptimal,	and	cause	a	lot	of	problems

− Stealing	cookies	through	eavesdropping
− Session	hijacking	/	session	fixation	through	JavaScript

§ Cookie	flags	aim	to	patch	cookie	behavior	to	make	it	more	secure

− The	Secure flag	marks	a	cookie	for	use	over	HTTPS	only

− The	HttpOnly flag	makes	a	cookie	inaccessible	from	JavaScript

@PhilippeDeRyck

COOKIE PREFIXES MAKE IT EVEN MORE COMPLICATED

§ The	recently	proposed	cookie-prefix	spec	tries	to	restrict	cookie	behavior
− Cookie	names	can	be	prefixed	with	an	attribute,	enforcing	strict	behavior

§ The	__Secure- prefix	restricts	a	cookie	to	secure	connections	only
− It	cannot	be	set	over	an	insecure	connection

− It	cannot	be	set	if	the	Secure flag	is	missing

§ The	__Host- prefix	restricts	a	cookie	to	a	specific	host
− It	will	only	be	sent	to	a	host,	never	to	a	domain

− It	must	be	set	for	the	root	path	(/)	and	with	the	Secure flag

§ Enforcement	depends	on	browser	behavior
− Currently	supported	in	all	modern	browsers	(Chrome,	Firefox,	Opera,	Edge,	Safari)

55

@PhilippeDeRyck

THE UNDERESTIMATED THREAT OF CSRF

websec.be

anysite.io

login	as	Philippe
Welcome	page

Show	messages

Latest	messages

Show	obligatory	cat	pics

Kittens	from	hell

56

@PhilippeDeRyck

THE ESSENCE OF CSRF

§ CSRF	exists	because	the	browser	handles	cookies	very	liberally
− They	are	automatically	attached	to	any	outgoing	request

−By	default,	there’s	no	mechanism	to	indicate	the	intent	of	a	request

§Many	applications	are	unaware	that	any	context	can	send	requests

− The	session	cookies	will	be	attached	automatically	by	the	browser

−Defending	against	CSRF	requires	explicit	action	by	the	developer

§ Because	of	its	subtle	nature,	CSRF	is	a	common	vulnerability

− Illustrated	by	cases	at	Google,	Facebook,	eBay,	…
−Ranked	#8	on	OWASP	top	10	(2013)

57

@PhilippeDeRyck

HIJACKING ACCOUNTS USING CSRF

http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

58

@PhilippeDeRyck

HIJACKING ACCOUNTS USING CSRF

Ebay.com

Reset	password

OK,	we	will	give	you	a	call

Change	telephone	number

Sure	thing,	Philippe

Reset	password	with	secret	code

All	done

http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

59

@PhilippeDeRyck

TAKING CONTROL OF YOUR HOME NETWORK WITH CSRF

http://support.dlink.com/CMS_FTP/CMS_DAF/Product/Pictures/DI-524/DI-524_fornt20131003114340.png

60

@PhilippeDeRyck

TAKING CONTROL OF YOUR HOME NETWORK WITH CSRF

192.168.1.1

Change	DNS	server

Sure	thing,	admin

http://news.softpedia.com/news/CSRF-Vulnerability-in-eBay-Allows-Hackers-to-Hijack-User-Accounts-Video-383316.shtml

Login	with	admin	- admin

Invalid	credentials

Login	with	admin	- 1234

Welcome	admin

61

@PhilippeDeRyck

TAKING CONTROL OF YOUR HOME NETWORK WITH CSRF

http://arstechnica.com/security/2014/03/hackers-hijack-300000-plus-wireless-routers-make-malicious-changes/
https://threatpost.com/pharming-attack-targets-home-router-dns-settings/111326

62

@PhilippeDeRyck

CSRF	DEFENSE 1:	HIDDEN FORM TOKENS
websec.be

anysite.io

login	as	Philippe
Welcome	page

Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

<input type=“hidden” name=“csrftoken” value”1234abc” />

63

@PhilippeDeRyck

CSRF	DEFENSE 2:	CHECKING THE ORIGIN HEADER

websec.be

anysite.io

Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

Origin: https://websec.be

64

@PhilippeDeRyck

CSRF	DEFENSE 3:	TRANSPARENT TOKENS
websec.be

anysite.io

login	as	Philippe
Welcome,	Philippe

Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

POST …
Cookie: SID=123, XSRF-TOKEN=abc
X-XSRF-TOKEN: abc

Cookie	value	is	copied	to	a	
header	by	JavaScript	code

65

@PhilippeDeRyck

CSRF	DEFENSE 4:	SAMESITE COOKIES

websec.be

anysite.io

login	as	Philippe
Welcome	page

Post	message

Sure	thing,	Philippe

Show	obligatory	cat	pics

Kittens	from	hell

Set-Cookie: SSID=1234; SameSite=Strict

https://tools.ietf.org/html/draft-west-first-party-cookies-07 66

@PhilippeDeRyck

BROWSER SUPPORT – COOKIE FLAGS

http://caniuse.com/#search=sri

@PhilippeDeRyck

OVERVIEW OF CSRF	DEFENSES

§Hidden	form	tokens
−Requires	server-side	storage	of	CSRF	tokens,	which	may	be	resource-intensive

§ Checking	the	origin	header
−Very	useful	when	other	context	information	is	missing

−Practical	defense	during	the	setup	of	a	WebSocket	connection

§ Transparent	tokens
− Stateless	CSRF	defense	mechanism

− Extremely	compatible	with	client-side	JavaScript	applications	(e.g.	AngularJS)

§ SameSite cookies
−Addresses	the	root	of	the	problem,	but	browser	support	is	still	very	limited

68

@PhilippeDeRyck 69http://jwt.io/

@PhilippeDeRyck

A	JWT	IS A BASE64-ENCODED DATA OBJECT

{
"alg": "HS256",
"typ": "JWT"

}

{
"iss": ”distrinet.cs

.kuleuven.be",
"exp": 1425078000000,
"name": "philippe",
"admin": true

}

HMACSHA256(
base64UrlEncode(header)
+ "." +
base64UrlEncode(payload),
“secret”

)

Header Payload Signature

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJkaXN0cmluZXQuY3Mua3VsZXV2
ZW4uYmUiLCJleHAiOjI0MjUwNzgwMDAwMDAsIm5hbWUiOiJwaGlsaXBwZSIsImFkbWluIjp0c

nVlfQ.dIi1OguZ7K3ADFnPOsmX2nEpF2Asq89g7GTuyQuN3so

70

@PhilippeDeRyck

JWT	REPRESENTS DATA,	NOT THE TRANSPORT MECHANISM

§ The	cookies	vs	tokens	debate	can	be	a	bit	confusing
−Cookies	are	a	transport	mechanism,	just	like	the	Authorization header

− Tokens	are	a	representation	of	(session)	data,	like	a	(session)	identifier

§ JWT	tokens	can	be	transmitted	in	a	cookie,	or	in	the	Authorization header
−Defining	how	to	transmit	a	JWT	token	is	up	to	the	web	application

− This	choice	determines	the	need	for	JavaScript	support	and	CSRF	defenses

§With	the	Authorization	header,	the	application	needs	to	add	the	token

− Implies	that	the	token	is	stored	in	memory	or	in	localstorage,	with	origin	constraints
− Storing	the	token	in	a	cookie	only	uses	domain	constraints,	and	suffers	from	CSRF

71

@PhilippeDeRyck

PUTTING IT ALL TOGETHER

@PhilippeDeRyck

SIMPLE CORS	EXAMPLE WITH CREDENTIALS

73

Load page

XHR: load user’s profile from websec.be

www.example.com

www.websec.be

Origin: http://www.example.com
Cookie: PHPSESSID=1a2b3c4d5e6f

Access-Control-Allow-Origin:
http://www.example.com

Access-Control-Allow-Credentials: true

var xhr = new XMLHttpRequest();
xhr.open('GET', 'http://www.websec.be/profile', false);
xhr.withCredentials = true;
xhr.send();

@PhilippeDeRyck

WEBSOCKETS DEPEND ON THE ORIGIN HEADER

https://bugs.launchpad.net/nova/+bug/1409142

@PhilippeDeRyck

KEEPING SECRETS IN THE BROWSER

Private	origin

Main	site

Asks	the	private	origin	to	make	certain	

requests,	without	having	to	know	the	API	key.	

Web	

Messaging

Iframe	with	a	separate	origin

Only	the	code	to	keep	the	API	key	and	

perform	API	calls		runs	here

Main	site

@PhilippeDeRyck

DOCUMENT RENDERING IN CHROMEOS

76

https://speakerdeck.com/mikewest/securing-the-client-side-devoxx-2012

Sandboxed	JS

execution

environment

Main	site

Protected	with	CSP	to	prevent	injection

Delegates	insecure	executions	to	the	sandboxed	iframe

Web	

Messaging

Sandboxed	iframe

Runs	in	unique	origin

Allowed	to	run	JS

Main	site

@PhilippeDeRyck

NOW IT’S UP TO YOU …

Secure ShareFollow

https://www.websec.be philippe.deryck@cs.kuleuven.be /in/philippederyck

Web Security Essentials
April 24 – 25, Leuven, Belgium
https://essentials.websec.be

