
Access control
Maarten Decat - SecAppDev 2017

maarten@elimity.com

mailto:maarten@elimity.com
mailto:maarten@elimity.com

What is access control?

▪ As any security: confidentiality, integrity, availability

▪ Layer in between (malicious) users and the protected system

▪ Part of the Trusted Computing Base

2

Access control is the part of security that constrains
the actions that are performed in a system

based on access control rules.

What is access control?

3

1. Not easy to get right,
e.g., what about windows?

2. Difference between access
rules and mechanism

3. Different mechanisms have
different properties

4. Different mechanisms support
different rules

Access control in the physical world

4

5

Access control in software

Outline

6

▪ Introduction

▪ Positioning access control

▪ Access control models

▪ How to enforce access control

▪ Some important technologies in practice

▪ Recap and conclusion

10,000m point of view

7

User
Subject
Principal

Guard

Protected
resource
(Object)

Action

But there is more to it

8

Access
control

Authori-
zation

Authen-
tication

Audit

But there is more to it

9

Access
control

User
behavior
analytics

Authori-
zation

Authen-
tication

Audit

…

Secure
audit

Federated
authN

...

Access
control
models

Policy-based
access
control

Performance
tactics

…

Multi-factor
authN

Passwords

5000m point of view

10

Authentication

Subject

Guard

Resource

Action

Writes out
security logs

Performs
authorization

Audit security logs, revert
and punish if needed

Audit security logs, revert
and punish if needed

For the rest of this presentation

11

Subject

Guard

Resource

Action

“Access control” = “authorization”

Models, policies and mechanisms

12

▪ Guard is responsible for mediating access
▪ Authorize specific actions
▪ Mechanism that enforces specific security rules

▪ Rules, policies, models and mechanisms
▪ Access rules: the logical access rules, independent of representation
▪ Mechanism: low-level implementation of controls
▪ Model: (formal) representation of how rules can be expressed

▪ Access control seems straightforward… but is it?

Access control exists on multiple levels

Level Subject Action Guard
Protected

System

Hardware OS Process Read memory CPU
CPU and
Memory

Network Host Send packets Firewall Intranet

Database
Connecting
application

SELECT query DBMS Data

OS User Open file OS Kernel Filesystem

Application User
Read patient

file
Application

code
Application

data

13

CWE/SANS Top 25 Software Errors
Rank Description

5 Missing authentication for critical function

6 Missing authorization

7 Use of hard-coded credentials

8 Missing encryption of sensitive data

10 Reliance on untrusted inputs in a security decision

11 Execution with unnecessary privileges

15 Incorrect authorization

17 Incorrect permission assignment for critical resource

19 Use of a broken or risky cryptographic algorithm

21 Improper restriction of authentication attempts

25 Use of a one-way hash without a salt
14

Challenges for access control

15

▪ Expressiveness: can the high-level rules be expressed in
terms of the access control model of the policy/guard?

▪ Performance: access control decisions are frequent, and
must be dealt with quickly

▪ Full mediation: does the guard check every action? Does
your policy cover every action?

▪ Safety: does the access control mechanism match the
policy?

Outline

16

▪ Introduction

▪ Positioning access control

▪ Access control models

▪ How to enforce access control

▪ Some important technologies in practice

▪ Recap and conclusion

▪ The basics
▪ Who can assign permissions
▪ How permissions are assigned
▪ Advanced topics

The basics: the access control matrix

17

Permissions

[Lampson1971]

Resources

S
u

b
je

cts

18

Extensions of the access control matrix:

Who can assign permissions?

Who can assign permissions?

19

In general, two approaches:

1. Mandatory access control (MAC)
▪ By central authority

2. Discretionary access control (DAC)
▪ By subjects themselves

Mandatory access control (MAC)

20

▪ Permissions are assigned by a central authority according to a
central policy
▪ Good fit within organizations and systems with a strong need for

central controls
▪ Low flexibility and high management overhead

▪ Mandatory Access Control in use
▪ Often linked to multi-level security systems -> see later on

• E.g. Government-regulated secrecy systems, military applications

▪ Modern operating systems, to separate applications and processes
• E.g. Windows’ Mandatory Integrity Control, SELinux, TrustedBSD

Example: SELinux

21

▪ Security-Enhanced Linux
▪ “A set of patches to the Linux kernel and some utilities to incorporate a

strong, flexible MAC architecture into the major subsystems of the kernel
[for] confidentiality and integrity”

▪ Activated by default in Fedora, Red Hat Enterprise Linux, etc

▪ Enforce MAC policy to processes in order to limit access to files
and network resources
▪ Least privilege

▪ Policy-based (see later on)
▪ Separation of policy from enforcement with well-defined policy

interfaces
▪ Changing a policy does not require a reboot

Example: SELinux

22

~]$ ls -Z /usr/bin/passwd

-rwsr-xr-x. root root system_u:object_r:passwd_exec_t:s0 /usr/bin/passwd

~]$ ls -Z /etc/shadow

----------. root root system_u:object_r:shadow_t:s0 /etc/shadow

user:role:type:level

SELinux policies:
- applications running in the passwd_t domain can access files labeled

with the shadow_t type
- the passwd_t domain can be entered from the passwd_exec_t type

Discretionary access control (DAC)

23

▪ Permissions are set at the discretion of the subjects, e.g.,
the resource owner
▪ Highly flexible policy, where permissions can be transferred
▪ Lack of central control makes revocation or changes difficult

▪ Discretionary access control in use
▪ Controlling access to files

• E.g., Windows Access Control Lists (ACL), UNIX file handles
▪ Controlling the sharing of personal information

• E.g., Social networks

The Graham-Denning Model

▪ Extends the access control matrix:
▪ Subjects are also resources
▪ Resources have an owner
▪ Subjects have a controller
▪ Permissions can be made

transferrable

▪ Matrix can be modified by 7 commands
▪ Creating and destroying subjects and resources
▪ Granting, transferring and revoking permissions

24

Alice Bob File 1 File 2 File 3

Alice control owner
owner
read
write

owner read*

Bob control
read
write

owner
read

[Graham1972]

The Graham-Denning Model

25

1. Subject Alice creates object File 1 2. Subject Alice creates subject P1

Alice File 1

Alice control owner

Alice P1

Alice control control

P1

3. Subject Alice destroys object File 1
 Alice must own File 1

Alice File 1

Alice control owner

4. Subject Alice destroys subject P1
 Alice must control P1

Alice P1

Alice control control

P1

The Graham-Denning Model

26

Alice P1 File 1

Alice control control owner

P1 read

5. Subject Alice grants a right read/read*
 on File 1 to P1

Alice must be owner of File 1

6. Subject Alice transfers a right read/read*
 on File 1 to P1

Alice must have a right read* on File 1

Alice P1 File 1

Alice control control read*

P1 read

7. Subject Alice deletes a right read/read*
 on File 1 from P1

Alice must control P1 or Alice must own File 1

Alice P1 File 1

Alice control control read*

P1 read

Only rights with a * are transferrable

Pop quiz!

How can Alice run a process P1
that can only read File 1?

28

Alice File 1 File 2

Alice control
owner
read
write

owner
read
write

1. Subject Alice creates object File 1

2. Subject Alice creates subject P1

3. Subject Alice destroys object File 1
Alice must own File 1

4. Subject Alice destroys subject P1
Alice must control P1

5. Subject Alice grants a right read/read* on File 1 to
P1

Alice must be owner of File 1

6. Subject Alice transfers a right r/r* on File 1 to P1
Alice must have a right read* on File 1

7. Subject Alice deletes a right r/r* on File 1 from P1
Alice must control P1 or Alice must own File 1

Pop quiz!

▪ Starting state

29

Alice File 1 File 2

Alice control
owner
read
write

owner
read
write

Alice P1 File 1 File 2

Alice control owner
owner
read
write

owner
read
write

P1 control

Alice P1 File 1 File 2

Alice control owner
owner
read
write

owner
read
write

P1 control read

▪ Subject Alice creates subject P1

▪ Subject Alice grants a permission
read on resource File 1 to subject P1

More pop quiz!

▪ Can Alice read File 1?

▪ Could Alice ever read File 1?

▪ Could Bob ever read File 1?

30

Alice Bob File 1 File 2

Alice control owner
owner
read
write

Bob control

1. Subject Alice creates object File 1

2. Subject Alice creates subject P1

3. Subject Alice destroys object File 1
Alice must own File 1

4. Subject Alice destroys subject P1
Alice must own P1

5. Subject Alice grants a right read/read* on File 1 to
P1

Alice must be owner of File 1

6. Subject Alice transfers a right r/r* on File 1 to P1
Alice must have a right read* on File 1

7. Subject Alice deletes a right r/r* on File 1 from P1
Alice must control P1 or Alice must own File 1

The question of safety

▪ The access control matrix implements a security policy
▪ But DAC allows subjects to specify the access control policy
▪ Given a specific starting state of the matrix and a given set of

commands, can we prove any properties of all reachable states?
• E.g. (Bob, Passwords File, Read) will never be granted

▪ Harrison-Ruzzo-Ullman model
▪ Simplified framework, with six commands to manipulate the matrix
▪ Impossible to build a security argument for the general case

31[Harrison1976]

Recap: MAC vs DAC

32

▪ Two dual approaches

▪ In practice: combine both
▪ Provide some form of discretionary self-management within

the constraints of mandatory access rules
• For example, delegate administration of team resources to an administrator

▪ Options:
• Trust subjects to enforce mandatory policy
• Audit mandatory policy
• Enforce mandatory policy

33

Extensions of the access control matrix:

How are permissions assigned?

Existing models

34

▪ Identity-based access control

▪ Multi-level access control

▪ Role-based access control (RBAC)

▪ Attribute-based access control (ABAC)

Identity-based access control

35

▪ Assign permissions to individual subjects and resources
▪ This is actually again the Access Control Matrix

File A File B

Jane
Read
Write

John Read
Read
Write

Identity-based access control

36

Possible implementations: store 1 big matrix (not efficient) or:

Subjects Resources

A

BA.read

B.read

B.write

A.read

A.write

Access Control Lists
Subjects Resources

A

B
John:read

John:write

Jane:read

Jane:write

Capability Lists

John:read

37

▪ Disadvantages:
▪ Large management effort

• E.g., “all nurses can read patient files” -> repeat for all nurses
• E.g., “patients can read their own patient files” -> repeat for all patients

▪ Information can be leaked
• E.g., malicious user
• E.g., Trojans
• To address this: control access to information throughout the system
• Common model for this: multi-level access control

Identity-based access control

Multi-level access control

▪ Sometimes also called Lattice-Based Access Control

▪ Strict control over information flow
▪ Resources are assigned security classifications

▪ Subjects (and their programs) are assigned security clearances

▪ These labels are organized in a lattice

▪ Two well-known rule sets:
▪ Bell-LaPadula (confidentiality)

▪ Biba (integrity)

38

{A} {B}

{}

{A,B}Top Secret

Secret

Confidential

Unclassified

 w
rite

 read

Multi-level access control

39

▪ Model of Bell-LaPadula:
▪ No read up
▪ No write down (“✰-property”)

Confidentiality

read, write

Unclassified

read, write

 write

 r
ead

Secret

 w
rite

 r
ead

 write

Multi-level access control

40

▪ Model of Biba:
▪ No write up
▪ No read down

Integrity

read, write

Unclassified

read, write

 readSecret

Multi-level access control

41

▪ You want both Bell-LaPadula and Biba

▪ However, this is not workable in practice

▪ => Refinement: Information flow control, taint tracking

var low, high

if check(high) then

 low := declassify(high)
Low

input

High
input

Low
input

High
output

Multi-level access control in the wild

▪ Core security feature of Windows Vista and newer
▪ Complementary to discretionary access control
▪ Control access to securable objects based on integrity level
▪ Define the minimum integrity level required to access an object

▪ Isolate potentially untrustworthy contexts within the OS
▪ Used by Google Chrome and Adobe Reader

42

Role-based access control (RBAC)

43

AssetsRoles

read

write

read

write

read

write

read

write

Manager

Helpdesk
operator

Users

Role-based access control (RBAC)

▪ Permissions assigned to roles, roles adopted by users
▪ Goal: reduce large number of permissions to limited number of

roles
▪ Fits well onto the organizational structure of an enterprise

▪ Originated in research in 1992, NIST standard in 2004

▪ Immense research field
▪ Role hierarchies, role mining, administrative models, delegation,

constraints, least privilege, static separation of duty through
meta-rules, ...

44

Role-based access control (RBAC)
▪ Additional features in the

NIST standard:
▪ Role hierarchies
▪ Least privilege through

sessions
▪ Static separation of duty

through meta-rules
▪ ...

Nurse

Personnel

Administrative
personnel

Medical
personnel

Physician

Cardiologist Surgeon

45

RBAC in the wild

46

▪ Almost any organization that I know of, employs roles
▪ Database systems often use and support RBAC

▪ E.g., Oracle Enterprise Server

▪ Application development frameworks
▪ Apache Shiro, Spring Security, …
▪ E.g., Java Spring Security:

@PreAuthorize("hasRole(‘manager')")
public void create(Contact contact);

@PreAuthorize("hasPermission(‘delete_contact')")
public void deleteContact(Contact contact);

The problem with RBAC

47

The problem with RBAC

Manager

Helpdesk
operator

Developer

Secretary

Accountant

Manager of
R&D dept

Manager of
finance deptManager of

sales dept

Secretary with
color print

Secretary with-
out color print

owns_docA

owns_docB

owns_docC

owns_docD

owns_docE

owns_docF

owns_docG

owns_doc...

Secretary of finance
dept with color print

owns docE

Secretary of sales
dept with color print

owns docE

Helpdesk operator
assigned to
Customer A

Helpdesk operator
assigned to
Customer B

Helpdesk operator
assigned to
Customer C

Helpdesk operator
assigned to
Customer D

Secretary of finance
dept with color print

owns docD

Secretary of sales
dept with color print

owns docD

Secretary of sales
dept without color
print owns docD

Secretary of sales
dept without color

print owns docE Secretary of finance
dept without color

print owns docE

Secretary of sales
dept without color
print owns docB

Secretary of finance
dept without color
print owns docD

Secretary of sales
dept with color print

owns docB

Secretary of finance
dept without color
print owns docB

Secretary of sales
dept with color print

owns docA
Secretary of sales
dept without color
print owns docA

Secretary of finance
dept without color
print owns docA

Secretary of sales
dept without color
print owns docC

Secretary of finance
dept with color print

owns docA

Secretary of sales
dept with color print

owns docC

Secretary of finance
dept without color
print owns docC

Secretary of finance
dept with color print

owns docC

Secretary of finance
dept with color print

owns docB

...

48

Role-based access control (RBAC)

49

▪ Major disadvantage: role explosion

▪ Reasons:
▪ Roles cannot express ownership

• Requires roles like “owns_docA”, “owns_docB”, etc

▪ Reality is too fine-grained
• Often small differences between different persons in the same job, leading to yet another role

(e.g., “secretary_with_colorprint”)

▪ Cross-product of multiple hierarchies
• E.g., “sales_manager_for_belgium_with_colorprint_owns_docA”

▪ To address this:
▪ In practice: pragmatic choices, e.g., RBAC + ownership, RBAC + permissions, ...
▪ Research: large number of extensions proposed

Role-based access control (RBAC)

50

▪ Major disadvantage: role explosion

▪ Reasons:
▪ Roles cannot express ownership and time

• Requires roles like “owns_docA”, “owns_docB”, etc

▪ Reality is too fine-grained
• Often small differences between different persons in the same job, leading to yet another role

(e.g., “secretary_with_colorprint”)

▪ Cross-product of multiple hierarchies
• E.g., “sales_manager_for_belgium_with_colorprint_owns_docA”

▪ To address this:
▪ In practice: pragmatic choice for RBAC + ownership, RBAC + permissions, ...
▪ In research: large number of extensions proposed

Attribute-based Access Control (ABAC)

51

Subject

Identity

Location

Department

Resource

Type

Date

Conf. label

Action Action Type

Environment

Device Type

Timestamp

System state

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

Amount

Attribute-based Access Control (ABAC)

52

permit if
“manager" in subject.roles and subject.department == “auditing”

and subject.location == “Brussels” and action == “inspect”
and resource.type == “financial report”

and resource.year == environment.current_year
and 8h00 < environment.time < 17h00

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

Attribute-based Access Control (ABAC)

53

Managers of the auditing department in Brussels can inspect
the financial reports from the current financial year within office hours

1. fine-grained access control
2. context-aware access control

3. dynamic access control

Attribute-based Access Control (ABAC)

▪ Access decisions are made based on attributes
▪ Attributes are key-value properties of the subject, the

resource, the action or the environment
▪ Results into dynamic and context-aware access control

▪ Attributes can express many different access control
concepts
▪ Permissions, roles, groups, departments, time, location,

ownership, domain-specific ownership, ...

54

1. Maps better to business policies
2. Provides a new methodology of managing users
3. Attributes can be fetched remotely = good for federated applications
4. You do not need the identity of the subject = good for privacy
5. As a researcher, it looks future-proof

a. ABAC supports many advanced policies, e.g., history-based policies, dynamic separation
of duty and breaking-the-glass procedures, …

b. Many of the newest access control models can be mapped on attributes, e.g., ReBAC,
EBAC [Bogaerts2015], obligations [Park2004], ...

c. A lot is still happening in this field, e.g., formal definition of this model and its properties (e.g.,

[Jin2012a]), languages for expressing attribute-based rules (e.g., [XACML, Crampton2012]), mutable
attributes (e.g., [Park2004]), attribute aggregation in federated identity management (e.g.,

[Chadwick2009]), encryption of attributes (e.g., [Asghar2011]), policy engineering for ABAC (e.g..,

[Krau2013]), performance (e.g., [Brucker2010]), …

Attributes as an enabler for the future

55

Migrating from RBAC to ABAC

Conceptually, three approaches:

56
[Kuhn2010]

2. Dynamic roles1. Roles as an attribute 3. Constrain roles

Manager

Helpdesk
operator

Accountant

Secretary

subject.roles

owns_doc...

Identity

Location

Department

Manager
Helpdes

k
operator

Accountant

Secretar
y

owns_doc...

Identity

Location

Department

Manager

A.read B.read

B.write ...

Not all rainbows and unicorns

57

58
Source: [NIST2014]

Not all rainbows and unicorns

59

Trust chain for Access Control Lists

Source: [NIST2014]

Not all rainbows and unicorns

60Trust chain for ABAC
Source: [NIST2014]

“Enterprise ABAC carries with it significant
development, implementation, and operations costs

as well as a paradigm shift in the way
enterprise objects are shared and protected.” -- NIST

61

62

Establish a
business case for

ABAC

Understand your
operational

requirements

Technical
implementation

Deploy or adjust
business

processes

Source: [NIST2014]

Initiation Implementation Maintenance Disposal

Ensure quality

Migrating from RBAC to ABAC, revised

63

Establish a
business case for

ABAC

Understand your
operational

requirements

Technical
implementation

Deploy or adjust
business

processes

Source: [NIST2014]

Initiation Implementation Maintenance Disposal

Ensure quality

Migrating from RBAC to ABAC, revised

Work incrementally

You probably already have

many of the required

processes

ABAC: Conclusion

64

▪ ABAC brings many interesting improvements compared
to previous models

▪ ABAC is seen by many as the next step in access control

▪ => Definitely something you should consider, but not a
small step to take. Work incrementally

▪ Further reading: [NIST2014]
▪ Overview of ABAC, challenges and enterprise considerations

65

Advanced topics

Advanced topics

66

▪ Relationship-Based Access Control
▪ Originated from social networks
▪ Further reading: [Cheng2012, Fong2011]

▪ Entity-Based Access Control
▪ Express access rules in terms of the entities in your application

• Attributes + relationships

▪ Fixes limitations of ABAC
▪ I expect a lot of this,

but still a long way to go
▪ Further reading:

• [Crampton2014]
• [Bogaerts2015]

Advanced topics

67

▪ Advanced policy pattern: breaking the glass
▪ Enable users to override a deny by “breaking the glass”
▪ Common pattern in e-health

• “A physician should be able to override a deny when a patient is in
critical condition”

▪ Challenge: controlled override
• Limit who can override a deny (e.g., only physicians of emergency

department), limit for which actions a deny can be overridden (e.g.,
only for reads)

• Audit these overrides later on, e.g., by writing out logs at override

Advanced topics

68

▪ Advanced policy pattern: separation of duty
▪ Separate duties within an organization
▪ Statically:

• E.g., “a manager can never also be a secretary”
• E.g., “a manager cannot approve his own funding requests”

▪ Dynamically:
• E.g., “if a user has had access to documents of Bank A, he or she is not allowed to

access documents of Bank B”

• Originally described in 1989 as the “Chinese wall policy”, a “commercial security
policy” in contrast to “Bell-LaPadula-style policies” [Brewer1989]

▪ Very relevant because of Sarbanes-Oxley, but still a hard problem
• Hard to apply to an organization
• Hard to implement well (performance issues)

Advanced topics

69

▪ History-based access control
▪ E.g., dynamic separation of duty
▪ E.g., limit the number of accesses

• “a user cannot watch more than 10 movies per month”

▪ Implementation options:
▪ Use log files in the policy evaluation
▪ Use provenance data in the policy evaluation [Nguyen2012, Nguyen2013]

▪ Explicitly update history attributes [Decat2015]

▪ History-based access control
▪ E.g., dynamic separation of duty
▪ E.g., limit the number of accesses

• “a user cannot watch more than 10 movies per month”

▪ Implementation options:
▪ Use log files in the policy evaluation
▪ Use provenance data in the policy evaluation [Nguyen2012, Nguyen2013]

▪ Explicitly update history attributes [Decat2015]

Advanced topics

70

Obligations
When resource.owner == “Bank B”,

apply DenyOverrides to

Deny if
“Bank A” in subject.history

Permit performing
append(“Bank B”, subject.history)

Advanced topics

71

▪ Obligations
▪ Early definition: “predicates that verify mandatory requirements a

subject has to perform before or during a usage exercise” [Park2004]

• Pre-obligations, ongoing-obligations
• Examples:

• User has to agree to terms and conditions (pre)
• User has to be shown an ad during watching the requested movie (ongoing)

▪ More pragmatic definition: action that should be performed with
permitting/denying the action

• Send an e-mail to an administrator on deny to a confidential document
• Write out log
• Update attribute

Outline

72

▪ Introduction

▪ Positioning access control
▪ Access control models
▪ How to enforce access control
▪ Some important technologies in practice
▪ Recap and conclusion

▪ Reference monitors
▪ Access control in

application code
▪ Policy-based access control

How to enforce access control

73

1. How and where to
implement the guard

2. How to encode
the access rules

User
Subject
Principal

Guard

Protected
resource
(Object)

Action

Reference monitors

74

▪ Reference monitors
▪ Observe software execution
▪ Take remedial action on operations that violate a policy

▪ Three important security properties
▪ Full mediation
▪ Tamper proof
▪ Verifiable

Application

Kernel

RM

Application

Kernel

RM

RM

Kernel

Application

Traditional Interpreter Inline
[Erlingsson2004]

Example of a reference monitor

75

▪ Antivirus software is implemented as reference monitor
▪ Hooks into the OS’s system calls to intercept application actions
▪ E.g. inspects file contents upon read or write operations

▪ Good implementation strategy to meet security properties
▪ Full mediation: requires coverage of all system calls
▪ Tamper proof: requires strong process isolation
▪ Verifiable: less straightforward, but possible Application

Kernel

RM

Access control exists on multiple levels

76

Level Subject Action Guard
Protected

System

Hardware OS Process Read memory CPU
CPU and
Memory

Network Host Send packets Firewall Intranet

Database User SELECT query DBMS User database

OS User Open file OS Kernel Filesystem

Application User
Read patient

file
Application

code
Application

data

Application-level access control

77

▪ Rules reason about the concepts in your application

▪ Add guard to code of your application

▪ The same holds:
▪ Full mediation
▪ Tamper proof
▪ Verifiable

Option 1: encode guard and rules in app code

78

public Document getDoc(docId) {
 Doc doc = db.getDoc(docId);
 if (! (“manager” in user.roles
 && doc.owner == user
 && 8h00 < now() < 17h00)) {
 return null;
 } else {
 return doc;
 }
}

+ straightforward

+ you can encode almost
 anything

- no separation of concerns

- no modularity
 => hard for reviews

- what if rules change?
- update application code
- updates all over the place

Option 2: modularize

79

public Document getDoc(docId) {
 Doc doc = db.getDoc(docId);
 if (! (“manager” in user.roles
 && doc.owner == user
 && 8h00 < now() < 17h00)) {
 return null;
 } else {
 return doc;
 }
}

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}
…
public boolean authz(
 user, action, resource) {
 if (!(“manager” in user.roles

 && …)) {
 return true;
 } else {
 return false;
 }
}

Option 2: modularize

80

+ more modularity: access
 control logic in 1 place

- no separation of concerns

± what if rules change?
- update application code
+ updates in one place

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}
…
public boolean authz(
 user, action, resource) {
 if (!(“manager” in user.roles

 && …)) {
 return true;
 } else {
 return false;
 }
}

Option 2: modularize - Django

81

settings.py:

AUTHENTICATION_BACKENDS = [
 ‘mymodule.MyBackend’
]

mymodule/backends.py:

class MyBackend(object):

 ...
 def has_perm(self, user, perm, obj):
 if obj.owner == user.id:
 return True
 else:
 return False

https://docs.djangoproject.com/en/1.9/topics/auth/customizing

Option 2: modularize – Ruby on Rails

82

In the controller:

def show
 @article = Article.find(params[:id])
 authorize! :read, @article
end

In the view:

<% if can? :update, @article %>
 <%= link_to "Edit",
 edit_article_path(@article) %>
<% end %>

The access control code:

class Ability
 include CanCan::Ability

 def initialize(user)
 if user.admin?
 can :manage, :all
 else
 can :read, :all
 end
 end
end

https://github.com/ryanb/cancan

Option 2: modularize – Java Spring Security

83

In the controller:

@PreAuthorize("hasPermission(#doc, ‘view')")
public void getDocument(Document doc);

In the PermissionEvaluator:
boolean hasPermission(Authentication a,
 Object resource, String permission) {
 User user = SecurityUtil.getUserCredential();
 if(permission == “view” and ...) {
 return true;
 } else {
 return false;
 }
}

https://docs.spring.io/spring-security/site/docs/3.0.x/reference/el-access.html

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}
…

public boolean authz(
 subject, action, resource) {
 if (! (“manager” in user.roles and …)) {
 return true;
 } else {
 return false;
 }}

Option 3: policy-based access control

84

@authz(user, “read”, result)
public Document getDoc(docId) {
 return db.getDoc(docId);
}

Policy
Decision

Point

Policy

Option 3: policy-based access control

85

▪ Decouple access control rules from application code
▪ Express access control rules in a format independent of your

programming language
▪ In application code: ask the generic question “can this subject

perform this action on this resource”?
▪ Policy evaluated by specialized component called the Policy

Decision Point
▪ If policy is stored in a file or a database: change policy at run-time

Advantages of PBAC

86

+ More modularity: access control logic in 1 place

+ Separation of concerns: policies can be written by non-developer

+ What if rules change?
+ no updates in application code
+ updates in a single place

+ Enables your access control policies to easily evolve with your
 organization

+ Access rules are software artifacts => automated refinement, monitoring,
 validation, ...

XACML Reference architecture

87

Application

Policy Enforcement Point

Obligation
Service

Policy
Decision

Point

Policy
Administr.

Point

Policy
Information

Point Subjects,
Resources,

Environment

1

2

4

30 0

XACML Reference architecture

88

Application

Policy Enforcement Point

Obligation
Service

Policy
Decision

Point

Policy
Administr.

Point

Policy
Information

Point Subjects,
Resources,

Environment

1

2

4

30 0

isAuthorized(
subject.id -> “John Smith”,

action.id -> “view”,
resource.id -> “doc123”)

fetchAttribute(“subject”, “treating”, “John Smith”)
fetchAttribute(“environment”, “current_time”)

log(“John Smith
accessed doc123”)

when resource.type == “patient_data”:
permit if “physician” in subject.roles and

resource.owner in subject.treating performing
log(subject.id + “accessed ” + resource.id)

Permit

Policy languages

89

▪ A large number of domain-specific policy languages
proposed in literature
▪ E.g., SPL, Ponder, XACML, Cassandra, SecPAL, …

▪ Current major standard: XACML
▪ Standardized by OASIS

• v1.0 ratified in 2003, v3.0 in 2013

▪ Attribute-based, tree-structured, obligations
▪ XML format

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Policy languages: XACML

90

Deny if resource.owner
not in subject.treating

Permit

When “physician” in subject.roles,
apply DenyOverrides to

Condition

Target

“Policies”

“Rules”

When action.id == “view”
apply FirstApplicable to

…

When “nurse” in …
apply …

…

Effect

Combination
algorithm

Policy languages: XACML

91

<Rule RuleId=“roles" Effect="Deny">
 <Description>Boo, physicians.</Description>
 <Condition>
 <Apply FunctionId="string-is-in">
 <AttributeValue DataType="string">physician</AttributeValue>
 <SubjectAttributeDesignator AttributeId="subject:roles" DataType="string"/>
 </Apply>
 </Condition>
</Rule>

<Rule RuleId=“treating" Effect="Permit">
 <Description>Treating</Description>
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <ResourceAttributeDesignator AttributeId="resource:owner" DataType="string"/>
 </Apply>
 <SubjectAttributeDesignator AttributeId="subject:treating" DataType="string"/>
 </Apply>
 </Condition>
</Rule>

<Rule RuleId=“time" Effect="Deny">
 <Description>Time</Description>
 <Condition>
 <Apply FunctionId="not">
 <Apply FunctionId="dateTime-less-than-or-equal">
 <Apply FunctionId="dateTime-one-and-only">
 <EnvironmentAttributeDesignator AttributeId="environment:currentDateTime"

DataType="dateTime"/>
 </Apply>
 <Apply FunctionId="dateTime-add-dayTimeDuration">
 <Apply FunctionId="dateTime-one-and-only">
 <ResourceAttributeDesignator AttributeId="resource:created"

DataType="dateTime"/>
 </Apply>
 <AttributeValue DataType="dayTimeDuration">P5D</AttributeValue>
 </Apply>
 </Apply>
 </Apply>
 </Condition>
</Rule>

<Policy PolicyId=“dynamic-separation-of-duty"
 RuleCombiningAlgId=“deny-overrides">
 <Description>Dynamic separation of duty</Description>
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="string-equal">
 <AttributeValue DataType="string">doc123</AttributeValue>
 <ResourceAttributeDesignator AttributeId="resource:id" DataType="string"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <Rule RuleId="deny" Effect=“Deny">
 <Description>Deny if viewed other doc</Description>
 <Condition>
 <Apply FunctionId="string-is-in">
 <AttributeValue DataType="string">doc456</AttributeValue>
 <SubjectAttributeDesignator AttributeId="subject:history" DataType="string"/>
 </Apply>
 </Condition>
 </Rule>
 <Rule RuleId=“default-permit" Effect=“Permit"> </Rule>
 <Obligations>
 <Obligation ObligationId="append-attribute" FulfillOn="Permit">
 <AttributeAssignment AttributeId="value" DataType="string">
 <SubjectAttributeDesignator AttributeId="resource:id" DataType="string"/>
 </AttributeAssignment>
 <AttributeAssignment AttributeId="attribute-id"
DataType="string">subject:history</AttributeAssignment>
 </Obligation>
 </Obligations>
</Policy>

STAPL

92

Rule("roles") := permit iff (“physician" in subject.roles)

Rule(“ownership") := permit iff (resource.owner in subject.treating)

Rule(“time") := deny iff (env.currentDateTime > (resource.created + 5.days))

Policy(“dynamic SoD") := when (resource.id === "doc123") apply DenyOverrides to (
 Rule("deny") := deny iff ("doc456" in subject.history),
 defaultPermit
) performing (append(resource.id, subject.history) on Permit)

https://github.com/stapl-dsl/

PBAC in the wild: Amazon EC2

93
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

94
http://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

PBAC in the wild: Amazon EC2

PBAC in the wild: Amazon EC2

95

Advantages of PBAC

96

+ More modularity: access control logic in 1 place

+ Separation of concerns: policies can be written by
non-developer

+ What if rules change?
+ no updates in application code
+ updates in a single place

+ Enables your access control policies to easily evolve with your
 organization

+ Enables centralizing policies, explicitly managing policies
 across your organization, refining business policies, …

Ideally

Not all rainbows and unicorns

97

▪ Very interesting technology, great vision to work towards

▪ But, policy-based access control is (still) very hard in practice:
▪ Different way of coding
▪ Policy languages are not self-explanatory
▪ Requires processes for managing policies within your organization
▪ Requires supporting tools such as editors and correctness tests
▪ Requires interoperability if you want to centralize authorization for multiple

applications
▪ Your trusted computing base and trust chains grow significantly
▪ …
▪ Plus, from my research experience: inherently hard to decouple authorization logic

from an application because these rules should still say something about this
application

PBAC: Conclusions

98

▪ PBAC:
▪ A lot is expected of this technology
▪ Enables exciting new stuff
▪ But imho currently still too hard to apply in practice

▪ My recommendation for now:
▪ Modularize authorization in your application code (option 2)

• Provides benefits by itself + future-proof

Outline

99

▪ Introduction

▪ Positioning access control

▪ Access control models

▪ How to enforce access control

▪ Some important technologies in practice

▪ Recap and conclusion

Federated authentication

100

Federated authentication

101

▪ Externalizes authorization from a remote application

▪ Advantages:
▪ Lowers the amount of passwords and therefore password reuse
▪ Can be used to centralize user mgmt for an organization
▪ Removes the need to store passwords in an application

▪ Standards:
▪ OpenID: light-weight, fixed schema, mainly for consumer

applications, deprecated
▪ SAML: more heavy-weight, extensible, more suitable for enterprise

scenarios

OAuth

102

OAuth

103

▪ Constrained delegation of access, mostly to 3rd party
applications
▪ For example, grant a mobile client access to your Twitter stream
▪ Also works well with web services and micro-service

architectures

▪ A simplified form of federated authorization

▪ OAuth 1.0 (2010) was a protocol, OAuth 2.0 (2012) is more a
framework
▪ Interoperability suffers…

OpenID Connect

104

▪ Identity layer on top of the OAuth 2.0

▪ Achieves many of the authentication features of OpenID, but
in a more API-friendly and app-friendly way
▪ Get basic user info from AuthZ Server of OAuth, get more details from

user mgmt API using the OAuth token

▪ OpenID is considered deprecated, OpenID Connect (OIDC) is
considered the successor

http://openid.net/connect/

OpenID Connect

105
https://developer.salesforce.com/page/Inside_OpenID_Connect_on_Force.com

Outline

106

▪ Introduction

▪ Positioning access control

▪ Access control models

▪ How to enforce access control

▪ Recap and conclusion

Recap

▪ Prevent unauthorized access to protected information
▪ AAA: authentication, authorization, audit
▪ Often domain-specific enforcement and rules

▪ Different access control models available
▪ Who can assign permissions: MAC and/or DAC
▪ How permissions are assigned: Identity-based, multi-level, RBAC and

ABAC
▪ How to enforce access control in your application code:

▪ Modularize!

107

Some final words

108

▪ Modern software all depends on access control

▪ But:
▪ Policies are complex to manage in a large organization

• Choose the minimally complex model for your rules
▪ Imperfect because of bugs in the mechanism

• Make the mechanism as simple as possible
▪ Imperfect due to mismatches between policy and mechanism
▪ Access control depends on absence of other security bugs

• Implement least privilege

▪ After all this, breaches will still occur so prepare and avoid being
caught off guard

References

109

▪ [Bogaerts2015] Bogaerts, J., Decat, M., Lagaisse, B., and Joosen, W. Entity-based access control: supporting more
expressive access control policies. ACSAC 2015

▪ [Brewer1989] Brewer, D., and Nash, M. The Chinese Wall security policy. In IEEE Security and Privacy, 1989

▪ [Cheng2012] Cheng, Y., Park, J., and Sandhu, R. A User-to-User Relationship-Based Access Control Model for
Online Social Networks. 2012

▪ [Crampton2014] Crampton, J., and Sellwood, J. Path Conditions and Principal Matching: A New Approach to Access
Control. SACMAT 2014

▪ [Decat2015] Decat, M., Lagaisse, B., and Joosen, W. Scalable and secure concurrent evaluation of history-based
access control policies. ACSAC ’15

▪ [Decat2015b] Decat, M., Bogaerts, J., Lagaisse, B., and Joosen, W. Amusa: Middleware for Efficient Access Control
Management of Multi-tenant SaaS Applications. SAC 2015

▪ [Erlingsson2004] Erlingsson, Úlfar. The inlined reference monitor approach to security policy enforcement. 2004.

▪ [Fong2011] Fong, P. W. Relationship-based Access Control: Protection Model and Policy Language, CODASPY 2011

References

110

▪ [Graham1972] G. Scott Graham and Peter J. Denning. Protection: principles and practice. AFIPS 1972

▪ [Harrison1976] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating systems. 1976

▪ [Kuhn2010] Kuhn, D. R., Coyne, E. J., and Weil, T. R. Adding attributes to role-based access control. 2010

▪ [Lampson1971] Lampson, B. W. Protection. ACM SIGOPS Operating Systems Review, 1971

▪ [Nguyen2012] Park, J., Nguyen, D., and Sandhu, R. A provenance-based access control model. Privacy, Security
and Trust (PST) 2012

▪ [Nguyen2013] Nguyen, D., Park, J., and Sandhu, R. A provenance-based access control model for dynamic
separation of duties. Privacy, Security and Trust (PST) 2013

▪ [NIST2014] Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., and Scarfone, K. Guide to Attribute
Based Access Control (ABAC) Definition and Considerations. NIST 2014.

▪ [Park2004] Park, Jaehong, and Ravi Sandhu. The UCON ABC usage control model. ACM Transactions on
Information and System Security (TISSEC), 2004

Accreditation

111

▪ Red door: http://gomighty.com/user/meg/

▪ Banking application: https://kbctouch.kbc.be/

▪ Login form:
https://w3layouts.com/wp-content/uploads/2014/01/facebook-twitter-google-login.jpg

▪ Policy man halt:
https://pixabay.com/static/uploads/photo/2012/04/01/18/03/policeman-23796_960_7
20.png

▪ Policy man traffic fine:
http://www.buyautoinsurance.com/wp-content/featured-content/seatbelt/images/traffi
c-ticket.png

Access control
Maarten Decat - SecAppDev 2017

maarten@elimity.com

mailto:maarten@elimity.com
mailto:maarten@elimity.com

