THE RISE AND FALL OF CLIENT-SIDE
SECURITY POLICIES

Philippe De Ryck

SecAppDev 2017

https://www.websec.be
@PhilippeDeRyck

A jJavascript security check at the chent-side is a good alternative 10 server-side security
checks.,

Explanation

Clhemt-side JS based secunty checks are aasily bypassed. Secunty checks should always
0é partormed secver-sde

@PhilippeDeRyck

Front End Security is a thing, and you should be
concerned about it

In case it hasn’t been made clear already, front end security is an important
issue. A front end vulnerability happens when someone is able to harm your
website, application, or users, without ever having to gain access to a server,

database, or hosting provider.

@PhilippeDeRyck

NEW CLIENT-SIDE SECURITY TECHNOLOGIES ARE PREVALENT

HTTP Strict Transport Security
X-Content-Type-Options

X-FRAME-OPTIONS

X-XSS-Protection Content Security Policy

HTTP Public Key Pinning

Sandbox attribute .
Subresource Integrity

@PhilippeDeRyck

TR B
“' f + lL‘\‘[L ‘ ‘

il
J Ml lﬂ\lluL I i

YES, LET'S DO SECURITY!

WHERE DO YOU GET STARTED?

ABOUT ME — PHILIPPE DE RYCK

= My goal is to help you build secure web applications
— Hosted and customized in-house training

— Specialized security assessments of critical systems

— Threat landscape analysis and prioritization of security efforts
— More information and resources on https://www.websec.be

= My security expertise is broad, with a focus on Web Security Primer on Client-
: : : : Side Web Security
— PhD in client-side web security

— Main author of the Primer on client-side web security

@PhilippeDeRyck 7

SSL Report: websec.be (52.58.139.189)

Asseased orc Thu, 02 Mar 2017 M1 21 00 UTT | e | Claar cache

Summary

Overall Rating

https://www.ssllabs.com/ssltest/analyze.html?d=websec.be

@PhilippeDeRyck

securitypeaders.lo
sponsered by () APPLAUSE

Scan your site now

B Wide resuls ¢ Follow redirects

Grand Totals Recent Scans Hall of Fame Hall of Shame
A 155,732 taoshanghae-dajia.. scottheime.co,uk Ar Karunaoutdoos.com f
A 404 84 scotthedme co uk Ae hofvwi033 emea Spo A svirige F
317,336 hefymifSismealtee.,. A securityheadens o A undsgn.com f
19812 secyritybesders o A 0.facedook com A hapnes.com F
203 924 www_alsha maacedell .. oentestaws softser “ sarticuliers secur F

https://securityheaders.io/

@PhilippeDeRyck

Security Report Summary

@PhilippeDeRyck

Site:

IP Address:
Report Time:
Report Short URL:

Headers:

her e fe it 3
I.A‘I._.- i IJ v_. -
-

v Content-Securty-Policy | ¢ Public-Key-Pins | « Strict-Tracsport-Security

T

OBSERVATORY BY MOZILLA

Scan Summary Recommended Change

Most: websne be — You're doing a woaderfal job so fa?

+ www.webaoe.be Did you know that a strong Content Securnity Policy (CSP) policy can help
Scan ID »: 3440381 progect your website against malickous cross-site seripting attacks?
Test Time: March 3 2017 548 AM o Moxiia Wed Security Guidelines (Contesst Security Pollcy)

¢ An Intreduction to Content Securnity Po

Teat Duration: € MCTIncEs
e | ,‘vr.":q' L -‘-}' .'\ .l:..l" 4
Score: Ko/ 100

Ounce you've successfully completed your change, dick [nitiate Rescan for
Tests Passed; 10/11

the mext ploce of advice.

https://observatory.mozilla.org/

@PhilippeDeRyck

PROS / CONS OF SECURITY SCANNERS

= Security scanners play an important role in awareness
— Grade-based evaluation is a strong motivator to improve your security

Hond + X-XSS-Protection]} v X-Content-Type-Options | v X-Frame-Options | v Content-Security-Policy
eaders:
v Strict-Transport-Security | % Public-Key-Pins | % Referrer-Policy

X-XSS-Protection 1, mode=block
X-Content-Type-Options nosniff
X-Frame-Options sameorigin
Content-Security-Policy reflected-xss block
X-Webkit-CSP reflected-xss block
X-Content-Security-Policy reflected-xss block
Strict-Transport-Security max-age=15552000

@PhilippeDeRyck

PROS / CONS OF SECURITY SCANNERS

Warnings

This policy contains 'unsafe-inline' which is dangerous in the script-src directive.

@PhilippeDeRyck

PROS / CONS OF SECURITY SCANNERS

= Security scanners play an important role in awareness
— Grade-based evaluation is a strong motivator to improve your security

* Fundamentally, this raises a lot of questions
— How do you know you understood the security measure correctly?
— How do you know your configuration is secure?
— How do you know you covered it all?
— And if you don’t get an A, what do you focus on first?

= The real answer comes down to knowledge
— Understand the security technology, and make sure it fits within your context

@PhilippeDeRyck

HT TP STRICT TRANSPORT SECURITY

Case study 1

@PhilippeDeRyck

HSTS TRANSFORMS HT TP INTO HT TPS

GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

websec.be

N GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

www.websec.be GET https://www.websec.be

—

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

@PhilippeDeRyck 16

HSTS USAGE STATISTICS

2015 - Top 1K 2016 - Top 1K

4 12.27%

https.//www.owasp.org/index.php/OWASP_Secure Headers_Project#tab=Stats

@PhilippeDeRyck

HISTORY SNIFFING WITH HSTS AND CSP

anysite.io
No upgrade § Allowed by Load image over HTTP
to HTTPS CSP
200 OK
—
websec.be

Upgrade to Blocked by Load image over HTTPS
HTTPS CSP

HSTS Enabled

Content-Security-Policy: img-src http:

@PhilippeDeRyck 18

HISTORY SNIFFING WITH HSTS AND CSP

= Sites that deploy HSTS redirect HTTP to HTTPS

— The browser will load HTTP resources over HTTPS

= Sniffly is a timing tool that loads an image over HTTP, while blocking it with CSP
— Based on timing, it determines whether your browser knew the site or not

= Attacks like this are somewhat inherent to what HSTS does
— Yet, this specific attack has been prevented by modifying the CSP spec

— CSP no longer allows you to lock yourself in to use only insecure resources
* http: is essentially treated as http: https:

@PhilippeDeRyck

SECURING THE FIRST CONNECTION OVER H

PS ...

websec.be

=

www . websec.be

—

@PhilippeDeRyck

GET https://www.websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

GET https://websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

GET https://www.websec.be

200 OK
Strict-Transport-Security: max-
age=31536000; includeSubDomains

20

PRELOAD COPY/PASTING

= HSTS sites can opt-in to be preloaded in the browser
— This requires explicit consent by adding the preload flag to the header

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

= [t turns out that many sites give this consent, without being on the list

— Theoretically, this allows anyone to put them on the list
— Once on the list, it’'s HTTPS or nothing

= The preload site actually performs some sanity checks before adding you
— So this prevents rampant abuse of this kind of feature

@PhilippeDeRyck

PRELOADING HSTS INTO THE BROWSER

Enter a domain for the HSTS preload list:
8

Check status and elgibdny

Information

Enter a domain for the HSTS preload list:

This 1orm & used 10 submit comains for inciusion in Chvome's HTTP Siict Transeon Secunty
At ane hardcoded o Creome as Deing HTTPS only.

websec.be

Check status and eligibdity

Maost megor browsers (Chvome, Beplax, Opera, Satart, |E 11 and ECge) also have HSTS pre
he HITS compatiity maltrix)

Status: wobsec be is not prelcaded
Elgiteity: in order %or wobsec be 10 Do elogble Lor preicading, the armors below must be resoived

Submission Requirements

I & 500 500 The preload drective in an HSTS Beader, 2 is Consicened be requesting indy
SUDMIENG VA the foem on this sle

X Error: No includeSubDomains directive

In Order 10 B Accapied 10 the HSTS preload kst through this 1om, your st must sassty the

1. Sarve b vale cenlificate
2 Redirect Yom HTTP 10 HTTPS on the samea host
3 Serve &l subdomaing over HTTPS
In parsodar, you must suppot HTTPS for the s subdomain if & DNS record for

X Error: No predoad directive
The header must contain the 'preioad drective,

@PhilippeDeRyck 22

PRELOAD FOR BETTER OR FOR WORSE

What went wrong?

Domain wideup.net added to the preload HSTS list.
Apparently someone inadvertently add my site to this list.
Need to remove a domain wideup.net from this list - https:
urity state static.json

uber.com: Issues with subdomains maintained by contractors. (Fssue—5353318)

What went wrong?

My developers advised me to activate the HSTS header on my site, because we moved the
whole site to SSL.

A month into the project, we realised that SSL made our ad income significantly lower,
since lot's of the premium advertisers in my country apparently isn't providing secure
scripts.

This is what I do for a living, and if this continues, I will have a problem
supporting my family for the months it will take for the header to expire.

I'm panicking over this fact and do truly regret activating HSTS in the first place.

Besides removing the site from the preload list, is there anything else I can do to
solve this problem?

Right now, I can't even access the site and work with it, since my browser has cached
the header...

https://buags.chromium.orq/p/chromium/issues/detail?id=5279

@PhilippeDeRyck

HTTP PUBLIC KEY PINNING

Case study 2

@PhilippeDeRyck

-

invalld Server Centificate

s Wrgtel 1 e b wewem grughe taem)

" * si»
M T Do AW

Pl e 22001 U T

S8Ry e

.o‘f. o prevatad

IS

LA W L

"

HTTP PuBLIC-KEY PINNING (HPKP)

= HPKP is a server-driven, browser-enforced security policy
— Instructs the browser to only accept a pinned public key
— Intended to be used in combination with HSTS

" Pins associate a hostname with a cryptographic identity
— Can be on certificate level, CA level, ...
— Trade-off between specificity and resilience

Public-Key-Pins: max-age=3000;
pin-sha256="d6qzRu9zOECb90Uez27xW1tNsj0elMd7GkYYkVoZWmM=";
pin-sha256="E9CZ9INDbd+2eRQozYqgbQ2yXLVKB9+xcprMF+44Ulg=""

@PhilippeDeRyck 26

HTTP PuBLIC-KEY PINNING (HPKP)

some-shop.com

12345

Initiate TLS connection to some-shop.com ‘b-"

Send Valid Cert |5.=|
O

Public-Key-Pins: 12345

Initiate TLS connection to some-shop.com

Send Valid Cert |E.=|
(¢
Public-Key-Pins: 12345

Initiate TLS connection s

to some-shop.com ‘b_',
—

Send Valid Cert I%l

@PhilippeDeRyck

HPKP USAGE STATISTICS

2015 - Top 1K 2016 - Top 1K

https.//www.owasp.org/index.php/OWASP_Secure Headers_Project#tab=Stats

@PhilippeDeRyck

HPKP IS AWESOME, ASK SMASHING MAGAZINE

Be Afraid Of HTTP Public Key Pinning
(HPKP)

<

Between October 21st and 25th, Smashing Magazine became Your connection is not private
completely unavailable for a majority of visitors. Visiting A Tt P
Smashing Magazine would give most returning visitors with a

modern browser a security warning message like this:

from www.amashingmagazine . com

The warning message most of Smashing Magazine's visitors were seeing

@PhilippeDeRyck

WHAT CAN GO WRONG WITH HPKP?

' Initiate TLS connection @
some-shop.com to some-shop.com ‘b_', ‘b-"
pwnd >

« Send Valid Cert I-ol
Public-Key-Pins: pwnd

Initiate TLS connection to some-shop.com

Send Valid Cert |5.=|

Public-Key-Pins: 12345

some-shop.com

@PhilippeDeRyck 30

DEALING WITH HOSTILE PINNING

" Has been coined as HPKP Suicide or RansomPKP
— Concerns scenarios where your server is compromised
— Pins are served to your users, and this cannot be easily undone

" Hostile pinning is a difficult problem to solve
— Spec suggests that browsers limit the duration of max-age
— Use complementary solutions like Certificate Transparency

" You probably do not need HPKP on your site
— You can deploy HPKP in report-only mode, giving you reports about potential problems
— However, powerful attackers can simply suppress reports as well

@PhilippeDeRyck 31

X-XSS-PROTECTION

Case study 3

@PhilippeDeRyck

AUTOMATIC BROWSER-BASED XSS PROTECTION

= Browser-based protection against reflected XSS
— Scan outgoing requests for potential payloads (URL, body)
— Inspect if the payload is reflected back in the response

= Initial version introduced in IE8, known as XSS filter
— Chrome and Safari have something similar with the XSS Auditor
— Intended as a defense-in-depth mechanism, not a core security feature

= Mechanism can be configured with the X-XSS-Protection header
— Default behavior is to try and remove the malicious payload
— Response is rewritten before it is rendered

@PhilippeDeRyck

WHAT IS THE BEST HEADER SETTING?

™ File Descriptor W Follow

AVATAR - @filedescriptor

Which header setting of XSS filter/auditor do you think is the
worst?
4:10 PM - 17 Mar 2016

37% X-XSS-Protection: 0
31% X-XSS-Protection: 1

32% ditto, plus ;mode=block

2 and =t ol vae il
eSS * .[ifNal resuits

4« 139 Vs

@PhilippeDeRyck

HE DANGERS OF AUTOMATED SANITIZATION

= |E rewrites the response to render the payload harmless
— #is inserted to change the meaning of the code, thus preventing the attack
— The process is regex based

(VI(&[#()=]1x20*((86) | (56) | (118) | (76));?2)) ([\t] | (&[#()=1x20*(3](13)](10)IA|
D);?2))*(bl(&[#()=]x20*((66) 1(42) 1(98)1(62));?2)) ([\t] | (&[#()=]x20*(9](13)I(
10) |AID);2)) * (s (&[#()=]x20=((83) 1 (53) 1(115) 1(73));2)) ([\t] | (&[#()=]x20*(9
F(13)I(10) JAID);?2)) *(cl(&[#()=]x20*((67) | (43)1(99)1(63));?2)) ([\t]I(&[#()=]
X0 (91 (13) 11O IAID);2))*{(x| (&[#()=]1x?0*((82) | (52) | (114) |1 (72));?))}([\t]
I(&[#()=]x20* (91 (13) 1 (1O) JAID);2))* (i1 (&[#()=]1%x20*((73)1(49)1(103)1(69));?
PYCINE] 1 (&[# () =]x20* (91 (13) I (10) IAID);?2))* (Pl (&[#()=]x?20*((8BO) | (50))(112) |
(70)):;2)) (INE] | (&[#()=1x20*(9| (13) | (10) |AID);2))*(t| (&[#()=]x20*((84) | (54)
1(116) 1(74));2))(INE] I (&[#()=]x20*(2]| (13) | (10) [AID);2)) *(: | (&[#()=]x20*((5
8)1(3A)):2)).

<AP{P}LET[/+\t].*?code[/+\t]*=

@PhilippeDeRyck

HE DANGERS OF AUTOMATED SANITIZATION

" |E rewrites the response to render the payload harmless
— #is inserted to change the meaning of the code, thus preventing the attack
— The process is regex based

" |E can be tricked into rewriting harmless code into XSS code

@PhilippeDeRyck

SO JUST BLOCK THE PAGE LOAD WHEN AN ATTACK IS DETECTED

= The header can be configured to block the page load completely
— The context remains about:blank instead of loading the HTML from the response

= Seems like a solid protection mechanism, but Facebook may disagree
— People chained a couple of bugs to steal OAuth 2.0 access tokens
— Awarded $S5000 bug bounty from Facebook, and resulted in a patch in Chrome
— Facebook turns off x-xss-pProtection completely

= A brief overview of what causes these problems
- about:blank inherits the origin of the parent page
— After blocking the page load, document . referrer contains the last seen URL
— Because of origin inheritance, this value is accessible to the parent frame

@PhilippeDeRyck

CONTENT SECURITY PoLicy

Case study 4

@PhilippeDeRyck

<hl>My PHP app</hl>
<h3>Hi <script>alert(l)</script></h3>

<button onclick="doSomething() ">
Click me
</button>
<script>
function doSomething() { ... }
</script>
<p>

<script src="http://evil.com/hackme.js"></script>
</p>

@PhilippeDeRyck

Reining in the Web with Content Security Policy

Sid Stamm Brandon Sterne Gervase Markham
__ Mozilla Mozila Mozilla
sid@mozilla.com bsterne@mozilla.com gerv@mozilla.org

ABSTRACT

The last three yoars have seon o dramatic increase in both
nwnreness and exploitation of Wed Applicatioa Vulnerabili-
tles. 2008 and 2009 saw dozens of high. profile attacks against
websites using Cross Site Scripting (XSS) and Cross Site Re-
quest Forgery (CSRF) for the purposes of information steal-
ing, wolmito defacoment, malware planting, clickjacking, etc,
Whilde an ideal solution may be to develop web applicatioes
free from nny exploitable vulnerabélitios, real woeld socurity
is usually provided in layoers.

We present comtent restrictions, and a content rostrictions
enforcoment scheme called Coatent Secusity Policy (CSP),
which intends to be cae such layer. Content restrictions al-
low site designers ce server adminkstrators to specify how
comtent interacts on thelr web sites—a socurity mechanismn
desperately needed by the untamed Web, These content
rostrictions rules are activated and enforced by sapposting
web browsers when & policy is provided for & site via HTTP,
and we show how & system such as OSP can be effective to
lock down sites and provide an early alert system for vulser-

exploiting browser of site-specilic valnerabilitios 1o steal or
inject information.

Additionally, browser and web application providers are
having a hard time deciding what exactly should be a “do
main” or “origin™ when referring to web traffic, With the ad-
vest of DNS rebinding [8] and with the gray area regarding
ownership of sibling sub-domalns (like userl. vebhost.coa
versas user?.vebhost.com), It may be ideal to allow the
scrvice providers who write web applications the opportu-
nity to specify, or fence-in, what thoy consider to be their
domain,

1.1 Uncontrolled Web Platform

Web sites currently execute o a mostly uscontrollod web
browser environment. The sole protection currently afforded
to woebsites with regards to policies restricting content s
the same-origin policy (SOP) 20, Although this policy s
doployed in browsens, attackers are still able to sabwvert the
policy by directly attacking the site and injecting thelr own
script into the comtent, For example, an attacker may post a

w

http://www.ambuehler.ethz.ch/CDstore/www2010/www/p921.pdf

@PhilippeDeRyck

HE GOAL OF CONTENT SECURITY PoLicy (CSP)

= CSP is intended as a defense-in-depth mechanism against injection attacks
— Gives developers a way to lock down their application in various ways
— Constrains an attacker in case of an injection vulnerability in the application
— CSP is not a replacement for traditional XSS mitigation techniques

= CSP places two kinds of restrictions on a page
— It disables “dangerous features” (e.g. inline scripts, inline styles and the use of eval)
— It only loads resources that are explicitly whitelisted, and blocks everything else

= CSP is an extensive security policy, with a wide variety of features
— We will focus on its capabilities to restrict XSS attacks first

@PhilippeDeRyck 41

USING CSP TO RESTRICT INJECTED SCRIPTS

Injection of inline scripts

<hl>You searched for <script>.</script></hl>

By default, CSP prevents the execution of inline script blocks

Injection of remote scripts

<hl>You searched for <script src=“//example.com/evil.js”’></script></hl>
Unless you whitelist this host/file, CSP will not load the external file

@PhilippeDeRyck 42

DEFINING A CSP POLICY WITH WHITELISTS

Content-Security-Policy:
script-src ‘self’ https://www.example.com *.websec.be

" The browser enforces a CSP policy consisting of directives (e.g. script-sxc)
— Delivered alongside the page as an HTTP response header
— Included in the page as an HTML meta tag

= A directive can have numerous valid values
— Keywords: ‘none’, ‘self’, *
— Expressions: https://websec.be, https:, https://websec.be/jquery. js, *.websec.be

@PhilippeDeRyck 43

<hl>My PHP app</hl>
<h3>Hi <script>alert(l)</script></h3>

<button onclick="doSomething() ">
Click me
</button>
<script>
function doSomething() { ... }
</script>
<p>

<script src="http://evil.com/hackme.js"></script>
</p>

@PhilippeDeRyck

document.querySelector (“button”)
.addEventListener (“click”, doSomething) ;

 function doSomething () { .. }

<script src=“myapp.js”></script>

@PhilippeDeRyck

Reining in the Web with Content Security Policy

Sid Stamm Brandon Sterne Gervase Markham
. Mozilla Mozila Mozilla
sid@mozilla.com bsterne@mozilla.com gerv@mozilla.org

' e

We propose the use of content restrictions to lock down websites
behavior, and have provided an implementation of content
restrictions called Content Security Policy.

-~ enforcement schemse calied Coatent Secusity Palicy (CSP),

which intends to be cae such layer. Content restrictions al-
low site designers ce server adminkstrators to specify how
comtent interacts on thelr web sites—a socurity mechanism
desperately needed by the untamed Web, These content
restrictions rules are activated and enforood by sapposting
web browsers when & policy is provided for & site via HT'TP,
and we show how & system such as OSP can be effective to
lock down sites and provide an early alert system for vulser-

1.1 Uncontrolled Web Platform

Web sites currently execute o a mostly uscontrolled web
browser environment. The sole protection currently aforded
to wobsites with regards to policies restricting content s
the same-origin policy (SOP) (200, Although this policy s
doployved in browsers, attackers are still able 1o sabwert the
policy by directly attacking the site and injecting thelr own
script into the comtent, For example, an attacker may post a

http://www.ambuehler.ethz.ch/CDstore/www2010/www/p921.pdf

@PhilippeDeRyck

BROWSER SUPPORT — CONTENT SECURITY POLICY LEVEL 1

Content Security Policy 1.0 m Giobe G A% 4 £07% = Q30N

Mitigate Cross-ske scripting attacks by whitelisting alowed sources
of scripe, style, and other resources.

T TR, A

L)

£ fope ' Frefox Chrome Salans Opera 05 Saferl OperaMini

http://caniuse.com/#search=content

@PhilippeDeRyck

Towards Client-side HTML Security Policies

Joel Weinberger Adam Barth Dawn Song
University of California, Berkeley Google University of California, Berkeley

Our results show that using CSP for BugZilla and HotCRP is
both a complex task and may harm performance.
S— mechanisms for preventing XSS and, in some of the
::ic!:nﬁg; ::L wmm mmm ::3:‘%‘;:‘; injecticn. Ptc:;;udm [

HTML Security policies should be the central mechanism going

forward for preventing content injection attacks

— iy policy sysiem Should Bave, We propose severml 1368 -~ tonar yr e r
posals for HIML security policies fall short of their ul-
for rescarch going forward in this arca. imate design goals, We argue that HTML ity poli-

https://www.usenix.org/legacy/events/hotsec11/tech/final_files/Weinberger.pdf

@PhilippeDeRyck

DO NOT RE-ENABLE INLINE SCRIPTS WITH UNSAFE-INLINE

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
https://cdn.syndication. twimg.com ‘unsafe-inline’

= Legacy applications are riddled with inline scripts
— Script blocks and event handlers everywhere

" |[t's tempting to use ‘unsafe-inline’ to re-enable inline script
— But this would disable all protection against XSS attacks

= CSP level 2 allows inline script blocks using hashes and nonces
— Only script blocks can be re-enabled, not inline event handlers

@PhilippeDeRyck

49

RE-ENABLING INLINE SCRIPTS WITH HASHES

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
'sha256-qznLcsROx4GACP2dmOUCKCzCG-HiZlguq6ZZDob Tng='

= You can whitelist inline script blocks by adding their hash to the policy
— The hash is a simple checksum of the script block’s contents
— Chrome calculates the hash for you when it encounters a violating script block

" The use of hashes causes the browser to ignore "unsafe-inline’

Refused to execute inline script because it
violates the following Content Security
Policy directive: "script-src 'self'
http://platform.twitter.com ". Either the
'unsafe-inline' keyword, a hash ('sha256-
JO8rpp6xsjadC8wBlp8pC2RMTSK4SpnUBTKHS LvcV2o="
), or a nonce ('nonce-..."') is required to
enable inline execution.

@PhilippeDeRyck

50

<hl>My PHP app</hl>

<h3>Hi <seript>alert{l)<tseript></h3>
<button erneliek='deoSemething{)">

Click me
</button>
<script>
document.querySelector (“button”)
.addEventListener (“click”, doSomething) ;

function doSomething() { .. } script-src ‘sha256-..'
</script>
<p>

</p>

@PhilippeDeRyck

RE-ENABLING INLINE SCRIPTS WITH NONCES

Content-Security-Policy:
script-src ‘self’ http://platform.twitter.com
https://cdn.syndication. twimg.com 'nonce-EDNnf03nceIOfn39fn3e9%h3sdfa’

= Nonces mark inline script blocks as trusted
— The server needs to add a random nonce to the policy and to the script blocks
— The nonce should be freshly generated on every request
— The attacker will not be able to predict the nonce, so injected script will be ignored

= The use of nonces causes the browser to ignore "unsafe-inline’

<script nonce="EDNnf03nceIOfn39fn3e%9h3sdfa”>.</script>

@PhilippeDeRyck

52

<hl>My PHP app</hl>

<h3>Hi <seript>alert{l)<tseript></h3>
<button erneliek='deoSemething{)">

Click me
</button>
<script nonce="“aTla32n4SA">
document.querySelector (“button”)
.addEventListener (“click”, doSomething) ;

function doSomething() { .. }
</script>
<p>

</p>

@PhilippeDeRyck

script-src 'unsafe-eval' https://www.dropbox.com/static/compiled/js/
https://www.dropbox.com/static/javascript/ https://www.dropbox.com/static/api/
https://cfl.dropboxstatic.com/static/compiled/js/
https://www.dropboxstatic.com/static/compiled/js/ https://cfl.dropboxstatic.com/static/javascript/
https://www.dropboxstatic.com/static/javascript/ https://cfl.dropboxstatic.com/static/api/
https://www.dropboxstatic.com/static/api/ 'unsafe-inline' 'nonce-EtRYIOCtY1l7XHMVxdxsV' ;
default-src 'none' ;

worker-src blob: ;

style-src https://* 'unsafe-inline' 'unsafe-eval' ; connect-src https://* ws://127.0.0.1:*/ws ;
child-src https://www.dropbox.com/static/serviceworker/ blob: ;

form-action 'self' https://dl-web.dropbox.com/ https://photos.dropbox.com/
https://accounts.google.com/ https://api.login.yahoo.com/ https://login.yahoo.com/ ; base-uri
'self' api-stream.dropbox.com https://showbox-tr.dropbox.com ;

img-src https://* data: blob: ; report-uri https://www.dropbox.com/log/csp enforced ;

frame-src https://* carousel://* dbapi-6://* dbapi-7://* dbapi-8://* itms-apps://* itms-appss://*
object-src https://cfl.dropboxstatic.com/static/ https://www.dropboxstatic.com/static/ 'self'

https://flash.dropboxstatic.com https://swf.dropboxstatic.com https://dbxlocal.dropboxstatic.com ;
media-src https://* blob: ;

font-src https://* data:

@PhilippeDeRyck

BROWSER SUPPORT — CONTENT SECURITY POLICY LEVEL 2

Content Security Policy Level 2 & Gioba CET7 + EE7 = TIEM

MRigate cross-sie scripting attacks by whitelisting alowed Sources
of script, style, and other resources, CSP 2 adds hash-source,
NONCe-source, and five new crectives

|

ORI S

m

. - » » ~VJ'CO » (.roq’- ‘Oo
Froef e Ome b 1| A W far) 0o "
Ecpe oo Oreor St ar Opera 0% Salyr Dpera Min B OEter P

http://caniuse.com/#search=csp

@PhilippeDeRyck

CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy

Lukas Weichselbaum Michele Spagnuolo Sebastian Lekies
Google Inc. le Inc. Google Inc.
Iwe@google.com mikispag@google.com slekies@google.com
Artur Janc ‘
o ___Google Inc.

Unfortunately, the majority of these policies are inherently
insecure. Via automated checks, we were able to demonstrate
that 94.72% of all policies can be trivially bypassed ...

- Hosts With 2011 unique CSP polickes ™~ the most cosapre-

hessive study to date, We introduce the security-relevant
aspocts of the CSP specilication and provide an in-depth
analysis of its threat model, focusing on XSS protections.
We identify three common classes of CSP bypasses and ex-
plain how they sabvert the security of a policy

We thes turn to & quantitative analysss of polickes do-
ployed on the lmernet in oeder to understand their socu-
rity beaefits. We observe that 14 out of the 15 doemains

Today, Cantent Security Policy [‘.'!l].h onc of the moet

proenising countermensures agalast XSS, CSP is a declarn
tive policy mechanksm that allows web application develop
ers to define which client-side resources can be loaded and
oxecyted by the beowser, By disallowing inline scripts and
allowing canly trustod domalns s a source of extersal seripts,
CSF alms to restrict a site’s copability to exocute maliclous
cliest-side code. Hence, even when an attacker is capable of
fimdi

an XSS vulnerability, CSP aims to keep the li-

http://delivery.acm.org/10.1145/2980000/2978363/p1376-weichselbaum.pdf

@PhilippeDeRyck

BUT HOW SECURE IS YOUR CSP POLICY REALLY?

default-src 'self’;

script-src ‘self’ https://securityheaders.azureedge.net https://ajax.googleapis.com
https://www.google-analytice.com httpa://ban.nr-data.net httpa://js-agent.nevrelic.com
httpsi1//cdnjs.cloudflare.com;

ing-src ‘self' https://securityheaders.azureedge.net https://www.google-analytics.com;

style-src 'self’ ‘unsafe-~inline’ https://securityheaders.azureedge.net https://fonts.qgoogleapis.com
https://cdnis.cloundflare.com:
font-src ‘801! @ goriptsrc Host whitelists can frequently be bypassed. Consider using 'strict-dynamic’ in
form-action ‘s combnation with CSP nances or hashes.
report-uri htt
‘gt ‘seif’ can be problematic ¥ you host JSONP, Angular or user uploaded fies.
CSP Version 3 (mone hitps Jisecurityheaders. azureedge. net No bypass found; make sure that this URL doesn serve JSONP replies or
T—) Angular ibrares
© hopslajax Qoogeapis com AJax QOOgMapis com s known 10 host JSONP endpoints and Angular ibranes
which allow %0 bypass this CSP
hitps Vwww.googie-analytics com No bypass found; make sure that this URL doesn serve JSONP replies or
Anguiar Ivares.
hips bam nr-data net No Dypass found, make sure that this URL doesn serve JSONP replies or
Angular lbranes
hitps Jis-agent. newrelic.com No bypass found; make sure that this URL doesnt serve JSONP replies or
Angular ibraries
© hupslodngs coudiiare com cdnis cloudtiare com s known 10 host Angular libraries which allow 10 bypass this
cse.

https.//csp-evaluator.withgoogle.com/
@PhilippeDeRyck 57

COMMON MISTAKES AND BYPASS ATTACKS

Missing object-src (or default-src)

script-src ‘self’

<object type=“application/x-
shockwave-flash” data=“"URL with
reflected XSS in parameter”><param
name="AllowScriptAccess”
value=“always”’></object>

Combining ‘self’ with uploads

script-src ‘self’;
object-src ‘none’

<script
src=“user upload/evil cat.jpg.js”>
</script>

@PhilippeDeRyck

Whitelist bypass with JSONP

script-src ‘self’ https://whitelist.cdn.com

<script src=“https://whitelist.cdn.com/
jsonp?callback=alert”>

Whitelist bypass with AngularJS

script-src ‘self’ https://whitelist.cdn.com

<script src=“https://whitelist.cdn.com/angular.js”>
<div ng-app ng-csp ng-
click=“$event.view.alert (1337) ”></div>

58

IT TURNS OUT ALMOST NOBODY GETS CSP RIGHT

Unique CSPs Report Only

unsafe_inline
2591 21947
Unique CSPs 26011 9.96% 84.38%
0 19652
XS5 Policies 22425 0% 87.63%
0 0
Strict XSS Policies e Ex; o~

@PhilippeDeRyck

Bypassable
Bepl P Wildcard i
Missing
oblect sre script-src
= whitelist
3131 5753
12.04% 22.12%
2109 4816
9.4% 21.48%
348 0
14.28% 0%

Unsafe
domain
in script-src
whitelist

19719
7581%
17754
7917%

1015
41.65%

Trivially
Bypassable
Total

24637
94.72%

21232

94.68%

1244
51.05%

59

HOW GOOGLE PROPOSES TO FIX CSP

Content-Security-Policy:
script-src 'nonce-{random}' 'strict-dynamic'

" Google tried to use CSP with whitelists, but it just doesn’t work
— Cascading script loading makes them too hard to maintain
— Too difficult to lock down a whitelist against bypass attacks

= With ‘strict-dynamic’, trusted scripts can dynamically load additional scripts
— This trust propagation makes sense, as the trusted script already has full access
— 'strict-dynamic’ only applies to scripts being loaded via DOM APIs
— Parser-inserted script (e.g. document.write) will still be blocked

= This limits the attack surface to the use of DOM APIs
— This is a lot easier to check for during a security review

@PhilippeDeRyck 60

<a class="twitter-timeline" href="https://twitter.com/PhilippeDeRyck" data-widget-
id="697784323848736772">Tweets by @PhilippeDeRyck

<script nonce="“j08AD4S8zH">

!function(d,s,id) {var
js,fjs=d.getElementsByTagName (s) [0] ,p=/"http:/.test(d.location)?'http': 'https';if('d
.getElementById(id)) { js=d.createElement (s) ;js.id=id;js.src=p+"://platform.twitter.co
m/widgets.js";fjs.parentNode.insertBefore (js,fjs) ;}} (document, "script", "twitter-
wijs") ;

- wooets » 00 roec 14
</script> _ ; —— -1
‘o 200 roed'q
et
trretee 431 M0e 40 1 a4 4 2000 endl 200 ooetans!
oo
syrdcslonTa %N THNE2 _calegory MEZNIMANIIy Aot moreascn a2 NIUN oo)
M0 ot
Bredee Ja5000) T TT o T 8585 B St e o <00 rootany
" Wy ol
Dt 3250000 T Oal T 40 T 85050 e 0C Mg Rt <0 oo
e Y
-
- | - '~rn_2 '.l
. 47, ot e < pi
i 0 NOEXT > e mrocaion tafiee X
-

@PhilippeDeRyck

WHITELISTING THESE HOSTS IS NOT A GOOD IDEA

Content Security Policy . ‘
Sample unsafe policy Sample safe policy
script-src 'self’' http://platform.twitter.com
https://cdn.syndication.twimg.com

Evaluated CSP as seen by a browser supporting CSP Version 2

© script-src
‘self’ can be problematic if you host JSONP, Angular or user

‘sell"
uploaded files.
hitp:/iplatiorm. twitter.com Allow only resources downloaded over HTTPS.
m No bypass found; make sure that this URL doesn serve
JSONP replies or Angular libraries.
cdn.syndication.twimg.com is known to host JSSONP

— © https.//edn.syndication.twimg.com
endpoints which allow to bypass this CSP.

CSP Version 3 (nonce based + backward co

Missing object-src allows the injection of plugins which can

© object-src [missing)
execute JavaScript. Can you set it to 'none'?

axpand/coliapse all

@PhilippeDeRyck

62

RUST PROPAGATION ACTUALLY MAKES A LOT OF SENSE

= We have already trusted Twitter to run code in our context
— If it needs additional resources, we are very likely to allow them to be loaded
- strict-dynamic simply makes this implicit trust explicit through trust propagation

= Trusted scripts can load resources through appropriate APIs

<a class="twitter-timeline" href="https://twitter.com/PhilippeDeRyck" data-widget-

id="697784323848736772">Tweets by @PhilippeDeRyck

<script nonce="“j08AD4S8zH">

!function(d,s,id) {var
js,fjs=d.getElementsByTagName (s) [0] ,p=/"http:/.test(d.location)?'http': 'https';if(!'d.getElemen
tById(id)) {js=d.createElement (s) ;js.id=id;js.src=p+"://platform.twitter.com/widgets.js";fjs.pa
rentNode.insertBefore(js,£fjs) ;}} (document, "script", "twitter-wjs") ;

</script>

@PhilippeDeRyck

A UNIVERSAL CSP POLICY AGAINST XSS ATTACKS

Content-Security-Policy:
object-src 'none';
script-src 'nonce-{random}' 'unsafe-inline' 'unsafe-eval' 'strict-dynamic' https: http:;
report-uri https://your-report-collector.example.com/

" Inline scripts and remote scripts are marked as trusted with a nonce
— Subsequent script-loading operations are enabled through ‘strict-dynamic’
— If no plugins (flash / java) are loaded, object-src should be set to ‘none’

= The other expressions enable compatibility with non-compliant browsers
— Because of the nonces, modern browsers ignore “unsafe-inline’
— Because of ' strict-dynamic’, modern browsers ignore the whitelist (https: / http:)

= This policy only protects you if you run a modern browser
— But on an older browser, it still works as before

@PhilippeDeRyck 64

FROM ‘STRICT-DYNAMIC” TO A UNIVERSAL CSP

Content-Security-Policy:
object-src 'none';
script-src ’'nonce-{random}' 'strict-dynamic' 'unsafe-inline' 'unsafe-eval' https: http:;
report-uri https://your-report-collector.example.com/

o Content-Security-Policy:

k/ RemOte object-src 'none';

{'*/Inline script-src ’'nonce-{random}’ 'strict-dynamic’ 'unsafe-eval';
- report-uri https://your-report-collector.example.com/

Content-Security-Policy:
x RemOte object-src 'none';
‘ /’I I- script-src 'nonce-{random}’ 'unsafe-eval' https: http:;
L niine : .
: report-uri https://your-report-collector.example.com/

Content-Security-Policy:
x Remote object-src 'none';

% Inline script-src 'unsafe-inline' 'unsafe-eval' https: http:;
A report-uri https://your-report-collector.example.com/

@PhilippeDeRyck

CSP USAGE STATISTICS

2015 - Top 1K 2016 - Top 1K

https.//www.owasp.org/index.php/OWASP_Secure Headers_Project#tab=Stats

@PhilippeDeRyck

FOCUSING YOUR EFFORTS IN 2017/

@PhilippeDeRyck

A BIG DIFFERENCE BETWEEN EXISTING AND NEW SYSTEMS

@PhilippeDeRyck

HTTPS AS A SECURITY BASELINE

= HTTPS is considered mandatory for all web applications
— Sensitive features are only available to Secure Contexts

= All communication should happen over HTTPS, with HSTS enabled
— Should be easy if HTTPS is already in place
— Recommended to apply HSTS to all subdomains as well
— Recommended to preload HSTS

——
§ 0,

7
= HPKP is probably overkill for you ﬁ *

— Getting it right is more difficult than it seems

— HPKP is also dangerous when you get it wrong

Impact Importance

@PhilippeDeRyck

COOKIES SHOULD BE PROPERLY PROTECTED

= Basic cookie security features have been around for a while
— All cookies should be marked Secure (HTTPS is a baseline requirement)
— Most cookies can be marked as HttpOnly

= Recently, two new security features have been proposed
— SameSite helps prevent CSRF attacks
— Cookie prefixes enable additional browser protections

&

= Browser support is a bit limited, but it will pick up ‘l t:

— Enabling these features now future-proofs your cookies 8 G

Impact Importance

@PhilippeDeRyck

BROWSER-BASED XSS PROTECTION SHOULD BE ENABLED

= Rule of thumb: never leave it default
— Either turn it off, or enable blocking mode

= [ssues with X-XSS-Protection are very limited

— Turning it off is only OK if you are 100% sure that you do not have reflected XSS
— This requires a lot of discipline, and separation between data and code

" |In general, blocking mode is the way to go *

6

Impact Importance

&

@PhilippeDeRyck

VERIFY WHAT YOU’RE LETTING IN YOUR CONTEXT

= Subresource Integrity allows you to verify script files and style sheets
— Prevents the loading of malicious code by verifying its checksum
— Small amount of effort to add checksums manually
— Build systems are capable of doing this automatically

= Many CDNs are compatible with SRI

— Requires basic support for Cross-Origin Resource Sharing

e
; 077

7
= |f you offer public libraries, make sure SRl works for them &

— Enable the appropriate CORS headers @ @

Impact Importance

@PhilippeDeRyck

VERIFY WHAT YOU’RE LETTING IN YOUR CONTEXT

= Subresource Integrity allows you to verify script files and style sheets
— Prevents the loading of malicious code by verifying its checksum
— Small amount of effort to add checksums manually
— Build systems are capable of doing this automatically

= Many CDNs are compatible with SRI

— Requires basic support for Cross-Origin Resource Sharing

= |f you offer public libraries, make sure SRl works for them *

— Enable the appropriate CORS headers 8 @

Impact Importance

@PhilippeDeRyck

RESTRICT WHAT’S ALREADY LOADED IN YOUR CONTEXT

= Content Security Policy controls what resources can be loaded
— Disallows inline code / style, which has a significant impact.
— Restricts the default allow-all policy from the browser

= CSP has evolved a lot since the first version
— Nonces and hashes re-enable inline scripts
— Strict-dynamic makes CSP very useful

— Additional directives have been added
= CSP will become even more important in the future
— Therefore, compatibility with CSP is really important

Impact Importance

@PhilippeDeRyck

RESTRICT WHAT’S ALREADY LOADED IN YOUR CONTEXT

= Content Security Policy controls what resources can be loaded
— Disallows inline code / style, which has a significant impact.
— Restricts the default allow-all policy from the browser

= CSP has evolved a lot since the first version
— Nonces and hashes re-enable inline scripts
— Strict-dynamic makes CSP very useful

— Additional directives have been added l
= CSP will become even more important in the future
— Therefore, compatibility with CSP is really important

Impact Importance

@PhilippeDeRyck

PRIVILEGE SEPARATION BY DESIGN WITH A SECURE ARCHITECTURE

" The best approach for security is building a client-side architecture
— The Same-Origin Policy is the default security policy of the browser
— Additional building blocks allow you to build security into the design

= Frontend development is more than simply coding some JavaScript

= SecAppDev covered numerous topics to support this —
— Essential web security concepts ’
— Threat modeling and SDLC activities

— Access control concepts 8 G

Impact Importance

@PhilippeDeRyck

PRIVILEGE SEPARATION BY DESIGN WITH A SECURE ARCHITECTURE

" The best approach for security is building a client-side architecture
— The Same-Origin Policy is the default security policy of the browser
— Additional building blocks allow you to build security into the design

= Frontend development is more than simply coding some JavaScript

= SecAppDev covered numerous topics to support this

— Essential web security concepts *
— Threat modeling and SDLC activities

— Access control concepts @ G

Impact Importance

@PhilippeDeRyck

WHAT YOU SHOULD TAKE AWAY FROM THIS TALK / COURSE

= Building secure applications requires a conscious effort
— Like any other application, web applications require a well thought-out architecture
— An important part of that architecture resides in the front end nowadays

= A modern developer’s toolbox is full of security tools
— Frameworks, protocols and browsers offer good security features
— But they require knowledge to handle them correctly

= The focus of this talk was front end security
— Front end and back end security are complementary
— But front end security is worthless without solid back end security

@PhilippeDeRyck

Now IT’S UP TO YOU ...

Secure Follow Share

Web Security Essentials

April 24 — 25, Leuven, Belgium
https://essentials.websec.be

@PhilippeDeRyck https://www.websec.be philippe.deryck@cs.kuleuven.be /in/philippederyck

