Between Testing and Formal Verification

Jan Tobias Miihlberg

jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

SecAppDeyv, Leuven, March 2017

VP iMinds

119 Jan Tobias Mihlberg Between Testing and Formal Verification e (ONNECTINNOVATE CREATE

jantobias.muehlberg@cs.kuleuven.be

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{
ret = 1;
}

return ret;

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Function Coverage
foo(F, F, F);

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{
ret = 1;
}

return ret;

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?
e Function Coverage
foo(F, F, F);
o Statement Coverage
foo(T, T, T);

int foo (bool a, bool b, bool c)

int ret = 0;
if ((a || b) && c)
{

ret = 1;

}

return ret;

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Function Coverage
foo(F, F, F);

o Statement Coverage
foo (T, T, T);

e Branch/Decision Coverage
foo (T, T, T);

foo(T, T, F); int foo (bool a, bool b, bool c)

{

int ret = 0;
if ((a || b) && c)
{

ret = 1;

}

return ret;

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Function Coverage
foo(F, F, F);

o Statement Coverage
foo (T, T, T);

e Branch/Decision Coverage
foo (T, T, T);

foo(T, T, F); int foo (bool a, bool b, bool c)

¢ Condition Coverage {
foo(F, F, T); int ret = 0;
foo(T, T, F); if ((a || b) && ¢)

ret

}

return ret;

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Function Coverage
foo(F, F, F);

o Statement Coverage
foo (T, T, T);

e Branch/Decision Coverage
foo (T, T, T);

foo(T, T, F); int foo (bool a, bool b, bool c)

¢ Condition Coverage {
foo(F, F, T); int ret = 0;
foo(T, T, F); if ((a || b) && ¢)
e MC/DC {
foo(F, T, F); : ret = 1L
foo(r, T, T); return ret;
foo(F, F, T); }
foo (T, F, T);

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Function Coverage
foo(F, F, F);

o Statement Coverage
foo(T, T, T);

e Branch/Decision Coverage
foo (T, T, T);

foo(T, T, F); int foo (bool a, bool b, bool c)

e Condition Coverage {
foo(F, F, T); int ret = 0;
foo (T, T, F); if ((a || b) && c)
e MC/DC {
foo(F, T, F); } ret = 1;
foo(¥, T, T); return ret;
foo(F, F, T); |

foo (T, F, T);
¢ Multiple condition coverage, Parameter value coverage, ...

2/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int bar (SSL =*s)

{
/S
unsigned char xbuffer, xbp;
int r;
buffer = OPENSSL _malloc(l +

2 + payload + padding);

bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n (payload, bp);
memcpy (bp, pl, payload);

r = ssl3_write_bytes (s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

//

3/19 Jan Tobias Mihlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

e Which criterion is best? int bar (SSL «s)

e What about code that {

n’t branch? o
doesn’t branc unsigned char xbuffer, xbp;

o What about code that int r;
is stimulated by I/0O? buffer = OPENSSL_malloc(l +
e ...in scenarios that 2 + payload + padding);

you can't set up in the lab PP = buffer;

?
(SDI, Delta Works) +bp++ = TLS1_HB_RESPONSE;
e How do we know thatwe 5o (payload, bp);

haven’t missed critical memcpy (bp, pl, payload);
interactions?
Concurrency? r = ssl3_write_bytes(s,
. TLS1 RT HEARTBEAT, buffer
9 —_ —_— 14 14
e Who writes aIIthe§e tests” 3 + payload + padding):
e What about security /)
properties? }

3/19 Jan Tobias Mihlberg Between Testing and Formal Verification

QUANTA MAGAZINE

PHYSICS ~ MATHEMATICS ~ BIOLOGY COMPUTER SCIENCE BLOG ~ MORE ALL SUBSCRIBE

OMPUTER SECURITY

Hacker-Proof Code Confirmed

Computer scientists can prove certain programs to be error-free with the same certainty that mathematicians prove
theorems. The advances are being used to secure everything from unmanned drones to the internet.

@ T

1. & I

419 Jan Tobias Miihlberg Between Testing and Formal Verification

419

Q UANTA MacaziNE

PHYSICS ~ MATHEMATICS ~ BIOLOGY COMPUTER SCIENCE BLOG ~ MORE ALL SUBSCRIBE

PUTER

Hacker-Proof Code Confirmed

Computer scientists can prove certain programs to be error-free with the same certainty that mathematicians prove
theorems. The advances are being used to secure everything from unmanned drones to the internet.

URITY

il R J

Java Bug Fixed with Formal Methods CW!I
¥ Mon, 23/02/2015 - 13:16
Deze paginain hetHederlands: Bug in Java gefixt met formele methoden CWI

Researchers from CWI fixed a bug in the widely used object-oriented
programming language Java in February 2015. They found an eror in

a broadly applied sorting algorithm, TimSort, which could crash g
(programs. The bug had already been known from 2013 butwas
- b J a Va never correctly resolved. When researcher Stijn de Gouw from the
‘“:_— CWI research group Formal Methods attempted to prove the
= correciness of TimSort, he encountered the bug that could threaten

the security. He filed a bug reportwith an improved version, which
has now been accepted. This version of TimSort is used by Android

Java is used for server software, Internet-based banking services and, for instance, in computer games like
Minecraft. The programming language is broadly used because it provides a ot of support in the form of
libraries. Developers don't have to invent a function to sort data, for instance, since they can simply get itfrom
the library support. The sorting algorithm TimSort is part of the java.util Arrays and java.util.Collections libraries
Itis named after its creator, Tim Peters, who designed itin 2002 for the Python programming language, where
itis now the default sorting algorithm. The sorting function is often used, for example in the analysis of data.
De Gouw discovered that a previous fix of the ermorwas wiong. The bug Causes programs to crash when used

an a larnn fnnnd et e eariad in e s

Jan Tobias Miihlberg Between Testing and Formal Ve!

419

Q UANTA MacaziNE

PHYSICS ~ MATHEMATICS ~ BIOLOGY CC

APUTER SCIENCE

MORE ALL SUBSCRIBE Q

OMPUTER SECURITY

Hacker-Proof Code Confirmed

Computer scientists can prove certain programs to be error-free with the same certainty that mathematicians prove
theorems. The advances are being used * ; ;

i

Java Bug Fixed with Form:

¥ Mon, 23/02/2015 - 13:16 il a and.html

ve A 12 year Dormant Error found in just

1.474 seconds!!
((Published on February 10, 2017
- % . - .
— 2 Java Yogananda Jeppu | Follow (/&\J 101 (/D\) n (/;-1>\) 25
— ‘ Principal Systems Engineer at Honeywell Technology Solutio. NS =/)

Javais used for semer softwars, Infsrmet: When I wrote this article in IEEE saying that errors can remain
Minecraft The programming lanauage s dormant for a long time waiting for an opportunity to surface I did
libraries. Developers don‘t have to invent
the library support. The sorting algorithim
Itis named after its creator, Tim Peters, w I repeat it here again.
itis now the default sorting algorithm. The

not have this example. I wrote this blog in 2014 describing the error.

De Gouw d d that fix of . .
"f" ,nﬂlfri ‘szivirﬂa’m ijﬂ’?'ﬂmf“‘f‘:r In 2014 I got a call from a friend - they had found an error in the

integrator reset which caused a channel failure in a safety critical

control system. This has been working for the last 12 years wii”

Jan Tobias Miihlberg Between Testing and Formal Verification v

419

QUANTA MAGAZINE

PHYSICS ATHEMATICS

OMPUTER SCIENCE ~ BLOG ~ MORE ALL SUBSCRIBE Q

OMPUTER SECURITY

Hacker-Proof Code Confirmed

Computer scientists can prove certain programs (o be error-free with the same certainty that mathematicians prove
theorems. The advances are being used *

i

Java Bug Fixed with Form: §
¥ Mon, 23/02/2015 - 13:16 Pill sckveandhiml
COMMUNICATIONS ¥ ' Ly
“ACM 1d in just

HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH | PRACTICE | Ci

Home / Magazine Archive / April 2015 [Vol. 58, No.) / How Amazon Web Services Uses Formal Methods / Full Text

CONTRIBUTED ARTICLES

How Amazon Web Services Uses Formal Methods) (©)» ()

By Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Communications of the ACM, Vol. 58 Ho. 4, Pages 66-73

10.1145/2699417

Comments (1)

viewss: 2 [0 @ B SHARE = & @ E B

ors can remain
ity to surface I did

describing the error.
P:

Since 2011, engineers at Amazon Web Services (AWS)
have used formal specification and model checking to
help solve difficult design preblems in critical systems.
Here, we describe our motivation and experience, what .
has worked well in our problem domain, and what has not. ~ ==emtSt 12 years wif

Jan Tobias Miihlberg Between Testing and Formal Verification v

d an error in the

in a safety critical

419

(QUANTA

MAGAZINE

PHYSICS MATHEMATI

BIOLOGY OMPUTER SCIENCE ~ BLOG ~ MORE ALL SUBSCRIBE Q

PUTER SECURITY

Hacker-Proof Co

Computer scientists can prove certain p
theorems. The advances are being used

i

Java Bug Fixed with Form:

¥ Mon, 23/02/2015 - 13:16

COMMUNICATIONS

ACM

Home / Magazine Archive / April 2015 [Vol. 58,1

HOME

CONTRIBUTED ARTICLES

How Amazon Web

By Chris Newcombe, Tim Rath, Fan Zhang, Bogda
Communications of the ACM, Vol. 58 No. 4, Pages
10.1145/2699417

Comments (1)

vewas: 2 [& B s

Jan Tobias Miihlberg

COMMUNICATIONS e

ACM

Home | Magazine Archive / February 2010 [Vol. 53, No. 2) / Sofware Model Checking Takes Off / Full Text

HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH | PRACI

Software Model Checking Takes Off

By Steven P. Miller, Michael W. Whalen, Darren D. Cofer
Communications of the ACM, Vol. 53 No. 2, Pages 58-54
10.1145/1646353.1646372

Comments

vewas: B [0 & B SHARE '@ &§ @

Although formal methods have been used in the
development of safety- and security-critical systems for
years, they have not achieved widespread industrial use
in software or systems engineering. However, two
important trends are making the industrial use of formal
methods practical. The first is the growing acceptance of
model-based development for the design of embedded
systems. Tools such as MATLAB Simulink® and Esterel
Technologies SCADE Suite? are achieving widespread use
in the design of avionics and automotive systems. The
graphical models produced by these tools provide a
formal, or nearly formal, specification that is often
amenable to formal analysis.

The second is the growing power of formal verification tools, particularly model checkers. For
many classes of models they provide a "push-button" means of determining if a model meets its
requirements. Since these tools examine all possible combinations of inputs and state, they are
much more likely to find design errors than testing.

Between Testing and Formal Verification v

QUJA\.NTA MAGAZINE

MATHEMATI BIOLOG MPUTER SCIENCE ~ BLOG ~ MORE AlL UBSCRIBE X

PUTER SECURITY

Hacker-Proof Cq

Computer scientists can prove cer
theorems. The advances are beig Flome | Magazin® R Ho. g Takes OFf / Full Text

NICATIONS __~

OPINION | RESEARCH | PRAC1

PRACTICE

Java Bug Fixed wit

¥ Mon, 23/02/2015 - 13:16
COMMUNICAT

ACM

Home | Magazine Archive / April 2015 [Vol.

By Steven P. Miller, Michael W. Whalen, Darren D. Cofer
Communications of the ACM, Vol. 53 No. 2, Pages 58-54
10.1145/1646353.1646372

E 0 @ O & swee &

methods have been used in the
CONTRIBUTED ARTICLES) B safety- and security-critical systems for
H ow Am azon We (I have not achieved widespread industrial use
s Gre or systems engineering. However, two

Priant trends are making the industrial use of formal
fethods practical. The first is the growing acceptance of
Imodel-based development for the design of embedded
ksystems. Tools such as MATLAB Simulink® and Esterel
echnologies SCADE Suite? are achieving widespread use
in the design of avionics and autometive systems. The
vewas: 2 [& B s L x B2 phical models produced by these tools provide a

formal, or nearly formal, specification that is often

lamenable to formal analysis.

-

By Chris Newcombe, Tim Rath, Fan Zhang, Bogd
Communications of the ACM, Vol. 58 Ho. 4, Page!
10.1145/2699417
Comments (1)

TN AT I

Inal verification tools, particularly model checkers. For
He a "push-button" means of determining if a model meets its
requirements. Since these toolsjiamine all possible combinations of inputs and state, they are
much more likely to find design [lirors than testing.

o ha |
Jan Tobias Mihlberg

419 Between Testing and Formal Verification v

Between Testing and Formal Verification

Testing Formal Verification
e Find as many defects as Use mathematical methods to
reasonably possible convincingly argue that a

system is free of defects

e Gather evidence to show Prove that implementation is a
that a specification is refinement of the specification
correctly implemented

e Relies on empirical evidence Aims to be exhaustive and
and intuition complete

e Expensive Maybe more expensive

5/19 Jan Tobias Mihlberg Between Testing and Formal Verification

Between Testing and Formal Verification
Iterative and Incremental Development

Requirements Analysis & Design

Implementation
Planning

Initial
Planning

Deployment

Evaluation .
Testing

Image: Wikipedia

6/19 Jan Tobias Mihlberg Between Testing and Formal Verification

Between Testing and Formal Verification
Iterative and Incremental Development

Formal Specification Design Analysis
& Requirements Analysis & Verification

\ Py

Requirements Analysis & Design

Implementation
Code Generation,
Secure Compilation,
Deductive Verification &

Software Model Checking
Deployment
Evaluation .
Testing

Software Model Checking,

Post-Hoc Verification,

& Test Case Generation
6/19 Jan Tobias Mihlberg

Planning

Initial
Planning

Between Testing and Formal Verification

Between Testing and Formal Verification
Iterative and Incremental Development

—

Formal Specification Design Analysis
& Requirements Analysis & Verification

\ Py

Requirements Analysis & Design

Implementation
Code Generation,
Secure Compilation,
Deductive Verification &

Software Model Checking
Deployment
Evaluation .
Testing

Software Model Checking,

Post-Hoc Verification,

& Test Case Generation
6/19 Jan Tobias Mihlberg

Planning

Initial
Planning

Between Testing and Formal Verification

Between Testing and Formal Verification

“Beware of bugs in the above code;
| have only proved it correct, not tried it.”

— Donald Knuth

719 Jan Tobias Mihlberg Between Testing and Formal Verification

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

st (working copy build) IDE

File Edit View Verify Window(Top) Window(Bottom) Help

BExX e ¢ ?
—
t1_lib.c | openssLh | prelude.h | prelude_core.gh | list.gh Local Value

dest ((buffer0 + (1+ 1)) + (

void memcpy (unsigned char *dest, unsigned char *src, unsigned size); size payloado

//@ requires dest[..size] |-> _ &*& src[..size] [-= ?cs;
//@ ensures dest[..size] |-> c¢s &*& src[..size] |-> cs; src ((((s3 + SSL3_rrec_off
void RAND_pseudo_bytes (unsigned char *buffer, unsigned size); |
//@ requires buffer[..sizel |-> _;
—
tl_lib.c | openssLh | prelude.h | prelude_core.gh | list.gh Local Value
int r; bp ((buffer0 + (1* 1))

) buffer buffero
buffer = OPENSSL_malloc (lu + 2u + payload + padding);

bp = buffer; hotiee ¢
P (({(s3 + SSL3_rrec_|
\ “bp = TLS1_HB_RESPONSE; bp+; padding 16

s2n(bp, payload);

EERERH (op. pl, payload): payload payloado

bp += (int)payload; pl ((t(s3 + 5513 _rrec_
RAND_pseudo_bytes (bp, padding); " v
r = ss13 write bytes(s, TLS1 RT_HEARTBEAT, buffer, 3 + payload + padding); : °
NPENSS] fraa(huffar): ———
Steps Assumptions l Heap chunks I
Producing assertion 10000 = length(dummy) OPENSSL_malloc_bleck(buffer0, (((1 + 2) + payload0) +

true <==> 0 <= ((s3 + SSL3_rrec_offset) + mec_data_ | SSL_s3(s, s3)
(((s3 + SSL3_rrec_offset) + rrec_data_offset) + (1 * 10C | rrec_length((s3 + SSL3_rrec_offset), length0)
I lengtho <= 10000 u_character(((((s3 + SSL3_rrec_offset) + rrec_data_offs

Producing assertion
Producing assertion

Consuming chunk (retry)

No matching heap chunks: wuchars(((((s3 + SSL3_rrec_offset) +
rrec_data_offset) + (1 = 1)) + (1 %= 2)), payloadO, _)
8/19 Jan Tobias Miihlberg Between Testing and Formal Verification

Symbolic Execution (with Microsoft Z3)

9/19

Jan Tobias Mihlberg

int foo (bool a, bool b, bool c)

{
int ret = 0;
if ((a || b) && c)
{
ret = 1;
}
return ret;
}

Learn more: https://github.com/Z3Prover

Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

int foo (bool a, bool b, bool c)

{
int ret = 0;
if ((a || b) && c)
{
ret 1;
}
return ret;
}

Learn more: https://github.com/Z3Prover

9/19 Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret 1;

}

return ret;

Learn more: https://github.com/Z3Prover

9/19 Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);

Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare—-const a Bool)

(declare—-const b Bool) int foo (bool a, bool b, bool c)
(declare-const ¢ Bool) {

int ret = 0;
if ((a || b) && c)
{

ret 1;

}

return ret;

Learn more: https://github.com/Z3Prover

9/19 Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

9/19

Symbolic Execution: foo (_,

—r)

Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare—-const a
(declare-const b
(declare-const c

(assert (and

Jan Tobias Mihlberg

Bool)

Bool) int foo (bool a, bool b, bool c)
Bool) {

int ret = 0;
a b) c)) if ((a || b) && c)
{
ret 1;

}

return ret;

Learn more: https://github.com/Z3Prover

Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

9/19

Symbolic Execution: foo(_, _, _);

Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare—-const a Bool)

(declare—-const b Bool) int foo (bool a, bool b, bool c)
(declare-const ¢ Bool) {

int ret = 0;

(assert (and (or a b) c)) if ((a || b) && c)
(check—-sat) {
-> sat ret = 1;
(get-model) }
—> (model return ret;

(define-fun c¢ () Bool true)

(define-fun a () Bool true))

Learn more: https://github.com/Z3Prover

Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

9/19

Symbolic Execution: foo(_, _, _);

Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare—-const a Bool)
declare-const b Bool)
declare-const c¢ Bool)
push)

int foo (bool a, bool b, bool c)
{

(

(

(int ret = 0;
(assert (and (or a b) <)) if ((a || b) &&)
(check-sat) (get—-model) {

(pop) ret = 1;
(assert (not

}

(and (or a b) c))) return ret;

(check-sat) (get-model) }

Learn more: https://github.com/Z3Prover

Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo (F, F, F);
Assignment of concrete inputs, one execution, one output.

8/19

Symbolic Execution: foo(_, _, _);

Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare—-const a Bool)
declare-const b Bool) jnt foo (bool a, bool b, bool c)
declare-const ¢ Bool) {
push)

(
(
(int ret = 0;
(assert (and (or a b) <)) if ((a || b) &&)
(check-sat) (get—-model) {
(pop) ret = 1;
(assert (not }

(and (or a b) c))) return ret;
(check-sat) (get-model) }
—-> sat
-> (model

(define—fun c () Bool false)) Learn more: https://github.com/Z3Prover

Jan Tobias Mihlberg Between Testing and Formal Verification

https://github.com/Z3Prover

VeriFast (imec-DistriNet, [JSP10], [PMP*14])

st (working copy build) IDE

File Edit View Verify Window(Top) Window(Bottom) Help

BExX e ¢ ?
—
t1_lib.c | openssLh | prelude.h | prelude_core.gh | list.gh Local Value

dest ((buffer0 + (1+ 1)) + (

void memcpy (unsigned char *dest, unsigned char *src, unsigned size); size payloado

//@ requires dest[..size] |-> _ &*& src[..size] [-= ?cs;
//@ ensures dest[..size] |-> c¢s &*& src[..size] |-> cs; src ((((s3 + SSL3_rrec_off
void RAND_pseudo_bytes (unsigned char *buffer, unsigned size); |
//@ requires buffer[..sizel |-> _;
—
tl_lib.c | openssLh | prelude.h | prelude_core.gh | list.gh Local Value
int r; bp ((buffer0 + (1* 1))

) buffer buffero
buffer = OPENSSL_malloc (lu + 2u + payload + padding);

bp = buffer; hotiee ¢
P (({(s3 + SSL3_rrec_|
\ “bp = TLS1_HB_RESPONSE; bp+; padding 16

s2n(bp, payload);

EERERH (op. pl, payload): payload payloado

bp += (int)payload; pl ((t(s3 + 5513 _rrec_
RAND_pseudo_bytes (bp, padding); " v
r = ss13 write bytes(s, TLS1 RT_HEARTBEAT, buffer, 3 + payload + padding); : °
NPENSS] fraa(huffar): ———
Steps Assumptions l Heap chunks I
Producing assertion 10000 = length(dummy) OPENSSL_malloc_bleck(buffer0, (((1 + 2) + payload0) +

true <==> 0 <= ((s3 + SSL3_rrec_offset) + mec_data_ | SSL_s3(s, s3)
(((s3 + SSL3_rrec_offset) + rrec_data_offset) + (1 * 10C | rrec_length((s3 + SSL3_rrec_offset), length0)
I lengtho <= 10000 u_character(((((s3 + SSL3_rrec_offset) + rrec_data_offs

Producing assertion
Producing assertion

Consuming chunk (retry)

No matching heap chunks: wuchars(((((s3 + SSL3_rrec_offset) +
rrec_data_offset) + (1 = 1)) + (1 %= 2)), payloadO, _)
9/19 Jan Tobias Miihlberg Between Testing and Formal Verification

10/19

Annotations precisely state pre- and post conditions of
functions and loops

VeriFast then checks that these conditions are satisfied for all
executions of the program

Somewhat equivalent to putting assert () statements before
and after every call, then having a very diligent tester
exhaustively trying to make each assertion falil

Jan Tobias Mihlberg Between Testing and Formal Verification

Annotations precisely state pre- and post conditions of
functions and loops

VeriFast then checks that these conditions are satisfied for all
executions of the program

Somewhat equivalent to putting assert () statements before
and after every call, then having a very diligent tester
exhaustively trying to make each assertion falil

... but VeriFast is automatic, complete and sound. It doesn’t
forget to check a single assertion and error reports translate to
concrete inputs or program paths that trigger error conditions.
...supports concurrency — VeriFast finds the odd
synchronisation issue that only pops up if 15 threads are
scheduled in a very specific way.

10/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?
Yes, easily!

assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

Why didn’t we find heartbleed earlier? With
formal methods or testing?

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?
Yes, easily!

assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?
Yes, easily!

assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.
But: It’'s easy to “find” a bug in retrospective.

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!

assert ("size of pl >= payload");
memcpy (bp, pl, payload);

Plus a test case. ..

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.
But: It’'s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

VeriFast, specifically?

12/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

12/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations — depending on program complexity and
verification properties.

12/19 Jan Tobias Mihlberg Between Testing and Formal Verification

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations — depending on program complexity and
verification properties.

You are verifying one part of an application at the level of
abstraction provided by C or Java.

Layer-below attacks? Compilation errors?
Buggy or malicious libraries (not behaving to spec)?
Buggy OS? Kernel-level malware?

12/19 Jan Tobias Mihlberg Between Testing and Formal Verification

KLEE (Stanford, [CDE"08])

KLEE is a symbolic virtual machine built on top of LLVM

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{
ret = 1;
}

return ret;

13/19 Jan Tobias Mihlberg Between Testing and Formal Verification

KLEE (Stanford, [CDE"08])

KLEE is a symbolic virtual machine built on top of LLVM

¢ No annotations but symbolic test cases
e Support for symbolic arguments, files and streams

¢ Exploration can be bounded wrt. input sizes, memory and
CPU consumption

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;

}

return ret;

13/19 Jan Tobias Mihlberg Between Testing and Formal Verification

KLEE (Stanford, [CDE"08])

KLEE is a symbolic virtual machine built on top of LLVM

¢ No annotations but symbolic test cases
e Support for symbolic arguments, files and streams

¢ Exploration can be bounded wrt. input sizes, memory and
CPU consumption

int main (void) { int foo (bool a, bool b, bool c)
bool a, b, c; {
klee_make_symbolic (int ret = 0;
sa, sizeof(a), "a"); if ((a || b) && c)
// same for b and c {
return (foo(a, b, c)); ret = 1;

} }

return ret;

13/19 Jan Tobias Mihlberg Between Testing and Formal Verification

KLEE (Stanford, [CDE*08])

KLEE is a symbolic virtual machine built on top of LLVM

¢ No annotations but symbolic test cases
e Support for symbolic arguments, files and streams

¢ Exploration can be bounded wrt. input sizes, memory and
CPU consumption

int main (void) { int foo (bool a, bool b, bool c)
bool a, b, c; {
klee_make_symbolic (int ret = 0;
sa, sizeof(a), "a"); if ((a || b) && c)
// same for b and c {
return (foo(a, b, c)); ret = 1;

} }

return ret;
« Combines concrete with ymbolic execution!
e Bug reports or crashes reported with real program inputs
e Achieve > 90% coverage

13/19 Jan Tobias Mihlberg Between Testing and Formal Verification

Pex (Microsoft, [TAHO08])
Pex: white-box test generation for .NET

¢ Pex automatically generates test suites to achieve high
code coverage in a short amount of time

e Code must have branches for Pex to be effective

e Combination of concrete and symbolic execution

Initially, choose
arbitrary input values

‘ Runa_nd
Solve [npat Monitor
‘ ’ Values .
Execution Path
System
ChooseanL @ J Record

Uncovered Path Path Condition

Image & more: http://www.pexforfun.com/

14 /19 Jan Tobias Miihlberg Between Testing and Formal Verification

http://www.pexforfun.com/

Other Tools

|‘ Facebook Infer is a static analysis tool - if you give Infer
some Java or C/C++/Objective-C code it produces a list of
potential bugs.
http://fbinfer.com/

CBMC ... is a Bounded Model Checker for C and C++ programs.
CBMC verifies array bounds (buffer overflows), pointer
safety, exceptions and user-specified assertions.
http://www.cprover.org/cbmc/

SATASBS ... is a verification tool for ANSI-C and C++ programs.
SATABS transforms a C/C++ program into a Boolean
program, which is an abstraction of the original program in
order to handle large amounts of code.
http://www.cprover.org/satabs/

15/19 Jan Tobias Mihlberg Between Testing and Formal Verification

http://fbinfer.com/
http://www.cprover.org/cbmc/
http://www.cprover.org/satabs/

Conclusions

What is formal software verification?

What (semi-) formal tools and techniques integrate
well with testing?

Is formal verification orthogonal to testing?
Do we need both?

How do formal verification and testing interact?

When and how can formal verification replace testing,
or testing replace formal verification?

16 /19 Jan Tobias Mihlberg Between Testing and Formal Verification

Conclusions

What is formal software verification?

What (semi-) formal tools and techniques integrate
well with testing?

Is formal verification orthogonal to testing?
Do we need both?

How do formal verification and testing interact?
When and how can formal verification replace testing,
or testing replace formal verification?

Further Reading:
¢ Practice and experience with FM: [WLBFQ9], [TWCO01]
e Industrial case studies with VeriFast: [PMP*14]
e Symbolic execution for testing: [CGK*11]

16 /19 Jan Tobias Mihlberg Between Testing and Formal Verification

Thank you!

Thank you! Questions?

https://distrinet.cs.kuleuven.be/

1719 Jan Tobias Mihlberg Between Testing and Formal Verification

https://distrinet.cs.kuleuven.be/

References |

[=)

) &) &

18/19

C. Cadar, D. Dunbar, D. R. Engler, et al.

Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs.
In OSDI, vol. 8, pp. 209-224, 2008.

C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, and W. Visser.

Symbolic execution for software testing in practice: Preliminary assessment.
In Proceedings of the 33rd International Conference on Software Engineering, ICSE 11, pp. 1066—-1071,
New York, NY, USA, 2011. ACM.

B. Jacobs, J. Smans, and F. Piessens.

VeriFast: Imperative programs as proofs.
In VSTTE 2010 workshop proceedings, pp. 63-72, 2010.

P. Philippaerts, J. T. Miihlberg, W. Penninckx, J. Smans, B. Jacobs, and F. Piessens.
Software verification with VeriFast: Industrial case studies.

Science of Computer Programming (SCP), 82:77-97, 2014.

N. Tillmann and J. de Halleux.

Pex — White Box Test Generation for .NET, pp. 134—153.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

J. Tretmans, K. Wijbrans, and M. Chaudron.

Software engineering with formal methods: The development of a storm surge barrier control system
revisiting seven myths of formal methods.
Formal Methods in System Design, 19(2):195-215, 2001.

Jan Tobias Mihlberg Between Testing and Formal Verification

References Il

@ J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald.

Formal methods: Practice and experience.
ACM Comput. Surv., 41(4):1-36, 2009.

19/19 Jan Tobias Mihlberg Between Testing and Formal Verification

