
@PhilippeDeRyck

THE RISE AND FALL OF CLIENT-SIDE

SECURITY POLICIES

Philippe	De	Ryck
SecAppDev 2017

https://www.websec.be

@PhilippeDeRyck

@PhilippeDeRyck

https://web-design-weekly.com/2014/07/09/front-end-security-thing-concerned/

@PhilippeDeRyck

X-FRAME-OPTIONS

Content	Security	Policy

HTTP	Strict	Transport	Security
X-Content-Type-Options

Sandbox	attribute
HTTP	Public	Key	Pinning

X-XSS-Protection

Subresource Integrity

NEW CLIENT-SIDE SECURITY TECHNOLOGIES ARE PREVALENT

@PhilippeDeRyck

@PhilippeDeRyck

WHERE DO YOU GET STARTED?

YES,	LET’S DO SECURITY!

@PhilippeDeRyck

ABOUT ME – PHILIPPE DE RYCK

§My	goal	is	to	help	you	build	secure	web	applications
−Hosted	and	customized	in-house	training
− Specialized	security	assessments	of	critical	systems
− Threat	landscape	analysis	and	prioritization	of	security	efforts
−More	information	and	resources	on	https://www.websec.be

§My	security	expertise	is	broad,	with	a	focus	on	Web	Security
−PhD	in	client-side	web	security
−Main	author	of	the	Primer	on	client-side	web	security

7

@PhilippeDeRyck

https://www.ssllabs.com/ssltest/analyze.html?d=websec.be

@PhilippeDeRyck

content

https://securityheaders.io/

@PhilippeDeRyck

https://securityheaders.io/?q=https%3A%2F%2Fsecurityheaders.io%2F

@PhilippeDeRyck

OBSERVATORY BY MOZILLA

https://observatory.mozilla.org/

@PhilippeDeRyck

PROS /	CONS OF SECURITY SCANNERS

§ Security	scanners	play	an	important	role	in	awareness
−Grade-based	evaluation	is	a	strong	motivator	to	improve	your	security

@PhilippeDeRyck

PROS /	CONS OF SECURITY SCANNERS

@PhilippeDeRyck

PROS /	CONS OF SECURITY SCANNERS

§ Security	scanners	play	an	important	role	in	awareness
−Grade-based	evaluation	is	a	strong	motivator	to	improve	your	security

§ Fundamentally,	this	raises	a	lot	of	questions
−How	do	you	know	you	understood	the	security	measure	correctly?
−How	do	you	know	your	configuration	is	secure?
−How	do	you	know	you	covered	it	all?
−And	if	you	don’t	get	an	A,	what	do	you	focus	on	first?

§ The	real	answer	comes	down	to	knowledge
−Understand	the	security	technology,	and	make	sure	it	fits	within	your	context

@PhilippeDeRyck

HTTP	STRICT TRANSPORT SECURITY
Case	study	1

@PhilippeDeRyck

HSTS	TRANSFORMS HTTP	INTO HTTPS

GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

GET https://www.websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

websec.be

GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

www.websec.be

16

@PhilippeDeRyck

HSTS	USAGE STATISTICS

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Stats

4.41%

2015	- Top	1K

12.27%

2016	- Top	1K

@PhilippeDeRyck

HISTORY SNIFFING WITH HSTS	AND CSP

200 OK

18

Load image over HTTPNo	upgrade	
to	HTTPS

Allowed	by	
CSP

200 OK

Load image over HTTPSUpgrade	to	
HTTPS

Blocked	by	
CSP

anysite.io

websec.be

Content-Security-Policy: img-src http:

HSTS	Enabled

@PhilippeDeRyck

HISTORY SNIFFING WITH HSTS	AND CSP

§ Sites	that	deploy	HSTS	redirect	HTTP	to	HTTPS
− The	browser	will	load	HTTP	resources	over	HTTPS

§ Sniffly is	a	timing	tool	that	loads	an	image	over	HTTP,	while	blocking	it	with	CSP
−Based	on	timing,	it	determines	whether	your	browser	knew	the	site	or	not

§ Attacks	like	this	are	somewhat	inherent	to	what	HSTS	does
− Yet,	this	specific	attack	has	been	prevented	by	modifying	the	CSP	spec
−CSP	no	longer	allows	you	to	lock	yourself	in	to	use	only	insecure	resources

• http: is	essentially	treated	as	http: https:

https://github.com/diracdeltas/sniffly

@PhilippeDeRyck

SECURING THE FIRST CONNECTION OVER HTTPS	…

GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

GET https://www.websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

websec.be

GET https://www.websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

www.websec.be

20

@PhilippeDeRyck

PRELOAD COPY/PASTING

§HSTS	sites	can	opt-in	to	be	preloaded	in	the	browser
− This	requires	explicit	consent	by	adding	the	preload	flag	to	the	header

§ It	turns	out	that	many	sites	give	this	consent,	without	being	on	the	list
− Theoretically,	this	allows	anyone	to	put	them	on	the	list
−Once	on	the	list,	it’s	HTTPS	or	nothing

§ The	preload	site	actually	performs	some	sanity	checks	before	adding	you
− So	this	prevents	rampant	abuse	of	this	kind	of	feature

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

@PhilippeDeRyck

PRELOADING HSTS	INTO THE BROWSER

https://hstspreload.appspot.com/?

22

@PhilippeDeRyck

PRELOAD FOR BETTER OR FOR WORSE

https://bugs.chromium.org/p/chromium/issues/detail?id=527947

@PhilippeDeRyck

HTTP	PUBLIC KEY PINNING
Case	study	2

@PhilippeDeRyck

THIS ALL STARTED WITH GOOGLE

25

§ In	fear	of	fraudulent	certificates,	Google	took	action
− They	wanted	to	protect	the	users	of	their	own	services
− They	control	one	of	the	popular	browsers,	which	makes	this	easier

§Hardcoded	fingerprints	of	Google’s	keys	added	to	Chrome
− Lead	to	the	discovery	of	the	DigiNotar certs

@PhilippeDeRyck

HTTP	PUBLIC-KEY PINNING (HPKP)

26

§HPKP	is	a	server-driven,	browser-enforced	security	policy
− Instructs	the	browser	to	only	accept	a	pinned	public	key
− Intended	to	be	used	in	combination	with	HSTS

§ Pins	associate	a	hostname	with	a	cryptographic	identity
−Can	be	on	certificate	level,	CA	level,	…
− Trade-off	between	specificity	and	resilience

Public-Key-Pins: max-age=3000;
pin-sha256="d6qzRu9zOECb90Uez27xWltNsj0e1Md7GkYYkVoZWmM=";
pin-sha256="E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+xcprMF+44U1g="

@PhilippeDeRyck

HTTP	PUBLIC-KEY PINNING (HPKP)

27

Initiate	TLS	connection	to	some-shop.com

Send	Valid	Cert

Initiate	TLS	connection
to	some-shop.com

Send	Valid	Cert

some-shop.com

Pins
some-shop.com

12345

Verify
Pin

Public-Key-Pins: 12345

Initiate	TLS	connection	to	some-shop.com

Send	Valid	Cert

Public-Key-Pins: 12345

Verify
Pin

@PhilippeDeRyck

HPKP	USAGE STATISTICS

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Stats

0.53%

2015	- Top	1K

0.42%

2016	- Top	1K

@PhilippeDeRyck

https://www.smashingmagazine.com/be-afraid-of-public-key-pinning/

HPKP	IS AWESOME,	ASK SMASHING MAGAZINE

@PhilippeDeRyck

WHAT CAN GO WRONG WITH HPKP?

30

Initiate	TLS	connection	to	some-shop.com

Send	Valid	Cert

Initiate	TLS	connection
to	some-shop.com

Send	Valid	Cert

some-shop.com

Pins
some-shop.com

pwnd

Public-Key-Pins: 12345

Verify
Pin

Public-Key-Pins: pwnd

@PhilippeDeRyck

DEALING WITH HOSTILE PINNING

§Has	been	coined	as	HPKP	Suicide	or	RansomPKP
−Concerns	scenarios	where	your	server	is	compromised
−Pins	are	served	to	your	users,	and	this	cannot	be	easily	undone

§Hostile	pinning	is	a	difficult	problem	to	solve
− Spec	suggests	that	browsers	limit	the	duration	of	max-age
−Use	complementary	solutions	like	Certificate	Transparency

§ You	probably	do	not	need	HPKP	on	your	site
− You	can	deploy	HPKP	in	report-only	mode,	giving	you	reports	about	potential	problems
−However,	powerful	attackers	can	simply	suppress	reports	as	well

31

@PhilippeDeRyck

X-XSS-PROTECTION
Case	study	3

@PhilippeDeRyck

AUTOMATIC BROWSER-BASED XSS	PROTECTION

§ Browser-based	protection	against	reflected	XSS
− Scan	outgoing	requests	for	potential	payloads	(URL,	body)
− Inspect	if	the	payload	is	reflected	back	in	the	response

§ Initial	version	introduced	in	IE8,	known	as	XSS	filter
−Chrome	and	Safari	have	something	similar	with	the	XSS	Auditor
− Intended	as	a	defense-in-depth	mechanism,	not	a	core	security	feature

§Mechanism	can	be	configured	with	the	X-XSS-Protection	header
−Default	behavior	is	to	try	and	remove	the	malicious	payload
−Response	is	rewritten	before	it	is	rendered

@PhilippeDeRyck

WHAT IS THE BEST HEADER SETTING?

http://blog.innerht.ml/the-misunderstood-x-xss-protection/

@PhilippeDeRyck

THE DANGERS OF AUTOMATED SANITIZATION

§ IE	rewrites	the	response	to	render	the	payload	harmless
− #	is	inserted	to	change	the	meaning	of	the	code,	thus	preventing	the	attack
− The	process	is	regex	based

http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf

@PhilippeDeRyck

THE DANGERS OF AUTOMATED SANITIZATION

§ IE	rewrites	the	response	to	render	the	payload	harmless
− #	is	inserted	to	change	the	meaning	of	the	code,	thus	preventing	the	attack
− The	process	is	regex	based

§ IE	can	be	tricked	into	rewriting	harmless	code	into	XSS	code

http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf

@PhilippeDeRyck

SO JUST BLOCK THE PAGE LOAD WHEN AN ATTACK IS DETECTED

§ The	header	can	be	configured	to	block	the	page	load	completely
− The	context	remains	about:blank instead	of	loading	the	HTML	from	the	response

§ Seems	like	a	solid	protection	mechanism,	but	Facebook	may	disagree
−People	chained	a	couple	of	bugs	to	steal	OAuth	2.0	access	tokens	
−Awarded	$5000	bug	bounty	from	Facebook,	and	resulted	in	a	patch	in	Chrome
− Facebook	turns	off	X-XSS-Protection completely

§ A	brief	overview	of	what	causes	these	problems
− about:blank inherits	the	origin	of	the	parent	page
−After	blocking	the	page	load,	document.referrer contains	the	last	seen	URL
−Because	of	origin	inheritance,	this	value	is	accessible	to	the	parent	frame

http://homakov.blogspot.be/2013/02/hacking-facebook-with-oauth2-and-chrome.html

@PhilippeDeRyck

CONTENT SECURITY POLICY
Case	study	4

@PhilippeDeRyck

<h1>My PHP app</h1>
<h3>Hi <script>alert(1)</script></h3>

<button onclick="doSomething()">
Click me

</button>
<script>
function doSomething() { ... }

</script>
<p>
...
<script src="http://evil.com/hackme.js"></script>

</p>

@PhilippeDeRyck

http://www.ambuehler.ethz.ch/CDstore/www2010/www/p921.pdf

@PhilippeDeRyck

THE GOAL OF CONTENT SECURITY POLICY (CSP)

§ CSP	is	intended	as	a	defense-in-depth	mechanism	against	injection	attacks
−Gives	developers	a	way	to	lock	down	their	application	in	various	ways
−Constrains	an	attacker	in	case	of	an	injection	vulnerability	in	the	application
−CSP	is	not	a	replacement	for	traditional	XSS	mitigation	techniques

§ CSP	places	two	kinds	of	restrictions	on	a	page
− It	disables	“dangerous	features”	(e.g.	inline	scripts,	inline	styles	and	the	use	of	eval)
− It	only	loads	resources	that	are	explicitly	whitelisted,	and	blocks	everything	else

§ CSP	is	an	extensive	security	policy,	with	a	wide	variety	of	features
−We	will	focus	on	its	capabilities	to	restrict	XSS	attacks	first

41

@PhilippeDeRyck

USING CSP	TO RESTRICT INJECTED SCRIPTS

<h1>You searched for <script>…</script></h1>

Injection	of	inline	scripts

<h1>You searched for <script src=“//example.com/evil.js”></script></h1>

Injection	of	remote	scripts

By	default,	CSP	prevents	the	execution	of	inline	script	blocks

Unless	you	whitelist	this	host/file,	CSP	will	not	load	the	external	file

42

@PhilippeDeRyck

DEFINING A CSP	POLICY WITH WHITELISTS

§ The	browser	enforces	a	CSP	policy	consisting	of	directives	(e.g.	script-src)
−Delivered	alongside	the	page	as	an	HTTP	response	header
− Included	in	the	page	as	an	HTML	meta	tag

§ A	directive	can	have	numerous	valid	values
−Keywords:	‘none’,	‘self’,	*
− Expressions:	https://websec.be,	https:,	https://websec.be/jquery.js,	*.websec.be

Content-Security-Policy:
script-src ‘self’ https://www.example.com *.websec.be

43

@PhilippeDeRyck

<h1>My PHP app</h1>
<h3>Hi <script>alert(1)</script></h3>

<button onclick="doSomething()">
Click me

</button>
<script>
function doSomething() { ... }

</script>
<p>
...
<script src="http://evil.com/hackme.js"></script>

</p>

@PhilippeDeRyck

<h1>My PHP app</h1>
<h3>Hi <script>alert(1)</script></h3>

<button onclick="doSomething()">
Click me

</button>
<script>
function doSomething() { ... }

</script>
<p>
...
<script src="http://evil.com/hackme.js"></script>

</p>

document.querySelector(“button”)
.addEventListener(“click”, doSomething);

function doSomething() { … }

<script src=“myapp.js”></script>

@PhilippeDeRyck

http://www.ambuehler.ethz.ch/CDstore/www2010/www/p921.pdf

We	propose	the	use	of	content	restrictions	to	lock	down	websites	
behavior,	and	have	provided	an	implementation	of	content	

restrictions	called	Content	Security	Policy.

@PhilippeDeRyck

BROWSER SUPPORT – CONTENT SECURITY POLICY LEVEL 1

http://caniuse.com/#search=content

@PhilippeDeRyck

https://www.usenix.org/legacy/events/hotsec11/tech/final_files/Weinberger.pdf

HTML	Security	policies	should	be	the	central	mechanism	going	
forward	for	preventing	content	injection	attacks

Our	results	show	that	using	CSP	for	BugZilla and	HotCRP is	
both	a	complex	task	and	may	harm	performance.

@PhilippeDeRyck

DO NOT RE-ENABLE INLINE SCRIPTS WITH `UNSAFE-INLINE`

§ Legacy	applications	are	riddled	with	inline	scripts
− Script	blocks	and	event	handlers	everywhere

§ It’s	tempting	to	use	‘unsafe-inline’ to	re-enable	inline	script
−But	this	would	disable	all	protection	against	XSS	attacks

§ CSP	level	2	allows	inline	script	blocks	using	hashes	and	nonces
−Only	script	blocks	can	be	re-enabled,	not	inline	event	handlers

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
https://cdn.syndication.twimg.com ‘unsafe-inline’

49

@PhilippeDeRyck

RE-ENABLING INLINE SCRIPTS WITH HASHES

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
'sha256-qznLcsROx4GACP2dm0UCKCzCG-HiZ1guq6ZZDob_Tng='

§ You	can	whitelist	inline	script	blocks	by	adding	their	hash	to	the	policy
− The	hash	is	a	simple	checksum	of	the	script	block’s	contents
−Chrome	calculates	the	hash	for	you	when	it	encounters	a	violating	script	block

§ The	use	of	hashes	causes	the	browser	to	ignore	`unsafe-inline`

50

@PhilippeDeRyck

<h1>My PHP app</h1>
<h3>Hi <script>alert(1)</script></h3>

<button onclick="doSomething()">
Click me

</button>
<script>
document.querySelector(“button”)
.addEventListener(“click”, doSomething);

function doSomething() { … }
</script>
<p>
...
<script src="http://evil.com/hackme.js"></script>

</p>

script-src ‘sha256-…’

@PhilippeDeRyck

RE-ENABLING INLINE SCRIPTS WITH NONCES

§Nonces mark	inline	script	blocks	as	trusted
− The	server	needs	to	add	a	random	nonce	to	the	policy	and	to	the	script	blocks
− The	nonce	should	be	freshly	generated	on	every	request
− The	attacker	will	not	be	able	to	predict	the	nonce,	so	injected	script	will	be	ignored

§ The	use	of	nonces causes	the	browser	to	ignore	`unsafe-inline`

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
https://cdn.syndication.twimg.com 'nonce-EDNnf03nceIOfn39fn3e9h3sdfa'

<script nonce=”EDNnf03nceIOfn39fn3e9h3sdfa”>…</script>

52

@PhilippeDeRyck

<h1>My PHP app</h1>
<h3>Hi <script>alert(1)</script></h3>

<button onclick="doSomething()">
Click me

</button>
<script nonce=“aT1a32n4SA”>
document.querySelector(“button”)
.addEventListener(“click”, doSomething);

function doSomething() { … }
</script>
<p>
...
<script src="http://evil.com/hackme.js"></script>

</p>

@PhilippeDeRyck

script-src 'unsafe-eval' https://www.dropbox.com/static/compiled/js/
https://www.dropbox.com/static/javascript/ https://www.dropbox.com/static/api/
https://cfl.dropboxstatic.com/static/compiled/js/
https://www.dropboxstatic.com/static/compiled/js/ https://cfl.dropboxstatic.com/static/javascript/
https://www.dropboxstatic.com/static/javascript/ https://cfl.dropboxstatic.com/static/api/
https://www.dropboxstatic.com/static/api/ 'unsafe-inline' 'nonce-EtRYI0CtY17XHMVxdxsV' ;
default-src 'none' ;
worker-src blob: ;
style-src https://* 'unsafe-inline' 'unsafe-eval' ; connect-src https://* ws://127.0.0.1:*/ws ;
child-src https://www.dropbox.com/static/serviceworker/ blob: ;
form-action 'self' https://dl-web.dropbox.com/ https://photos.dropbox.com/
https://accounts.google.com/ https://api.login.yahoo.com/ https://login.yahoo.com/ ; base-uri
'self' api-stream.dropbox.com https://showbox-tr.dropbox.com ;
img-src https://* data: blob: ; report-uri https://www.dropbox.com/log/csp_enforced ;
frame-src https://* carousel://* dbapi-6://* dbapi-7://* dbapi-8://* itms-apps://* itms-appss://*
;
object-src https://cfl.dropboxstatic.com/static/ https://www.dropboxstatic.com/static/ 'self'
https://flash.dropboxstatic.com https://swf.dropboxstatic.com https://dbxlocal.dropboxstatic.com ;
media-src https://* blob: ;
font-src https://* data:

https://blogs.dropbox.com/tech/tag/content-security-policy/

@PhilippeDeRyck

BROWSER SUPPORT – CONTENT SECURITY POLICY LEVEL 2

http://caniuse.com/#search=csp

@PhilippeDeRyck

http://delivery.acm.org/10.1145/2980000/2978363/p1376-weichselbaum.pdf

Unfortunately,	the	majority	of	these	policies	are	inherently	
insecure.	Via	automated	checks,	we	were	able	to	demonstrate	

that	94.72%	of	all	policies	can	be	trivially	bypassed	…

@PhilippeDeRyck

BUT HOW SECURE IS YOUR CSP	POLICY REALLY?

https://csp-evaluator.withgoogle.com/

57

@PhilippeDeRyck

COMMON MISTAKES AND BYPASS ATTACKS

script-src ‘self’

Missing	object-src (or	default-src)

<object type=“application/x-
shockwave-flash” data=“URL with
reflected XSS in parameter”><param
name=“AllowScriptAccess”
value=“always”></object>

script-src ‘self’;
object-src ‘none’

Combining	‘self’	with	uploads

<script
src=“user_upload/evil_cat.jpg.js”>
</script>

script-src ‘self’ https://whitelist.cdn.com

Whitelist	bypass	with	JSONP

<script src=“https://whitelist.cdn.com/
jsonp?callback=alert”>

script-src ‘self’ https://whitelist.cdn.com

Whitelist	bypass	with	AngularJS

<script src=“https://whitelist.cdn.com/angular.js”>
<div ng-app ng-csp ng-
click=“$event.view.alert(1337)”></div>

https://speakerdeck.com/mikispag/making-csp-great-again-michele-spagnuolo-and-lukas-weichselbaum

58

@PhilippeDeRyck

IT TURNS OUT ALMOST NOBODY GETS CSP	RIGHT

https://speakerdeck.com/mikispag/acm-ccs-2016-csp-is-dead-long-live-csp

59

@PhilippeDeRyck

HOW GOOGLE PROPOSES TO FIX CSP

§ Google	tried	to	use	CSP	with	whitelists,	but	it	just	doesn’t	work
− Cascading	script	loading	makes	them	too	hard	to	maintain
− Too	difficult	to	lock	down	a	whitelist	against	bypass	attacks

§With	‘strict-dynamic’,	trusted	scripts	can	dynamically	load	additional	scripts
− This	trust	propagation	makes	sense,	as	the	trusted	script	already	has	full	access
− ’strict-dynamic’	only	applies	to	scripts	being	loaded	via	DOM	APIs
− Parser-inserted	script	(e.g.	document.write)	will	still	be	blocked

§ This	limits	the	attack	surface	to	the	use	of	DOM	APIs
− This	is	a	lot	easier	to	check	for	during	a	security	review

Content-Security-Policy:
script-src 'nonce-{random}' 'strict-dynamic'

https://csp.withgoogle.com/docs/strict-csp.html

60

@PhilippeDeRyck

<a class="twitter-timeline" href="https://twitter.com/PhilippeDeRyck" data-widget-
id="697784323848736772">Tweets by @PhilippeDeRyck

<script nonce=“j08AD4S8zH”>
!function(d,s,id){var
js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d
.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+"://platform.twitter.co
m/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-
wjs");
</script>

@PhilippeDeRyck

WHITELISTING THESE HOSTS IS NOT A GOOD IDEA

https://csp-evaluator.withgoogle.com/

62

@PhilippeDeRyck

<a class="twitter-timeline" href="https://twitter.com/PhilippeDeRyck" data-widget-
id="697784323848736772">Tweets by @PhilippeDeRyck

<script nonce=“j08AD4S8zH”>
!function(d,s,id){var
js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElemen
tById(id)){js=d.createElement(s);js.id=id;js.src=p+"://platform.twitter.com/widgets.js";fjs.pa
rentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");
</script>

TRUST PROPAGATION ACTUALLY MAKES A LOT OF SENSE

§We	have	already	trusted	Twitter	to	run	code	in	our	context
− If	it	needs	additional	resources,	we	are	very	likely	to	allow	them	to	be	loaded
− strict-dynamic simply	makes	this	implicit	trust	explicit	through	trust	propagation

§ Trusted	scripts	can	load	resources	through	appropriate	APIs

@PhilippeDeRyck

A	UNIVERSAL CSP	POLICY AGAINST XSS	ATTACKS

§ Inline	scripts	and	remote	scripts	are	marked	as	trusted	with	a	nonce
− Subsequent	script-loading	operations	are	enabled	through	‘strict-dynamic’
− If	no	plugins	(flash	/	java)	are	loaded,	object-src should	be	set	to	‘none’

§ The	other	expressions	enable	compatibility	with	non-compliant	browsers
− Because	of	the	nonces,	modern	browsers	ignore	`unsafe-inline`
− Because	of	’strict-dynamic’,	modern	browsers	ignore	the	whitelist	(https: /	http:)

§ This	policy	only	protects	you	if	you	run	a	modern	browser
− But	on	an	older	browser,	it	still	works	as	before

Content-Security-Policy:
object-src 'none';
script-src 'nonce-{random}' 'unsafe-inline' 'unsafe-eval' 'strict-dynamic' https: http:;
report-uri https://your-report-collector.example.com/

https://csp.withgoogle.com/docs/strict-csp.html

64

@PhilippeDeRyck

FROM ‘STRICT-DYNAMIC’	TO A UNIVERSAL CSP

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}' 'strict-dynamic' 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}’ 'strict-dynamic’ 'unsafe-eval';
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src ’nonce-{random}’ 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Content-Security-Policy:
object-src 'none';
script-src 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

Remote
Inline

Remote
Inline

Remote
Inline

@PhilippeDeRyck

CSP	USAGE STATISTICS

https://www.owasp.org/index.php/OWASP_Secure_Headers_Project#tab=Stats

1.18%

2015	- Top	1K

4.99%

2016	- Top	1K

@PhilippeDeRyck

FOCUSING YOUR EFFORTS IN 2017

@PhilippeDeRyck

A	BIG DIFFERENCE BETWEEN EXISTING AND NEW SYSTEMS

@PhilippeDeRyck

HTTPS	AS A SECURITY BASELINE

§HTTPS	is	considered	mandatory	for	all	web	applications
− Sensitive	features	are	only	available	to	Secure	Contexts

§ All	communication	should	happen	over	HTTPS,	with	HSTS	enabled
− Should	be	easy	if	HTTPS	is	already	in	place
−Recommended	to	apply	HSTS	to	all	subdomains	as	well
−Recommended	to	preload	HSTS

§HPKP	is	probably	overkill	for	you
−Getting	it	right	is	more	difficult	than	it	seems
−HPKP	is	also	dangerous	when	you	get	it	wrong

ImportanceImpact

@PhilippeDeRyck

COOKIES SHOULD BE PROPERLY PROTECTED

§ Basic	cookie	security	features	have	been	around	for	a	while
−All	cookies	should	be	marked	Secure (HTTPS	is	a	baseline	requirement)
−Most	cookies	can	be	marked	as	HttpOnly

§ Recently,	two	new	security	features	have	been	proposed
− SameSite helps	prevent	CSRF	attacks
−Cookie	prefixes enable	additional	browser	protections

§ Browser	support	is	a	bit	limited,	but	it	will	pick	up	
− Enabling	these	features	now	future-proofs	your	cookies

ImportanceImpact

@PhilippeDeRyck

BROWSER-BASED XSS	PROTECTION SHOULD BE ENABLED

§ Rule	of	thumb:	never	leave	it	default
− Either	turn	it	off,	or	enable	blocking	mode

§ Issues	with	X-XSS-Protection	are	very	limited
− Turning	it	off	is	only	OK	if	you	are	100%	sure	that	you	do	not	have	reflected	XSS
− This	requires	a	lot	of	discipline,	and	separation	between	data	and	code

§ In	general,	blocking	mode	is	the	way	to	go

ImportanceImpact

@PhilippeDeRyck

VERIFY WHAT YOU’RE LETTING IN YOUR CONTEXT

§ Subresource Integrity	allows	you	to	verify	script	files	and	style	sheets
−Prevents	the	loading	of	malicious	code	by	verifying	its	checksum
− Small	amount	of	effort	to	add	checksums	manually
−Build	systems	are	capable	of	doing	this	automatically

§Many	CDNs	are	compatible	with	SRI
−Requires	basic	support	for	Cross-Origin	Resource	Sharing

§ If	you	offer	public	libraries,	make	sure	SRI	works	for	them
− Enable	the	appropriate	CORS	headers

ImportanceImpact

@PhilippeDeRyck

VERIFY WHAT YOU’RE LETTING IN YOUR CONTEXT

§ Subresource Integrity	allows	you	to	verify	script	files	and	style	sheets
−Prevents	the	loading	of	malicious	code	by	verifying	its	checksum
− Small	amount	of	effort	to	add	checksums	manually
−Build	systems	are	capable	of	doing	this	automatically

§Many	CDNs	are	compatible	with	SRI
−Requires	basic	support	for	Cross-Origin	Resource	Sharing

§ If	you	offer	public	libraries,	make	sure	SRI	works	for	them
− Enable	the	appropriate	CORS	headers

ImportanceImpact

@PhilippeDeRyck

RESTRICT WHAT’S ALREADY LOADED IN YOUR CONTEXT

§ Content	Security	Policy	controls	what	resources	can	be	loaded
−Disallows	inline	code	/	style,	which	has	a	significant	impact.
−Restricts	the	default	allow-all	policy	from	the	browser

§ CSP	has	evolved	a	lot	since	the	first	version
−Nonces and	hashes	re-enable	inline	scripts
− Strict-dynamic	makes	CSP	very	useful
−Additional	directives	have	been	added

§ CSP	will	become	even	more	important	in	the	future
− Therefore,	compatibility	with	CSP	is	really	important

ImportanceImpact

@PhilippeDeRyck

RESTRICT WHAT’S ALREADY LOADED IN YOUR CONTEXT

§ Content	Security	Policy	controls	what	resources	can	be	loaded
−Disallows	inline	code	/	style,	which	has	a	significant	impact.
−Restricts	the	default	allow-all	policy	from	the	browser

§ CSP	has	evolved	a	lot	since	the	first	version
−Nonces and	hashes	re-enable	inline	scripts
− Strict-dynamic	makes	CSP	very	useful
−Additional	directives	have	been	added

§ CSP	will	become	even	more	important	in	the	future
− Therefore,	compatibility	with	CSP	is	really	important

ImportanceImpact

@PhilippeDeRyck

PRIVILEGE SEPARATION BY DESIGN WITH A SECURE ARCHITECTURE

§ The	best	approach	for	security	is	building	a	client-side	architecture
− The	Same-Origin	Policy	is	the	default	security	policy	of	the	browser
−Additional	building	blocks	allow	you	to	build	security	into	the	design

§ Frontend	development	is	more	than	simply	coding	some	JavaScript

§ SecAppDev covered	numerous	topics	to	support	this
− Essential	web	security	concepts
− Threat	modeling	and	SDLC	activities
−Access	control	concepts
−…

ImportanceImpact

@PhilippeDeRyck

PRIVILEGE SEPARATION BY DESIGN WITH A SECURE ARCHITECTURE

§ The	best	approach	for	security	is	building	a	client-side	architecture
− The	Same-Origin	Policy	is	the	default	security	policy	of	the	browser
−Additional	building	blocks	allow	you	to	build	security	into	the	design

§ Frontend	development	is	more	than	simply	coding	some	JavaScript

§ SecAppDev covered	numerous	topics	to	support	this
− Essential	web	security	concepts
− Threat	modeling	and	SDLC	activities
−Access	control	concepts
−…

ImportanceImpact

@PhilippeDeRyck

WHAT YOU SHOULD TAKE AWAY FROM THIS TALK /	COURSE

§ Building	secure	applications	requires	a	conscious	effort
− Like	any	other	application,	web	applications	require	a	well	thought-out	architecture
−An	important	part	of	that	architecture	resides	in	the	front	end	nowadays

§ A	modern	developer’s	toolbox	is	full	of	security	tools
− Frameworks,	protocols	and	browsers	offer	good	security	features
−But	they	require	knowledge	to	handle	them	correctly

§ The	focus	of	this	talk	was	front	end	security
− Front	end	and	back	end	security	are	complementary
−But	front	end	security	is	worthless	without	solid	back	end	security

@PhilippeDeRyck

NOW IT’S UP TO YOU …

Secure ShareFollow

https://www.websec.be philippe.deryck@cs.kuleuven.be /in/philippederyck

Web Security Essentials
April 24 – 25, Leuven, Belgium
https://essentials.websec.be

