
empty

Between Testing and Formal Verification

Jan Tobias Mühlberg

jantobias.muehlberg@cs.kuleuven.be
imec-DistriNet, KU Leuven, Celestijnenlaan 200A, B-3001 Belgium

SecAppDev, Leuven, March 2017

1 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

jantobias.muehlberg@cs.kuleuven.be

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Function Coverage
foo(F, F, F);

• Statement Coverage
foo(T, T, T);

• Branch/Decision Coverage
foo(T, T, T);
foo(T, T, F);

• Condition Coverage
foo(F, F, T);
foo(T, T, F);

• MC/DC
foo(F, T, F);
foo(F, T, T);
foo(F, F, T);
foo(T, F, T);

• Multiple condition coverage, Parameter value coverage, . . .

2 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

• Which criterion is best?
• What about code that

doesn’t branch?
• What about code that

is stimulated by I/O?
• . . . in scenarios that

you can’t set up in the lab
(SDI, Delta Works)?

• How do we know that we
haven’t missed critical
interactions?
Concurrency?

• Who writes all these tests?
• What about security

properties?

3 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int bar (SSL *s)
{

// ...
unsigned char *buffer, *bp;
int r;
buffer = OPENSSL_malloc(1 +

2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ...
}

empty

• Which criterion is best?
• What about code that

doesn’t branch?
• What about code that

is stimulated by I/O?
• . . . in scenarios that

you can’t set up in the lab
(SDI, Delta Works)?

• How do we know that we
haven’t missed critical
interactions?
Concurrency?

• Who writes all these tests?
• What about security

properties?

3 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

How much testing do we have to do? When are we done?

int bar (SSL *s)
{

// ...
unsigned char *buffer, *bp;
int r;
buffer = OPENSSL_malloc(1 +

2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy(bp, pl, payload);

r = ssl3_write_bytes(s,
TLS1_RT_HEARTBEAT, buffer,
3 + payload + padding);

// ...
}

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

4 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

Between Testing and Formal Verification

Testing Formal Verification

• Find as many defects as
reasonably possible

Use mathematical methods to
convincingly argue that a
system is free of defects

• Gather evidence to show
that a specification is
correctly implemented

Prove that implementation is a
refinement of the specification

• Relies on empirical evidence
and intuition

Aims to be exhaustive and
complete

• Expensive Maybe more expensive

5 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

Between Testing and Formal Verification

6 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

Iterative and Incremental Development

Image: Wikipedia

empty

Between Testing and Formal Verification

6 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

Iterative and Incremental Development

empty

Between Testing and Formal Verification

6 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

Iterative and Incremental Development

empty

Between Testing and Formal Verification

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

– Donald Knuth

7 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

8 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

No matching heap chunks: uchars(((((s3 + SSL3_rrec_offset) +
rrec_data_offset) + (1 * 1)) + (1 * 2)), payload0, _)

empty

Symbolic Execution (with Microsoft Z3)

Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))
(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))
(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.

(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))
(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))
(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))

(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)

(assert (and (or a b) c))
(check-sat)
-> sat
(get-model)
-> (model
(define-fun c () Bool true)
(define-fun a () Bool true))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)
(push)
(assert (and (or a b) c))
(check-sat)(get-model)
(pop)
(assert (not

(and (or a b) c)))
(check-sat)(get-model)

-> sat
-> (model
(define-fun c () Bool false))

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

Symbolic Execution (with Microsoft Z3)
Normal “Concrete” Execution: foo(F, F, F);
Assignment of concrete inputs, one execution, one output.

Symbolic Execution: foo(_, _, _);
Assign symbolic inputs, use a constraint solver to find concrete
inputs that satisfy a specific path.
(declare-const a Bool)
(declare-const b Bool)
(declare-const c Bool)
(push)
(assert (and (or a b) c))
(check-sat)(get-model)
(pop)
(assert (not

(and (or a b) c)))
(check-sat)(get-model)

-> sat
-> (model
(define-fun c () Bool false))

8 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

Learn more: https://github.com/Z3Prover

https://github.com/Z3Prover

empty

VeriFast (imec-DistriNet, [JSP10], [PMP+14])

9 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

No matching heap chunks: uchars(((((s3 + SSL3_rrec_offset) +
rrec_data_offset) + (1 * 1)) + (1 * 2)), payload0, _)

empty

VeriFast

Annotations precisely state pre- and post conditions of
functions and loops
VeriFast then checks that these conditions are satisfied for all
executions of the program
Somewhat equivalent to putting assert() statements before
and after every call, then having a very diligent tester
exhaustively trying to make each assertion fail

. . . but VeriFast is automatic, complete and sound. It doesn’t
forget to check a single assertion and error reports translate to
concrete inputs or program paths that trigger error conditions.
. . . supports concurrency – VeriFast finds the odd
synchronisation issue that only pops up if 15 threads are
scheduled in a very specific way.

10 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

Annotations precisely state pre- and post conditions of
functions and loops
VeriFast then checks that these conditions are satisfied for all
executions of the program
Somewhat equivalent to putting assert() statements before
and after every call, then having a very diligent tester
exhaustively trying to make each assertion fail

. . . but VeriFast is automatic, complete and sound. It doesn’t
forget to check a single assertion and error reports translate to
concrete inputs or program paths that trigger error conditions.
. . . supports concurrency – VeriFast finds the odd
synchronisation issue that only pops up if 15 threads are
scheduled in a very specific way.

10 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

Could we have found heartbleed with testing?

Yes, easily!
assert("size of pl >= payload");
memcpy(bp, pl, payload);

Plus a test case. . .

Why didn’t we find heartbleed earlier? With
formal methods or testing?

No one thought of it.

But: It’s easy to “find” a bug in retrospective.

But: You wouldn’t know of bugs that got fixed before they
could be exploited!

11 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations – depending on program complexity and
verification properties.

You are verifying one part of an application at the level of
abstraction provided by C or Java.

Layer-below attacks? Compilation errors?

Buggy or malicious libraries (not behaving to spec)?

Buggy OS? Kernel-level malware?

12 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations – depending on program complexity and
verification properties.

You are verifying one part of an application at the level of
abstraction provided by C or Java.

Layer-below attacks? Compilation errors?

Buggy or malicious libraries (not behaving to spec)?

Buggy OS? Kernel-level malware?

12 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations – depending on program complexity and
verification properties.

You are verifying one part of an application at the level of
abstraction provided by C or Java.

Layer-below attacks? Compilation errors?

Buggy or malicious libraries (not behaving to spec)?

Buggy OS? Kernel-level malware?

12 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

VeriFast

But how good is that?

VeriFast, specifically?

VeriFast finds the bug. Without a tester thinking about a specific
test case.

Static verification, no runtime overhead.

Writing annotations isn’t easy. You may need a lot of
annotations – depending on program complexity and
verification properties.

You are verifying one part of an application at the level of
abstraction provided by C or Java.

Layer-below attacks? Compilation errors?

Buggy or malicious libraries (not behaving to spec)?

Buggy OS? Kernel-level malware?
12 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

KLEE (Stanford, [CDE+08])

KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and

CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(
&a, sizeof(a), "a");

// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage

13 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

KLEE (Stanford, [CDE+08])

KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and

CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(
&a, sizeof(a), "a");

// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage

13 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

KLEE (Stanford, [CDE+08])

KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and

CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(

&a, sizeof(a), "a");
// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage

13 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

KLEE (Stanford, [CDE+08])

KLEE is a symbolic virtual machine built on top of LLVM

• No annotations but symbolic test cases
• Support for symbolic arguments, files and streams
• Exploration can be bounded wrt. input sizes, memory and

CPU consumption

int main(void) {
bool a, b, c;
klee_make_symbolic(

&a, sizeof(a), "a");
// same for b and c
return (foo(a, b, c));

}

• Combines concrete with symbolic execution!
• Bug reports or crashes reported with real program inputs
• Achieve ≥ 90% coverage

13 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

int foo (bool a, bool b, bool c)
{

int ret = 0;
if ((a || b) && c)
{

ret = 1;
}
return ret;

}

empty

Pex (Microsoft, [TdH08])
Pex: white-box test generation for .NET

• Pex automatically generates test suites to achieve high
code coverage in a short amount of time

• Code must have branches for Pex to be effective
• Combination of concrete and symbolic execution

14 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

Image & more: http://www.pexforfun.com/

http://www.pexforfun.com/

empty

Other Tools

Facebook Infer is a static analysis tool - if you give Infer
some Java or C/C++/Objective-C code it produces a list of
potential bugs.
http://fbinfer.com/

CBMC . . . is a Bounded Model Checker for C and C++ programs.
CBMC verifies array bounds (buffer overflows), pointer
safety, exceptions and user-specified assertions.
http://www.cprover.org/cbmc/

. . . is a verification tool for ANSI-C and C++ programs.
SATABS transforms a C/C++ program into a Boolean
program, which is an abstraction of the original program in
order to handle large amounts of code.
http://www.cprover.org/satabs/

15 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

http://fbinfer.com/
http://www.cprover.org/cbmc/
http://www.cprover.org/satabs/

empty

Conclusions

What is formal software verification?

What (semi-) formal tools and techniques integrate
well with testing?

Is formal verification orthogonal to testing?
Do we need both?

How do formal verification and testing interact?

When and how can formal verification replace testing,
or testing replace formal verification?

Further Reading:
• Practice and experience with FM: [WLBF09], [TWC01]
• Industrial case studies with VeriFast: [PMP+14]
• Symbolic execution for testing: [CGK+11]

16 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

Conclusions

What is formal software verification?

What (semi-) formal tools and techniques integrate
well with testing?

Is formal verification orthogonal to testing?
Do we need both?

How do formal verification and testing interact?

When and how can formal verification replace testing,
or testing replace formal verification?

Further Reading:
• Practice and experience with FM: [WLBF09], [TWC01]
• Industrial case studies with VeriFast: [PMP+14]
• Symbolic execution for testing: [CGK+11]

16 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

Thank you!

Thank you! Questions?
https://distrinet.cs.kuleuven.be/

17 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

https://distrinet.cs.kuleuven.be/

empty

References I

C. Cadar, D. Dunbar, D. R. Engler, et al.
Klee: Unassisted and automatic generation of high-coverage tests for complex systems programs.
In OSDI, vol. 8, pp. 209–224, 2008.

C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and W. Visser.
Symbolic execution for software testing in practice: Preliminary assessment.
In Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11, pp. 1066–1071,
New York, NY, USA, 2011. ACM.

B. Jacobs, J. Smans, and F. Piessens.
VeriFast: Imperative programs as proofs.
In VSTTE 2010 workshop proceedings, pp. 63–72, 2010.

P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and F. Piessens.
Software verification with VeriFast: Industrial case studies.
Science of Computer Programming (SCP), 82:77–97, 2014.

N. Tillmann and J. de Halleux.
Pex – White Box Test Generation for .NET, pp. 134–153.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

J. Tretmans, K. Wijbrans, and M. Chaudron.
Software engineering with formal methods: The development of a storm surge barrier control system
revisiting seven myths of formal methods.
Formal Methods in System Design, 19(2):195–215, 2001.

18 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

empty

References II

J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald.
Formal methods: Practice and experience.
ACM Comput. Surv., 41(4):1–36, 2009.

19 /19 Jan Tobias Mühlberg Between Testing and Formal Verification

